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Abstract ]/ and ¢ radiative decays to mesons are a good place to look for glueballs, hybrids and for extracting gg-qg couplings.

Abundant J/¢) and ¢’ events have been collected at the Beijing Electron Positron Collider (BEPC) . More data will be collected at up-

graded BEPC and CLEO-c. Here we first provide explicit formulae for the angular distribution of photon of the ¢ radiative decays in

the covariant tensor formalism. Then we discuss helicity formalism of the angular distribution of the ¢ radiative decays to two

pseudoscalar mesons, and its relation to the covariant tensor formalism.
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1 Introduction

High statistics data have appeared from BES for J/¢
and ¢ decays. Further higher statistics data are expected
from CLEO-¢ soon'" . In order to get more useful infor-
mation about properties of the resonances such as their
J* quantum numbers, mass, width, production and de-
cay rates, etc., partial wave analysis (PWA) are neces-
sary. Ref.[2] provided PWA formulae in a covariant ten-
sor formalism, which have been used for a number of
channels already published by BES" ™ and are going to
be used for more channels. A similar approach has been
used in analyzing other reactions® "’ .

Reactions of  decays to mesons fall into two catego-
ries: non-radiative decays, where final-state particles are
pseudoscalars, such as pions and kaons; all polarization
information is then available in the form of angular distri-
butions . The second class of reactions consists of radiative
decays. For this class, differential cross sections need to
be summed over the unmeasured helicities of the photon,

incorporating the knowledge that the photon is transverse.
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Both types of reactions and PWA formulae for many inter-
esting channels in the covariant tensor formalism are dis-
cussed in Ref. [2]. But no explicit angular distributions
are given. In this paper we present the explicit formulae
of the angular distributions of the second class of reac-
tions : radiative decays, which may serve as a reference
for people using the covariant tensor formalism for PWA .

Besides the covariant tensor formalism, another com-

monly used formalism for PWA is the helicity formal-
[13]

ism">"*) | which is also the basis of moment analysis
To illustrate the relation between the covariant tensor for-
malism and the helicity formalism, as an example, we
give full amplitude for ¢ radiative decay to two pseudosca-
lars including 0" *, 2" and 4" * intermediate states in
both formalisms .

This paper is organized as follows. In section 2, we
briefly review covariant tensor formalism for ¢ radiative
decays that are relevant to our studies. In section 3, we
present the covariant decay amplitudes and corresponding
angular distributions of photon for the processes ¢ —
YO L Y0, YLt Yl L 2t 2, 4t In
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section 4, we first discuss the angular distributions of ¢
radiative decay to two pseudoscalar mesons in the helicity
formalism. Then we deduce the relation between the he-
licity amplitudes and covariant tensor amplitudes. The
conclusions are given in section 5. The Appendix A deals

with the problem of D’ function.

2 Covariant tensor formalism for y radiative
decay

The general form for the decay amplitude of a vector
meson s with spin projection of m, is
Almy,m,) = ¢,(my)e) (m,)A” =
(p#(ml)e;(my)ZAiU?V, (1)

where ¢, (m;) is the polarization vector of the ¢; U is
the i-th partial wave amplitude with coupling strength de-
termined by a complex parameter A;. The spin-1 polar-
ization vector for ¢ satisfies

S (m) gl (my) = - g, + ”;;5’“ =-2,(p),

m, =1

1

(2)
with ¢ p” =0; the metric tensor has the form
8. = diag(l, -1, -1, - 1).
For ¢ production from e* e annihilation, the electrons
are highly relativistic, with the result that J, = + 1 for
the ¢» spin projection taking the beam direction as the z-
axis . This limits m; to 1 and 2, i.e. components along x
and y. Then one has the following relation,

Do (mp) i (my) = 8,,(8, +8,). (3)

m=1
For the photon polarization four vector e, with photon mo-
mentum ¢, there is the usual Lorentz orthogonality condi-
tion e,g° = 0. This is the same as for a massive vector
meson. However, for the photon, there is an additional

gauge invariance condition. Here we assume the Coulomb

gauge in the ¢ rest system, i.e., ep’ = 0. Then we

[14]

have
. 9K, + K.q,
;e# (m,)ey(my) =~ go + #—CI# -
Y
K+-K
(o KP4t =" g (4)

with K=p - ¢ and ¢,k =0. Then the differential cross

section for the radiative decay to an n-body final state is

d 1<~ . .
36, =725 2 b(m)el (m) 4" g (m) x
n mJ=1m7=1

vy 1< .
e,(m,)A™" =_—2~Zl ¢, (mp) ¢ (my) x
mJ=

gfj._L)A;sz*#'v’ - %Z Awg(jl)A*’", _
e
2
AN DU USSR, - F L (5)
i p=1 Y
where
Pif = P]: = AiA; ’ (6)
2
* l v * )
Fy= Fi = -5 >0y, (1)
=1

d®, is the standard element of n-body phase space given
by

n n d3 ;
d®,(pip,,p,) = 8*(p - >l (2—7[)71-’-27-
i=1 i=1 i

(8)
The partial wave amplitudes U? in the covariant

]

Rarita-Schwinger tensor formalism'™' can be constructed

by using pure orbital angular momentum covariant tensors

D
7

Epoon, together

and covariant spin wave functions ¢“1"‘ “

with metric tensor g”, Levi-Civita tensor €,m, and mo-

menta of parent particles. For a process a—>bc, the cova-

riant tensors { L”.‘. . for final states of pure orbital angular
1 1

momentum ! are constructed from relevant momenta p,,

Py and Pc[u] ’

f(O) - 1’ (9)
1 = 2, (p)rB(Qu) = 7B (Qu), (10)

1@ = [ - 3G DE. ()] B Q). (1D

. S 1, _\, - _
t;i; = [r#rvr,\ - ~—5—(r . r)(gw(ps)rx +

2 (p)F, + 8. (p)7)] BL(Q), (12)

g,ua(pa);v;/l + gw.(pa)FA;y +

2 (PITE) + 3(F + D2 (p)Eu (p)) +

20 (p)Ew(p) + 8. ()2, ()] Bo(0u)
(13)
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with relative momentum r = p, ~ p.; (F*7) = - r.
Q... is the magnitude of p, or p. in the rest system of a,
where
2 (s, + s, = 5.)°
stc = '—T—_ - S

a

(14)

with s, = E* - p%. Then tif])...m contains the angular dis-

tribution function multiplied by a Blatt-Weisskopf barrier
factor>"’ Q',. B, (Q...) . Explicitly

B, (Qu) = /Q—i—o (15)
B:(Qu) = x/om +3omoo ogr 0 U9

277
B.(0u) = | ,
Qe 05+ 60% 07 + 4500, 0 + 2250}

(17)
BA( Qabc) =
«/ 12746
0% + 1005 0% + 135Q%, 0} + 157507, Q5 + 1102505
(18)

here Q, is a hadron “scale” parameter, Q, =0.197321/
R GeV/c, where R is the radius of the centrifugal barrier
in fm. We remark that in these Blatt-Weisskopf factors,
we make the approximation that the centrifugal barrier
may be rteplaced by a square well of radius R.

Projection operators are the useful general tool in
constructing covariant amplitudes. For a meson a with

spin § and corresponding spin wave function ¢l‘1"' s (p.s

m), what we usually need to use in constructing ampli-
- . o e (5)

tudes is its spin projection operator P, ", ;... (p.)-

P (p) = 238, (p.sm)#;(p,,m) =

- B %— = -2, (p.), (19)

P,Efv;)zv (pa) = 2¢pv(pa’m)¢;’v'(pn’m) =

1~ ~

—3_g,uvgp’y/ s
(20)

1 -~ o~ -~ o~
E(g,u,u'gw' + g,m/gv;t’) -

ij;#wl (P ) = Z¢#w\(pa’m)¢”yA (Paym)

(g;,,,gwgu + B Bl + Bl *

EBuliy + Bulwli + BBy ) +

1, ~ ~ ~ - -~ o~ -~ - o~
B(g,uvg;/v'gu’ + g/tvgv’l’gly’ + g;wg,u’/l’g/\v’ +

g,u\gwgw + g,u\g,ugw\ + 888w t

BB rBu + BuBuvBu + 28w, (21)

iet/)\upwlf(p) _Z¢,uw\a(pu’m)¢‘uvln(pa’m) -
ﬂ[é;‘p’éw'éu’éw’ + "(ﬂlyu/’/",

o’ permutation, 24 terms) ] -

1~ ~ -~ o~
gz[g,ng,/y’gu’gaa' + "(/I,V,A,

opermutation, #’ ,1",A” ,0’ permutation,

l - -~ o~
72 terms) | + m(g,ngn t+ 88w T

8.8 ) (EuvBrs + Euv8ie +
Eurloi) - (22)
Note that

S

B, = (2 DD,

oy

B (Qu). (23)

3  Covariant tensor amplitudes and
corresponding angular distribut-
ions for y radiative decays

For the decay ¢—>7X;, there are two independent
momenta which we choose to be p of ¢ and the momentum
of the photon q. We use these two momenta and spin
wave functions of the three particles to construct the cova-
riant tensor amplitudes .

For ¢—>7f,, the e, can only contract with ¢/ since
e,p" = e,q" = 0; hence there is only one independent

amplitude for ¢—y0" "
A= ¢, (mpe; (m,)A, U’;;o =

Agg(mp)e; (my) g™ . (24)
By use of Eqs. (24), (3) and (4) we have
|A1? = [AIP(1 + cos’d,). (25)

For ¢—y0~ "
tude,

, there is only one independent ampli-

A= (,b#(mj)e:(my)AU’(‘”m-w =
Ade) € p.g; . (26)
By using Egs. (26), (3) and (4) and e’”"ﬁpapp =0 rela-
tions we have
|Al? = |A1P(1 + cos’8,) EX M.
For ¢—>7v1*"*

(27)
vertex, there are two independent am-

plitudes,
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A, = Alsbp(mj)e: (my)X: (mf)eﬂmﬂpﬁ’
(28)
A, = A (my)e, (my,) x X*ﬂ(m,)q#qve"aﬂ’p,.
(29)
Here the spin-1 wave function y, ( m;) for the particle

X(1*"") satisfies

3
- , KK .
Do (m)y " (mg) = - g* + = =-&(K),
m{=l
(30)
with K the 4-momentum of the X and y,K* =0. By using

Eqs. (28)—(30), (3), and (4), we obtain

2 2
A7 = | a2 3B 2E
f
E! - 2E:
mcos@ MZ, (31)
| 4,17 = | A, 1*(1 - cos®0,)2E M. (32)

For ¢—>71™ ", we have two amplitudes here,
A = Ag,(mpe (my) gy, (m)p*, (33)
A, = Ay, (mpde) (my)y " (m)g".  (34)
By use of Egs. (33), (34), (3), (4), and (30) we
obtain
A = 14 s eore) Z )

m;
= }Az ’2(1 - coszﬁy)ZEf,. (36)
For ¢—7f, (2*

| 4, |?

*), there are three independent co-
variant tensor amplitudes,

A = Ag,(mpe; (m) F™*”(me),  (37)

A, = Ay, (mp)e) (m,)g”F" *“(m)p.ps»
(38)
Ay = Ayg,(mp)e; (my)g"F ™" (m)p,,
(39)

where spin-2 tensors F* are orthogonal to the momentum,

symmetric, and traceless. Namely
K‘F, =0, F, =F,, gF, =0. (40)

In addition, these spin-2 tensors satisfy the relation Eq.

(20). By using Eqs. (37)—(39), (3), (4), and
(20), we get
2 2
14,17 = |a, 2 BE=TE
6m;
P -1E:
T cos’f, (41)

13Ef -1E
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|A2|2 |A|(1+cosﬁ) 3m4 , (42)
f
4 2
[A,|* = | A2 = cos?6,) E’]y . (43)
ms
For ¢—72" ", we have

A = Ay, (myp)el (my) x
g Fyp(m), (44)

A, = Ay¢,(mp)e) (m,) x
€ “p.gep'p’F s (my), (45)

Ay = Ay, (mp)e, (my) x
" p.qsq"p"F 15 (my) . (46)

By using Eqs. (44)—(46), (3), (4), and (20), we
get

2 4 2 2
E
A ]" = [, ELCE e SmO
3my
2E) - m}
1+ -——"cos’d, | ,
+2E 5m?cos
2ESM°

’A2|2 = |A2’2(1+c0520,) P
mg

| A, |” = | As]7(1 - cos’8,)

M
2
my

(47)
For y—>7f, (4" " ), there are three independent covariant
tensor amplitudes,

A, ()bp(ml)e:(m‘/)AlUl(“:IfA)l

(/),ue:Al F* aﬂ,wpapﬁ ’ (48)

A, = pr(ml)e:(mv)Az U}Zl‘vf‘,)z

due. My g F ™ p.pop,ps , (49)

A = ¢#(m1)e:(m7)A3Ulz;§)3

(/J/,e:Aﬂ"F*“ﬁ”(mf)papﬁp,. (50)

By using Eqs. (48)—(50), (3), (4), and (22), we
get

4 2 2
4] = a2 BUTE - TE)
35m;
3E: + 7E;
1- ———17E2—-7E20086 (51)
8ESM*
|A2‘2 = |A2|2(l+00520,) 357m§ , (52)
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1A‘ 1A‘(1—cos(9) IZI

my

(53)

4 Amplitudes for y—7yn* 1~ in helici-

ty formalism and covariant tensor
formalism

To illustrate the relation between the covariant tensor
formalism and the helicity formalism, we take ¢—yn" =~
as an example. The same formulae work for ¢ radiative
decay to any two pseudoscalars. For simplicity, in the
following deduction, we drop the well-known Breit-Wign-
er propagators for the intermediate resonances and centrif-
ugal barrier form factors for each decay vertex.

' The general formulation of helicity amplitudes can be
found in Ref.[12]. The total helicity amplitude for the
process
b v, (077,277 47,
may be written as

MLJ)\Y(‘Q‘/’ ‘Qn) = Z

./[,/ll

f,>xn" n (54)

MIAyA‘.(‘QY;AJ)M{\‘"A" X

1
= E;A/\A
¥yoI
Iy

(‘QV)AJA' A D{lr*,/\ﬂ—/\x ('Qn) =

D\ X
AJ,Ay—A{

ZA/\/\ /\ - (»Q )D (Qn)+
ZBAA /\ -k (\Q )D (-Qx)+
Ciy,oD‘Aj,Ay : (55)

where A;, A,, and A, are helicities of ¢, ¥, and f; re-
spectively; AIA,A, , B;m , and C;YO are helicity coupling

amplitudes for 2°, 4" and 0" ', respectively; 2, =
(8,,¢,) describes the direction of the momentum g of
the photon in the rest frame of vector particle . 2, =
(8., ¢.) describes the direction of the 3-momentum Q,

of the ©" in the rest frame of the particle f;. The function
D’ is the (2] + 1)-dimensional representation of the rota-
tion group, and relevant information about it are presented
in the Appendix. Parity conservation of the helicity-cou-
pling amplitude A’ leads to the following relationship,

A = PyP P DAL L (56)

where P,, P,, and P, are the intrinsic parities of the

particles J/, 7, and f, respectively. From Eq. (55) we

may write

M (Q2,,0,) =A4,,D,,(Q2,)D;}
AL DL (2, DT (02,) +
A”D, T (0, )D (02,.) +
B!, D'\ (2,)D(02,) +
Bl DI, (2,)D,(02,) +
B ,D",(2,)D},(2,) +
C,D ' (2,) =

1 0
(AO -+ costy ;05 (7cos g, %) +

(02.) +

sinf 3 . .
A, —— ] =sinf_cosl e’ +

2 N2

1 - cosd, V6 . 2 Zign

T ZSI]’I 0"8 +

1 + cosd, 1 + cosd,
2 TP T

A,

%(35cos“e"  30c0s0. +3) +

g, .
B sin [ sin20_(Tcos’ 6, ~3)e®™ +

1 ﬁ 8

1 - cosl, 1 5 .,
Bz——f2 ?«/7sm0nx

(Tcos’ 0, - 1)ew") e’ (57)

M, (Q2,,02,) =A',,D (2,)D;,(Q2,) +
AL, DL (Q,)D (2,) +
AL LD (2D, (2,) +
B!, D\, (2,)Dy,(02,) +
B', D, (2,)D*,(2,) +
B', ,D(2,)D%,(2,) +
C’ D" (2,) =

(125 e, - 3]

sind, [3 | it
' A/7s1n(9,‘cosﬁ,(e +

1+ 7 .
1 - cosd, 1 - cost,

2 T PoT3

i(3500540“ - 30cos’ 0, + 3) -

g,
B, —— sin [ sin24 (7cos 0, 3)e"¢"

V2
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l+cosf, 1 /5 .,
Bsz ?smﬁnx

(Teos* 6, - e ) &7, (58)
and
My, (02,,02,) = A1,D0,(2,) D55 (2,) +

A1 Doy (2,)D15(2,) +

ALDy (0D, (2,) +

Bl Dy (2,) D5 (02,) +

Bl Dy, (2,) D5 (02,) +

Bi,Dy  (02,)D{(Q,) +

CloDoi (22,) =

sinf.({ 3 . 1
(AO ﬁy(icoszﬁ,(—?)—

A, cosl, @sinﬁﬂcosﬁnem -

ind A

A, i @sinz 9.6 +
J2 4

c sind, + B, sind, y

V2 V2

i(35cos4 9, - 30cos’ 6, +3) -
8

yg sin26, (Tcos’ 0, — 3)e®" -

sind, 1 /5 .,
Bzﬁz 78111 6,()(

(7cos’ 9, - 1)e2i¢") e, (59)

B, cost

Above we have used A, = A}, = A", A, = A, =
A, ., Ay=A,=A" ,; By=Bl,=B,,, B =
B.,=B, ,,B,=B,,=B", _,; C=C,=C",,.
When f; = 0" ", there is only one independent helicity
amplitude C. When f, =2" ", there are three indepen-
dent helicity coupling amplitudes A,, A,, and A,. When
f,=4"", there are also three independent helicity cou-
pling amplitudes B,, B,, and B,. The angular distribu-
tion of the decay process Eq. (54) can be written as
W2, Q) | M,(0,,0)] +

(M (Q,,0)] +

M (2,00 +

‘ML (02,,2)]° =

2(1M,:(2,,0) " +

IM:vfl(‘QY"QN)‘Z)i (60)

where ‘M:,l(ﬂ?,ﬂn)v = |M1_1,_1('Qy90")‘2 and
’M}‘—I(QY’QK) 2 = |M1.1’1(\(27,Q,()|2.

One can
write down the explicit expression of the total angular dis-
tributions for the process Eq. (54) by inserting Eqgs.
(57) and (58) into Eq. (60). The angular distribution
of the photon has the following form,

+ 2
W(cosh,) = J dcosﬁnj d¢. w(Q2,,02,) =
-1 0

Sl w2l A+ (4] 4 5] €l x

(1+ Ao|® - 2|4 )" + |Az!2+5|02mz@)+
|A0|2+2‘A1|2+|A2}2+5|C|2 !

Bt 2] B4 | B x

(1 |BO‘2—2;BI‘2+‘32|2 2

TTB P +2[B "+ B 0’)’ (61)

and the angular distribution of the pion is
+ 21
W(cosb,) =J dcosﬁ,J d¢, w(Q2,,0,) =
-1 0
4?“} Ao |?(Bcos’d, - 1)* +

81r| A, |2(1 - cos’0 )cos’ 4, +

16

2| A, | (1 = cos’8,)7 + 3

ol +
(A€ + CAT ) (Beos, — 1) +

T 2 4 2 2
E‘Boi (35c0s' 0, — 30cos’d, +3)" +
5%‘} B, |2(1 — cos 8, )cos 0 (Tcos’ 0, - 3)° +
%Tl B, |*(1 = cos*8,)*(Tcos’ 0, - 1)* +

2?“( CB; +B,C" ) (35c0s'9,-30cos’ 6, +3) +

%(AoBo* + ByA; ) (Beos’d, - 1) x

(35co0s' 8, - 30cos’d, + 3) +

2r 4/ 30
3

(A/B + B/A) (1 - cos’8,) x

cos’ 8 (Tcos’ 8, — 3) + s 315(A2 B, +

B,A; ) (1 = cos6,)*(Tcos’ 8, - 1) .(62)
On the other hand, in the covariant tensor formali-

sm, by using the covariant tensor amplitudes Eqs. (37—

39), (24), (48), (49) and (50) for the decay process
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Eq. (54) we have
Almy,my) = ¢, (my)e,(m)[A, T (K, ) +
A g T (K )M +
A(K, - ¢ )T (K )M +

Agg” + AT "”°°(K YM? +

AL T™ (KM +
AL (K - g )T (K ) M], (63)
where A, represents the single independent amplitude for
0" " process; A, with i =1,2,3 correspond to three in-
dependent amplitudes for 2* " ; and A’ with i =1,2,3
ford™ " .
In the following we derive the relation between helic-

ity coupling amplitudes (Aiy,Af , Bl‘w‘r , Cl‘y"’) and co-
2

4

variant tensor coupling amplitudes (A,, A’;, Ay). By

use of Eqs. (57)—(59), and (63) one can write
M (2, =0,=0 =A@, =0,=0]11) =
Ay + B, + C = ¢:(+)ey(+)[AlT’”(Kf2) +

AT (K )M + A (KL - ¢ )T" (KM +
Aog” + AT (K)M + A, g T (KM +
A/s(K/a - q;l)?wooo(KfA)M]’
w0, =00, = 7.9, = 0) =

s
= Z’¢x = 0;091’) = -
g (0)e, (+)[AT*(K,) +
A g T" (K )M + Ay (K; - gIT" (KM +
Agg” + AT (K )M + AT (K ) M* +

AL (K, - @IT (K )M, (64)
wi (=00, = Z.8. -0 = 4(a, =0,
= 2ib=0; - 1,1,) =§A2 ——VE;I()BZ -

gr (=)e,(+)[A T (K ) +
A g T (KM + A(Kp - ¢ )T (KM +
Acg” + AT (K )M + AL g T (K ) M* +
ALK - ) T™ (K M.
To calculate the helicity coupling amplitudes A, ,
A, A,, C, By, B,, and B,, it is necessary to write

down all the relevant momenta and the spin-1 polarization

four vectors along the z-axis in the rest frame of the ¢,
= (M;0,0,0),
= (E,;0,0,E,), (65)
K; = (Efj;o,o, - E,),
where M = E, + E , E}=lql’, El = m; + EX.
The relevant polarization four vectors for ¢ and ¥ are given

by

¢a(— =¢f H ,ii,()),
¢ (0) = (0;0,0,1), (66)
() = F (051, 1,0).

V2

We determine the helicity coupling amplitudes in the
rest frame of ¢. To do that we first write down 7 in the
rest frame of f;, and then by making Lorentz transforma-
tion we obtain 7'* in the rest frame of the parent particle

J/¢. Namely

o= gﬂy(K;J)rv = (0,r',7,7) = (0;0,0,Q,),

(67)

where * = Q%+ - Q% . By Lorentz transformation the

relative momentum can be written as follows in the rest

frame of the ¢,

~rp =70 ~s1 ~s2 /3 E‘/ Ef!
P8 = (#",7 ,F°,F =2Q.| - P ’O’O’m_‘ ,
J J
~rp =0 ~rl =12 =43 EY Ef!
'a.B = (r ST T T ) ='\/§Qn - 91909 ’
175 m; mq
I 7

4 e = (P71 F2L ) = 20.(0,1,0,0),
(68)
where Q. = | @.|. By using Egs. (10), (11), (13)

and absorbing centrifugal barrier factor into A; and A';,

we get

2
TO"(Ky) =77 + T8 (Ky),

2
T(K,) = 75 () + S (g7 (F°) +

W0 ~rp~r0

+2grr

“p0 wpy=r0

2g 7 + gOO r/,ur/u) +

(gpv % 4 zéﬂogw),

(K, = (7 S ()

: 128 E,
A SN

f

4
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i —rv = 3 : V0 o~y
P™(K,) =7 (F°) + (g (7°)"

~00 ~/v~s0 3T4~uo‘oo
gl )+¥g g s

with

o o KK E

g"(K) = g% - 4+ =- —; r' =40.. (70)
mfj mfl

(64)—(66), (68)—(70) we obtain the
relation between helicity coupling amplitudes and tensor
+ , 2++ , and4++

By using Eqs.

as follows,

EZ
A, + C + B, =(—A1 —2Az—gMz)iQi—A0+
ms, 3

amplitudes for 0*

E? E
S A 224, TIm |04 By
SERELY )3sm e
(71)
6 5 E .
—gAl —%Bl =(_ A, — =24, —M)fz'Qi
f2 {2
E, 2
- 54, —* M)
mfA 4
EZ
202 By s s, (72)
7 m
6 10 8 ., E
gAz _*/T_B2 =-24,00 + =4 m—;MZQ‘;. (73)

i

From Eqgs. (71)—(73) we may write
C=4,,

2

E
Ay = (— A, —,2Az;§—M2)%Qi,
2

E;
Al= Alm—+2A Q,[’

f2 2

)4f

A, =~ A, 4[ Q:, (74)

, , B £
B, = (—AI—ZAZ—ZM)64 —IM*Qt,

mf4 35
E,

e 32/10 E2
Bl_(SAlmIA ) T
B, =- A/ 3210 YMZQ

T35
'y

From these relations, after one gets the covariant tensor
amplitudes, one can easily get the corresponding helicity

amplitudes, and vice versa.

5 Conclusion

The covariant tensor amplitudes and the correspond-
ing angular distributions have been calculated for the pro-
cesses g—>y0" ", YOT T, Y1t ,v17 7, 2T, 270,
v4*"* . The full amplitude for the process p—>7y{0" ",
2**, 4" " | —vynm is given in both helicity formalism and
covariant tensor formalism. The corresponding angular
distributions of photon and pion are given in Eqs. (61)
and (62), respectively. The relations between covariant
tensor amplitudes and helicity amplitudes are given in
Egs. (74) . Except some smooth energy dependent factors
caused by the requirement of Lorentz covariance in the co-
variant tensor formalism, the covariant tensor formalism is
equivalent to the helicity formalism. For the bin-by-bin
fit"* with energy interval small enough, the smooth energy
dependence could be ignored and the two formalisms are

equivalent .

We thank Z . J . Guo for checking some angular distribut-
ions with Monte Carlo simulation in covariant tensor for-

malism .
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ndix i 1 - cos@ _;
Appendix A Dl (@) = el (0) = L2,

i sinf _;

Rotation matrix Dl ()= edl () = - ﬁe ’,

In this appendix we review some of the properties of rotation
1173

Dio(0) = Bo(0) = Sco?d - 5,

- N/‘%sinﬁcos@e"igs ,

matrix which are relevant t0 our,studies. The elements of the rota-

tion matrix are then given by

2 _ o -i% g2
DL (a,8,7) =(Jm' | R(a,8,7) | Jm) = Diol) = e7dio(0)

(' | e 8, 6, | ) D2, o(0) = e*d?, 4(8) = — e*d?,(6) = «/gsi“"c“”’
e—iam'd], (B)e—i}’m (Al) .
mm ’ D4 (02) = cosf, (AS)
where J is the spin of the resonance, R denotes the rotation through o0 /5
Euler angles a, 8, 7, and d’ is defined to be the matrix representa- D%_o(ﬂ) = 6_2‘¢d§,o(5) = Tﬂin2 fe2?
tive of the rotation 8 about the y-axis. Namely, _ /6 ,
B (B) = (' | &, | m). (A Dho(@) = Hd,(8) = Trsin® 0",
The following general fOMUl25or Eh@e)d is D4 (Q) = %(3500540 - 30cos2 + 3),
Z(—l)" (J+m)(J-m)V(J+ m )] - m')I _ D}, () = e ™di () =—gsin23(700520—3)e_i¢,
— (J-m - T+ m-n)(n+m -~ m)ln!
1 \2+m-m-2n L1 ™ ome2n D*, o () = %d*, () = ﬁsim6(7cos26 - 3)e?,
(00570) (—smTtg) . (A3) 8
. ; 1 /5 . 2
The symmetry relation for the d function is D3 o(2) = 6_2'¢d4_1,o(t9) =7 751112(9(700525 - e,
dhn(8) = (=)™ " . (8) = (- 1)"-"dl (8).
: ) e () D*,0(02) = %%, 0(8) = ~a/ S sin?0(Teos? 0 - 1)
(A4) -2,0 = -1,0 =7 5 s
By using Eqs. (A3) and (A4) we have here
; ; Dy = D, (4,0,0) = &4}, (9). A6
D}'I(Q)z e_,¢di.](0) - 1+2cOS§e_,¢, mm(-Q) m’m(¢ 00) e m( ) ( )
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