- 
								[1]
								G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1-29 (2012) 
- 
								[2]
								S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30-61 (2012) 
- 
								[3]
								R. Lafaye, T. Plehn, M. Rauch et al., JHEP 08, 009 (2009), arXiv:0904.3866 
- 
								[4]
								C. Englert, A. Freitas, M. M. Mühlleitner et al., J. Phys. G 41, 113001 (2014), arXiv:1403.7191 
- 
								[5]
								H. Baer, T. Barklow, K. Fujii et al., The International Linear Collider Technical Design Report - Volume 2: Physics, arXiv: 1306.6352 (2013) 
- 
								[6]
								M. Aicheler, P. Burrows, M. Draper et al., A Multi-TeV Linear Collider Based on CLIC Technology: CLIC Conceptual Design Report, doi: 10.5170/CERN-2012-007(2012) 
- 
								[7]
								A. Abada et al., Eur. Phys. J. ST 228(2), 261-623 (2019) 
- 
								[8]
								CEPC Study Group, CEPC Conceptual Design Report: Volume 1 - Accelerator, arXiv: 1809.00285 (2018) 
- 
								[9]
								CEPC Study Group, CEPC Conceptual Design Report: Volume 2 - Physics & Detector, arXiv: 1811.10545 (2018) 
- 
								[10]
								Y. bai et al., Chin. Phys. C 44(1), 013001 (2020), arXiv:1905.12903 
- 
								[11]
								F. An et al., Chin. Phys. C 43(4), 043002 (2019), arXiv:1810.09037 
- 
								[12]
								M. D. Schwartz, Modern Machine Learning and Particle Physics, arXiv: 2103.12226 (2021) 
- 
								[13]
								A. J. Larkoski, I. Moult, and B. Nachman, Phys. Rept. 841, 1 (2020), arXiv:1709.04464 
- 
								[14]
								R. Kogler et al., Rev. Mod. Phys 91, 045003 (2019), arXiv:1803.06991 
- 
								[15]
								J. Cogan, M. Kagan, E. Strauss et al., JHEP 02, 118 (2015), arXiv:1407.5675 
- 
								[16]
								L. G. Almeida, M. Backović, M. Cliche et al., JHEP 07, 086 (2015), arXiv:1501.05968 
- 
								[17]
								L. de Oliveira, M. Kagan, L. Mackey et al., JHEP 07, 069 (2016), arXiv:1511.05190 
- 
								[18]
								P. Baldi, K. Bauer, C. Eng et al., Phys. Rev. D 93, 094034 (2016), arXiv:1603.09349 
- 
								[19]
								D. Guest, J. Collado, P. Baldi et al., Phys. Rev. D 94, 112002 (2016), arXiv:1607.08633 
- 
								[20]
								J. Pearkes, W. Fedorko, A. Lister et al., Jet Constituents for Deep Neural Network Based Top Quark Tagging, arXiv: 1704.02124 (2017) 
- 
								[21]
								S. Egan, W. Fedorko, A. Lister et al., Long Short-Term Memory (LSTM) networks with jet constituents for boosted top tagging at the LHC, arXiv: 1711.09059 (2017) 
- 
								[22]
								K. Fraser and M. D. Schwartz, JHEP 10, 093 (2018), arXiv:1803.08066 
- 
								[23]
								G. Louppe, K. Cho, C. Becot et al., JHEP 01, 057 (2019), arXiv:1702.00748 
- 
								[24]
								T. Cheng, Comput. Softw. Big Sci. 2, 3 (2018), arXiv:1711.02633 
- 
								[25]
								I. Henrion, J. Brehmer, J. Bruna et al., Neural Message Passing for Jet Physics, Deep Learning for Physical Sciences Workshop at the 31st Conference on Neural Information Processing Systems (NIPS) (2017) 
- 
								[26]
								Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler, Journal of High Energy Physics 01, 121 (2019) 
- 
								[27]
								H. Qu and L. Gouskos, Phys. Rev. D 101(5), 056019 (2020), arXiv:1902.08570 
- 
								[28]
								E. M. Metodiev, B. Nachman, and J. Thaler, JHEP 10, 174 (2017), arXiv:1708.02949 
- 
								[29]
								P. T. Komiske, E. M. Metodiev, B. Nachman et al., Phys. Rev. D 98, 011502(R) (2018), arXiv:1801.10158 
- 
								[30]
								A. Andreassen, I. Feige, C. Frye et al., Eur. Phys. J. C 79, 102 (2019), arXiv:1804.09720 
- 
								[31]
								P. T. Komiske, E. M. Metodiev, and J. Thaler, JHEP 11, 059 (2018), arXiv:1809.01140 
- 
								[32]
								Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh et al., Deep Sets, arXiv: 1703.06114 (2017) 
- 
								[33]
								K. He, X. Zhang, S. Ren et al., Delving deep into rectifiers: surpassing human-level performance on ImageNet classification, in 2015 IEEE International Conference on Computer Vision (ICCV), IEEE, Santiago, Chile, pg. 1026.c (2015). 
- 
								[34]
								Kilian, W., Ohl, T. & Reuter, J., Eur. Phys. J. C 71, 1742 (2011) 
- 
								[35]
								T. Sjostrand, S. Mrenna, and P. Z. Skands, JHEP 05, 026 (2006), arXiv:0603175 
- 
								[36]
								Xin Mo, Gang Li, Man-Qi Ruan et al., Chin. Phys. C 40(3), 033001 (2016) 
- 
								[37]
								Diederik P. Kingma, and Jimmy Ba, Adam: A Method for Stochastic Optimization, ICLR ArXiv: 1412.6980 (2015) 
- 
								[38]
								Laurens van der Maaten and Geoffrey Hinton, Journal of Machine Learning Research 9, 2579-2605 (2008) 
- 
								[39]
								H. Qu, Weaver, a streamlined yet flexible machine learning R&D framework for HEP, https://github.com/hqucms/weaver