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Abstract Giant monopole resonances( GMR) are studied using a recently developed relativistic mean field theory computer code.

We calculated the GMR energies of '°0,“Ca and 2Pb for both the isoscalar and isovector cases. Good agreement with experimental

data is obtained.
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1 Introduction

Recently we have written a new relativistic mean field
computer code. It is used for the relativistic consistent angu-
lar-momentum projected shell-model ( RECAPS). The RE-
CAPS is a new nuclear model that combines the advantage of
relativistic mean field theory and the projected shell mod-
el'"2] | RECAPS is a self-consistent microscopic model and it
is a new attempt for studying nuclear structure of normal nu-
clei and nuclei far from the stability. The basic ideas and
some applications of RECAPS are given in Refs.[1,2]. In
the RECAPS, the relativistic mean field has to be performed
first to determine the shape and single particle energy level for
a given nucleus, and later a small model space is chosen near
the Fermi surface to calculate the excited structure. The new
relativistic mean field computer code uses spherical harmonic
function for expansion, and the new code RECAPS-RMF is
more convenient for angular-momentum projection. It has
been shown that RECAPS computer code is reliable in calcu-

Mo

lating the binding energies and single particle levels n

this paper, we shall calculate the giant monopole resonance of

60,4 Ca and **Pb nuclei, using the RECAPS-RMF code.
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The results agree with experimental data well.
2 Relativistic mean field

We will just give the basic idea about the calculation of
GMR energy. Because GMR reflects the incompressibility of
nuclei, calculating GMR energy is an important way to test
whether the model used can describe the incompressibility of
nuclei well. It is well known that RMF is an excellent model,
which can reproduce the incompressibility of nuclei.

The Lagrangin density of RMF having a system with nu-

cleons, mesons and photons has the form'*!

Z= Jj[iV“a# -m=-go - g)w, ~ gy p, -

1-7
ey” 5 3A#] (/;+%8"aaﬂa - %mi - %gzaa -

%g3a4 - %w"”ww + %mim"w# -pp P, +
L 2 a0, — p™A™A (1)
2 mpp py p o2
where the vectors are the isospin vectors and
W = I’ - P, A = I*A” - IA*,
pr=3pt =P -2, p" X p,
wln)=1ln),olp)=1p).

* Supported by NSFC(10047001, 10325521, 10347113), Major State Basic Research Development Program ( G200077400) , SRFDP Program of Educa-

tion Ministry of China

1302—1306



%128

ZAEME BN E RIS F I HITE 1303

In the Lagrangian(1) ,nucleons (¢) interact by the exchange
of mesons : scalar mesons(a) which produce a strong attractive
force, isoscalar vector mesons (w) which produce a repulsive
force almost as strong as the attraction, isovector vector
mesons(p) causes the difference of interaction between neu-
trons and protons. Photons (A) are also included and they
produce the well-known electromagnetic interaction. From the
Lagrangian (1) ,the equations of motion for the fields can be
given through the variational principle. The equations are the

Dirac equation for the nucleons
[i}"‘é)# -(m+ go) - 8.V w, - gyt p, —

- 13
2

7a,] =0 2)

and the Klein-Gordon equations for mesons
(979, + m3)o = ~ g, ~ 820" = 830", 0, = ¢, (3)
9, + Mo’ = g, J* ] =97, 4)
I, p*+ml p=g,(J + p,x p*),J = ¢erp, (5)

R (®)
2
where p, is the scalar density,j* is the mass current density,
J ' is the isovector current density and j . is the electric cur-
rent density. The Eqs. (2—6) can’t be solved exactly, be-
cause they are complicated nonlinear equations about field4
operators. So some approximate treatments have to be adopt-
ed. The approximate treatments have been discussed in the
Ref.[ 1], which include the no-sea approximation, mean-field
approximation, neglecting the spacial components of vector
fields and that only the 3™-component of the isovector mesons
is reserved. At last, we have the steady Dirac equation for
nucleons as follows
[-ia"V +Bm+ V(r)]g.(r) = e, (1), (7)
where ¢, is the eigenvalue of single nucleon energy. And the
motion equations of mesons become the forms
(=V2+m2)o(r) = - gp,(r) - g,0°(r) - g3a°(r),
(8)
(-V?+md)w(r)=-g,(pl(r) +2(r)), (9)
(=V2+md)o(r)=-g,(ol(r) +g(r)), (10)

-VA(r) = ek (r), (11)
where V(r), 0s» 0, and of are defined as follows
V(r) = go(r) + gao(r) + grsp(r) + e -5 2A(r),
(12)
o, (r)= D) ngpi(r) Bei(r), (13)

i

on(r) = Enngon( r) ¢,(r),(summation for neutrons) ,

(14)
p‘:(r) = Enpgop(r)gop(r) , (sumation for protons) , (15)

Here n,; is the occupation number of the corresponding orbit.

3 Calculating GMR energies

The detail of solving the Eqs. (7—11) is shown in the
Ref.[1]. Because RMF can reproduce the incompressibility
of nuclei, it is supposed that RMF can give proper GMR ener-
gies. The Refs.[4,5] calculate the GMR energies by the
generated coordinate method based on RMF. The treatments
of Refs.[4,5] are calculations of complete quantum mechan-
ics, whose results show that RMF can describe GMR of spher-
ical nuclei well. In our calculations, we take the generated
coordinate method,t00. Indeed we take a semiclassical way to
calculate GMR energies of spherical nuclei.

Firstly, it is obvious that the Eq. (7) is a steady Dirac
equation for single particles. We can rewrite the equation as
follows

B@k = &Pk > (16)
where A = —ia*V + PBm + V(r) is single particle Harmilto-
nian. Then we can change the equation above to the form as
follows

(h - gr*) o1 = e1prs (17)
where ¢ is just the generated coordinate. Also we have the
formula for the RMF energy (also the binding energy)
Enwi = Epu + Epie + E, + E,+ E,+ E_ + Ecy — AM,  (18)
where E,, is the energy of the nucleon, E

energy and Ecy = — %4114 =13 is the correction caused by

motion of the mass center. The other terms in (18) are ener-

pair 15 the pairing

gies of the massive mesons and photons

Ea' = Eo'L + Eo'NL’ (19)

Eu= - £ |Pro(ron), (20)
- Jd3r{%gza(r)3 + Lg3a(r)}, (1)
E, = —%Jdarpy(r)w(f’), (22)

E= - [@rlef(rn) - (D1 p(r),  (23)

E= L [@rg(naln), (24)

Because the steady Dirac equation is changed, the RMF
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energy Egyp will be different. With the changing of ¢, Egyp
is changing, which is Egyy = Epyr ( ¢). Also the mean
square root radius R is changing, which is R = R( q) . In an-
other word, with the changing of R, Egyy is changing, which
is Eqyr = Exyp( R) . Egxyr = Egyp( R) approximately gives
a parabolic curve nearby R = R, where Ry= R(q) | q=0- S0

it can be approxiamately regarded as the potential of the one

. . . . 1
dimension harmonic oscillator V(%) = ?xz , where

K= dZERMF(q) ‘
T dR? g=0’

It is well known that the quantized energy of the one dimen-

(25)

sion harmonic oscillator is

where M is the mass of the harmonic oscillator and its unit is
MeV here. In our case,the mass should be the total mass of
the atomic nucleus, that is M = Am. So the energy of GMR
can be estimated as

(hc)2d2ERMF(q) ‘
Am dR? g=0"

E = (26)

In this case, because we have restricted neutrons and
protons moving together, the Eq. (26) gives the energy of the
isoscalar GMR. However, the real neutrons and protons can
move contra, which makes the isovector GMR. In the new
case, the model of the one dimension harmonic oscillator is al-
so effective. Of course,to get the correct energy of the isovec-
tor GMR, we have to make some modifications. Firstly, the

Eq. (17) should be rewritten as

(711 “I‘farz)%:ek’%’ (27)
where an iso-operator 73 is added, which makes an opposite
effect between neutrons and protons. Then the mean square
root radius R should be replaced by r = R, - R, where R,
and R, are the mean square root radii of neutrons and protons
respectively, because r describes the relative motion between
neutrons and protons. For the same reason, the mass M
should be replaced by the one of relative motion,too. This is
just the effective mass . Because the neutrons’ mass M, is
about Nm and the protons’ mass M » is about Pm ,the effec-
tive mass will be

_ MM, _ NPn

“EM+M,T A

Hence, we can estimate the energy of isovector GMR as

E ~\/A(hc)2d2ERMF(q)
1= NPm dr2 q=0"

(28)

4 Results and discussions

With the Eqs. (26) and (28), we can calculate the
GMR energies now. We calculate the GMR energies of '°0,
“Ca and *®Pb in the two cases of isoscalar and isovector. To
test the results, we also compare our calculations, the results
of Ref. [5] and corresponding experiment data, which come
from Ref.[5],to00.

The Fig.1—S5 give the curves of RMF energy changing
with the mean square root radii,from which the GMR energies
can be got. The Table 1 gives the comparison among the cal-
culations of Ref.[5],our results and the experiment datal®’ s
in the case of the isoscalar GMR, where NLI1, NL3, NL-SH
and NL2 are the different parameter sets of RMF. The Table
2 gives the comparison in the case of the isovector GMR. It
can be found that our calculations are coincident with the ex-
periment data, also the results of Ref.[5] except the isovector
GMR energy of Pb. Our result is closer to experiments than
the calculation of the reference. This is maybe caused by the
difference of the selected potential. Our potential is just re-
stricted nearby the point ¢ = 0, while the calculations of com-
plete quantum mechanics includes not only points near by ¢

=0 but also ones far from ¢ =0. The potential nearby ¢ =0

—-126.96 ¢

—=127.00 160)

=127.04 |\

E/MeV

—127.08 |

—=127.12

A

2.60 2.64 2.68
R/fm

Fig.1. 160 potential (Iso-scalar case) .
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Table 1. Comparison of the isoscalar GMR energies(MeV) .
other’s results!
our results exp.[S]
NLI NL3 NL-SH NL2
%0 20.2 22.6 25.0 27.1  20.86™

“OCa 16.6 19.6 22.0 24.4 19. 1N

2%pp  11.0 13.0 15.0 16.0 14.03M2 13.7+£0.3

Table 2. Comparison of the isoscalar GMR energies(MeV) .
other’s results® our results
exp. [s5]
NLI NIL3 NL-SH NI2 NL3
“Ca 29.0 28.6 28.5 30.3 29.85 31.1£2.2
208pp  16.5 18.0 18.4 16.9 25.53 26.0+3.0

agrees with experiments well, but the potential from RMF cal-
culations may deviate experiments when ¢ is far from the
point ¢ = 0. That will make the difference between our calcu-

lations and the calculations of complete quantum mechanics.

From the comparisons and discussions above , we see that
the relativistic mean field theory can describe giant monopole
resonances well. As the detailed computation is done using
the newly written RECAPS-RMF computer code, it also lends

a further support for the computer code.
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