- 
								[1]
								D. Z. Freedman, Phys. Rev. D 9, 1389 (1974) 
- 
								[2]
								A. Drukier and L. Stodolsky, Phys. Rev. D 30, 2295 (1984) 
- 
								[3]
								D. Akimov et al., The COHERENT Experimental Program, in Snowmass 2021, 2022 
- 
								[4]
								D. Y. Akimov et al., Phys. Usp. 62(2), 166 (2019) 
- 
								[5]
								A. J. Anderson et al., Phys. Rev. D 84, 013008 (2011) 
- 
								[6]
								J. Erler and M. J. Ramsey-Musolf, Phys. Rev. D 72, 073003 (2005) 
- 
								[7]
								M. Abdullah et al., Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications, 2022, arXiv: 2203.07361 
- 
								[8]
								D. Akimov et al., Science 357(6356), 1123 (2017) 
- 
								[9]
								D. Akimov et al., Phys. Rev. D 106(3), 032003 (2022) 
- 
								[10]
								H. Bonet et al., Eur. Phys. J. C 81, 267 (2021) 
- 
								[11]
								C. Augier et al., J. Low Temp. Phys. 212, 127 (2023) 
- 
								[12]
								G. Angloher et al., Eur. Phys. J. C 79, 1018 (2019) 
- 
								[13]
								A. Aguilar-Arevalo et al., Phys. Rev. D 100, 092005 (2019) 
- 
								[14]
								J. Colaresi, J. I. Collar, T. W. Hossbach et al., Phys. Rev. Lett. 129(21), 211802 (2022) 
- 
								[15]
								D. Y. Akimov et al., JINST 15(02), P02020 (2020) 
- 
								[16]
								S. Karmakar, M. K. Singh, H. T. Wong et al., PoS TAUP2023, 226 (2024) 
- 
								[17]
								J. J. Choi et al., Eur. Phys. J. C 83(3), 226 (2023) 
- 
								[18]
								A. Bernstein, N. Bowden, B. L. Goldblum et al., Rev. Mod. Phys. 92, 011003 (2020) 
- 
								[19]
								H. Bonet et al., Eur. Phys. J. C 83(3), 195 (2023) 
- 
								[20]
								V. Belov et al., JINST 10, P12011 (2015) 
- 
								[21]
								I. Alekseev et al., Phys. Rev. D 106, L051101 (2022) 
- 
								[22]
								G. Hausser, Nucl. Instrum. Meth. B 83(1), 223 (1993) 
- 
								[23]
								I. Alekseev et al., JINST 11, P01011 (2016) 
- 
								[24]
								A. G. Beda et al., Physics of Atomic Nuclei 70, 1873 (2007) 
- 
								[25]
								Mirion Technologies (Canberra Lingolsheim), 1 Chemin de la Roseraie, 67380 Lingolsheim, France 
- 
								[26]
								Cryo-Pulse 5 Plus Electrically Refrigerated Cryostat, https://www.mirion.com/products/cryo-pulse-5-plus-electrically-refrigerated-cryostat. 
- 
								[27]
								Compact vibration isolation table TS-C30, http://tablestable.com/en/products/view/45/ 
- 
								[28]
								P. S. Barbeau, J. I. Collar, and O. Tench, JCAP 09, 009 (2007) 
- 
								[29]
								Z. Hons and J. Vlášek, Journal of Instrumentation 12, P01022 (2017) 
- 
								[30]
								Z. Hons, A versatile daq, monitoring and data processing system for nuclear experiments in camac and vme standards, 2015, arXiv: 1508.01379 
- 
								[31]
								R. Brun and F. Rademakers, Nucl. Instrum. Meth. A 389, 81 (1997) 
- 
								[32]
								S. V. Rozov et al. (on behalf of EDELWEISS Collaboration), Bull. Russ. Acad. Sci. Phys. 74, 464 (2010) 
- 
								[33]
								J. Morales et al., Nucl. Instrum. Meth. A 321, 410 (1992) 
- 
								[34]
								I. Stekl et al., Czech. J. Phys. 52, 541 (2002) 
- 
								[35]
								V. I. Kopeikin et al., Physics of Atomic Nuclei 67, 1892 (2004) 
- 
								[36]
								M. Estienne et al., Phys. Rev. Lett. 123, 022502 (2019) 
- 
								[37]
								J. Lindhard et al., Mat. Fys. Medd. Dan. Vid. Selsk 33(10), 1 (1963) 
- 
								[38]
								J. I. Collar et al., Phys. Rev. D 103, 122003 (2021) 
- 
								[39]
								A. Bonhomme et al., Eur. Phys. J. C 82(9), 815 (2022) 
- 
								[40]
								L. Li, A Measurement of The Response of A High Purity Germanium Detector to Low-Energy Nuclear Recoils. Phd thesis, Duke University, 2022. Available at https://hdl.handle.net/10161/25153 
- 
								[41]
								A. R. L. Kavner and I. Jovanovic, Measurement of Ionization Produced by 254 eVnr Nuclear Recoils in Germanium, 2024, arXiv: 2405.10405 
- 
								[42]
								K. W. Jones and H. W. Kraner, Phys. Rev. C 4, 125 (1971) 
- 
								[43]
								K. W. Jones and H. W. Kraner, Phys. Rev. A 11, 1347 (1975) 
- 
								[44]
								Y. Messous and et al., Astropart. Phys. 3(4), 361 (1995) 
- 
								[45]
								A. K. Soma et al., Nucl. Instrum. Meth. A 836, 67 (2016) 
- 
								[46]
								B. J. Scholz et al., Phys. Rev. D 94, 122003 (2016) 
- 
								[47]
								N. Ackermann et al., Final CONUS results on coherent elastic neutrino nucleus scattering at the Brokdorf reactor, 1, 2024 
- 
								[48]
								S. Adamski et al., First detection of coherent elastic neutrino-nucleus scattering on germanium, 6, 2024 
- 
								[49]
								N. Ackermann et al., Eur. Phys. J. C 84(12), 1265 (2024) 
- 
								[50]
								S. Karmakar et al., New Limits on Coherent Neutrino Nucleus Elastic Scattering Cross Section at the KuoSheng Reactor Neutrino Laboratory, 11, 2024 
- 
								[51]
								A. P. Vlasenko, S. V. Ingerman, P. Y. Naumov et al., Phys. Atom. Nucl. 86(6), 1178 (2023) 
- 
								[52]
								H. de Kerret et al., Nature Phys. 16(5), 558 (2020) 
- 
								[53]
								F. P. An et al., Chin. Phys. C 45(7), 073001 (2021) 
- 
								[54]
								F. P. An et al., Phys. Rev. Lett. 129(22), 041801 (2022) 
- 
								[55]
								D. Akimov et al., Phys. Rev. Lett. 129(8), 081801 (2022) 
- 
								[56]
								D. Akimov et al., Phys. Rev. Lett. 126, 012002 (2021) 
- 
								[57]
								Z. Bo et al., First Measurement of Solar 8B Neutrino Flux through Coherent Elastic Neutrino-Nucleus Scattering in PandaX-4T, 7, 2024 
- 
								[58]
								E. Aprile et al., First Measurement of Solar 8B Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with XENONnT, 8, 2024 
- 
								[59]
								E. Figueroa-Feliciano, Experimental summary, magnificent cevns 2023 conference 
- 
								[60]
								N. Ackermann et al., First observation of reactor antineutrinos by coherent scattering, 1, 2025, arXiv: 2501.05206 
- 
								[61]
								H. Bonet et al., Eur. Phys. J. C 84(2), 139 (2024)