- 
								[1]
								A. lbarra et al., Fusion Sci. Technol. 66, 252 (2014) 
- 
								[2]
								S. J. Bame, Jr. and R. L. Cubitt, Phys. Rev. 113, 256 (1959) 
- 
								[3]
								R. L. Macklin, N. H. Lazar, and W. S. Lyon, Phys. Rev. 107, 504 (1957) 
- 
								[4]
								N. Otuka et al., Nuclear Data Sheets 120, 272 (2014) 
- 
								[5]
								IAEA-EXFOR Experimental nuclear reaction database, https://www-nds.iaea.org/exfor (Data retrieved on May 2021) 
- 
								[6]
								I. Newsome, M. Bhike, Krishichayan et al., Physical Review C 97, 044617 (2018) 
- 
								[7]
								J. Albert et al. (EXO-200 Collaboration), Nature 510, 229 (2014) 
- 
								[8]
								C. Alduino et al. (CUORE Collaboration), Phys. Rev. Lett. 120, 132501 (2018) 
- 
								[9]
								M. Agostini et al. (GERDA Collaboration), Nature 544, 47 (2017) 
- 
								[10]
								A. Lee Bernstein et al., Annual Review of Nuclear and Particle Science 69, 109 (2019) 
- 
								[11]
								A.J. Koning, S. Hilaire and M.C. Duijvestijn, EDP Sciences, 211-214 (2008) 
- 
								[12]
								Live chart, NNDC https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html 
- 
								[13]
								E. M. Zsolnay, R. Capote, H. K. Nothenius et al., Report INDC(NDS)-0616, IAEA (2012) 
- 
								[14]
								W. Mannhurt, Report INDC(NDS)-0588 (Rev.), IAEA (2013) 
- 
								[15]
								D. L. Smith, Detectors and Associated Equipment 257, 365 (1987) 
- 
								[16]
								M. Herman, EMPIRE-3.2 MaltaModular system for nuclear reaction calculations and nuclear data evaluation, report INDC (NDS)-0603 (p. 56). BNL-101378-2013. https://www.bnl.gov/isd/documents/82108.pdf 
- 
								[17]
								W. Hauser and H. Feshbach, Physical Review 87, 366 (1952) 
- 
								[18]
								A. Sinha et al., Nucl. Instrum. Methods Phys. Res. B 350, 66 (2015) 
- 
								[19]
								S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003) 
- 
								[20]
								M. Karkera et al., Detailed covariance analysis in the measurement of cross sections for the 232Th(n, 2n)231Th reaction at the effective neutron energies of 10.49 ±0.29 MeV, 14.46 ±0.26 MeV, 18.36 ±0.24 MeV and 15.03 ±0.003 MeV using the 7Li(p, n) and 3H(d, n) reaction as neutron sources, 2019 
- [21]
- 
								[22]
								ENSDF library, https://www.nndc.bnl.gov/ensdf/ 
- 
								[23]
								A. Gandhi et al., Physical Review C 102, 014603 (2020) 
- 
								[24]
								Nichols, L. Alan, Balraj Singh, Nuclear Data Sheets 113, 973 (2012) 
- 
								[25]
								J. Chen, Nuclear Data Sheets 149, 1 (2018) 
- 
								[26]
								B. Singh, Nuclear Data Sheets 108, 197 (2007) 
- 
								[27]
								R. B. Firestone, Nuclear Data Sheets 108, 2319 (2007) 
- 
								[28]
								E. Robu and C. Giovani, Romanian Reports in Physics 61, 295 (2009) 
- 
								[29]
								R. Nowotny, XMuDat: photon attenuation data on PC. IAEA Report IAEA-NDS 195: (1998) 
- 
								[30]
								N. Otuka et al., Radiation Physics and Chemistry 140, 502 (2017) 
- 
								[31]
								A. Gandhi et al., The European Physical Journal A 57, 1 (2021) 
- 
								[32]
								R. Pachuau et al., Nuclear Physics A 992, 121613 (2019) 
- 
								[33]
								A. Gandhi et al., Indian Journal of Physics 93, 1345 (2019) 
- 
								[34]
								A. Gandhi et al., Journal of Radioanalytical and Nuclear Chemistry 322, 89 (2019) 
- 
								[35]
								R. A. Forrest, J. Kopecky, and J. C. Sublet, EURATOM/UKAEA Fusion Association, (2005) 
- 
								[36]
								A.J. Koning, D. Rochman, J. Sublet et al., Nuclear Data Sheets 115, 1 (2019) 
- 
								[37]
								K. Shibata et al., Journal of Nuclear Science and Technology 48, 1 (2011) 
- 
								[38]
								D. A. Brown et al., Nuclear Data Sheets 148, 1 (2018) 
- 
								[39]
								V. A. Plujko, Acta Phys. Pol. B 31, 435 (2000)