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Abstract

In this paper, we analyze the nonlinear transport of the particle motions in the Wein filter up to the third order with the Lie

algebraic method. First, we set up the Hamiltonian for the Wein filter; then expand the Hamiltonian into a sum of homogeneous polyno-

mials of different degrees; finally, calculate the particle’ s nonlinear trajectories up to the third order. Higher orders could be obtained

if necessary.
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1 Introduction

The Wein filter consists of a pair of parallel electrode
plates and a pair of magnetic poles. It is always used to select
the low energy charged particle beam of different mass or ve-
locity . Because the beam energy is low, the nonlinear terms of
the particle trajectories are not so small. So, to make the cal-
culations more accurate, we must take the nonlinear effects in-
to account. The linear transfer matrix of the Wein filter is

[1]

known""- . Here we use the Lie algebraic method™! to analyze

the nonlinear particle trajectories .

2 Lie map

The Lie algebraic method is a good tool for the analysis,
because the analyzing procedures are much more similar than
that of solving the ordinary differential equations, and all the
information of the particle trajectories is contained in the Lie
transformation which is associated with the Hamiltonian. We
give a brief description of the Lie algebraic method in the fol-
lowing:

The charged particle motions in the accelerator is re-
garded as the motion in the six-dimensional phase space { =
(%, pys s Pys T p.) . The relationship between the initial

point ¢™ and the final point ¢™ is regarded as the Lie map
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M , which is written as the integral of the Hamiltonian H :

M =exp[-;J‘Hdz:] = MMM, =

0

"'(l+:f4:+%:f4 :2+...)

(i foit b fos? e )My =

1
My, +: f3: M, + (:f4 t+ 2 tfs :Z)Mz- (1)
Where :

b= | mds gy = - i,
fo =~ th‘itmdz + %J!dzlj fdzz[‘ hi'(z,), — hi'(z)],
(2)

where

hiM™(z) = M,H,. (3)

Where H, is the n degree of homogeneous polynomial of the
Taylor series of the Hamiltonian H.In Eq. (1) the factoriza-

[3]

tion theorem"” is used,and

M, = exp(:fz :),M3 = exp(:f3 :),M4 = exp(:f4 1),
(4)
and the symbol: :stands for the Poisson bracket, which is de-

fined as:
f:g =[fg] = 2][(3f/3q,)(2g/0P)) -

(0g/3q;)(df/2P;) 1. (5)
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The Lie transformation can be expressed as a Taylor series'] ;

exp(: f:)g = g+ [f, gl +[f.[f,gl]2! +...(6)
Let the map M act on the canonical coordinate ¢™,we obtain

each order of the nonlinear result:

¢ o= exp(: fo 1) g™, (first order)
&= /18, (second order)
3= G+ % tfs :2§1,(third order) 7)

Here, the subscripts denote the order of the approximation.

3 Hamiltonian and its expanded homogeneous
polynomial

In order to calculate the nonlinear trajectories, first we
must set up the Hamiltonian, which describes the motions of
the charged particles in the Wein filter. Let E stands for the
electric field and B the magnetic field, and v, the velocity of
the reference particle. Then the following equation must be
valid:

E = v,B. (8)

Suppose the directions of the vector E and B are along the

positive directions of x and y axis respectively. The potential
functions of the electric field and the magnetic field are:

¢ =-vyBx,A = Ae, + Ae, + Ae, = - Bre,. (9)

So the Hamiltonian in the Cartesian coordinates with time as

an independent variable can be gotten:

H =/ mic* + pc* + pye® + (p, + gBx)?*c? - quoBx.
(10)
Suppose p, = — H,,and solve p, from it, we get:

p, = - K(t,x,y,Pt’Px’Pt) =

v (pi = quoBx)*/ ¢ - p - p} - myc® — qBx.

(11)

Eq. (11)is the Hamiltonian corresponding to the canonical

variables %, p,, ¥, p,, t,and p, with z as the independent
variable . Let

x =

XsPx = Py>Y = YsPy = Py>

(12)

T =t-2/vy,p, = p, — P

Where, p? is the value of p, of the reference particle. In the
phase space {=(x,p,,y, Pys T p.) »the coordinate of ref-
erence particle always keeps zero. According to Eq. (10) , we

have:

— A/ m(2)04 + pgc2 = - mo}’ocz,
(13)

here, p, is the momentum of the reference particle, 7, =

P?=—H;|

reference particle —

A/ 1= (vo/c)z.

Under the canonical coordinate transformation of Eq. (12),

the generating function is:
3
Fy = 2] Qpi = ap, + 3p, + 1, =
i=1

xp, + yp, + (¢t = z/v9) p,. (14)

The new Hamiltonian in the new phase space ¢ is:

H =- «/(p, - mo}’oc2 - quBx)Z/c2 - pi - pzy - (moc)2 +
gBx — (p. = myYoc?)/vy. (15)
Expand the Hamiltonian H into Taylor series, we have
= D H,. (16)
n=0

Where H, is the homogeneous polynomial of n-th order in the
phase space ¢.The first five items are: Hy = po(Bg2 = 1),

(here py = mg7ovg)

H, =0,
L S
= x x T +
2P073 2P P Py
Lot - P,
2pov0 73 Povo Y5
2 2
B? g 3 (p? 3B g 2
3% = P2+ pi)+ x°pt —
’ 21’0 7 2P(2) ! 2p3 750
ﬂq_ 2 1 ( 2 2
4 3 » T ) s
2030373 T T 2p37i0s 7 T opie, PR PP
_ B4q4(5 - ﬂ(Z)) 4y qu2(3 - BO) 2( 2, ) +
YT 8mn 4py Py
ppy, (5-B)B¢ ,  Bg(3 - B)
4p5 2pov0 Yo i 2pove
(v gy s OB, BRI
o 4p3 75 © 2povevy

5-B5 4 3-8 Py + p}
pe + (pd+ p2)pt+ 5. (1)
8p0 7506 4P0 5 4 8ps

4 Particle trajectory calculations

4.1 First order

Because H, in Eq. (17) does not depend on z, carrying

out the first integration of Eq.(2) ,we obtain

fo = - IH,. (18)

Here [ is the length of the Wein filter. According to Eq. (6)
and Eq. (18), the first expression of Eq. (2)and Eq. (7),
and the third expression of Eq. (17), we obtain the particle

trajectories of the first order approximation:



1000 HEYHESEY E (HEP & NP) %28 %
cos(kl) Lin() 0 o o Locos(h)
] kpo kpo7ovo
1 _ S
P — kpgsin(kl) cos(kl) 0O 0 O % .
. 0 0 1 Lo 0 y (19)
Py, Po P,
0 0 0O 1 O 0
7 T
— sin(kl) cos(kl) -1 sin( kL)
L p. | 0 1 >3 - P.-
! 2970 kpo7ovo kpo 7505
L 0 0 0O 0 O 1 J
Here(x,p,,y »Pys T , p.)are the initial canonical variables in L AP [sin(kD) + sin(2E)] x;zwr + [3sin(kl) -
the phase space,and Po%o Po?70
»
= ﬁ‘]_ (20) sin(2kl) ] — [cos(kl) — cos(2kl)] P,Pr
Po?o Zk Povo kpovg Yo
2. 2
psinCkL) r (k) + sin(2k) ] —2r 25
4.2 Second order Tipioe + [sin(kl) + sin(2kl)] TRy’ (25)
According to Eq.(3) and Eq. (19) ,the second expres- P, = 0. (26)

sion of Eq.(2)and Eq.(7) and the fourth expression of Eq.

(17) ,one obtains the second order terms of the trajectories:

2
%y =[2 = cos(kl) — cos(2kl)] k 270 + [sin(kl) -

sin(2kl) ] 224 —[2 = cos(kl) - cos(2kl)]
0 Po%o
Px 7 .
[2 - 3cos(kl) + cos(2kl)] 2k — [sin(kl) -
papr 70
2 1 - _L
sin(2k1) ] —5— kPoUo + [ cos(kl)] 2hp? >
p?
[2 — cos(kl) — cos(2Kkl)] 7, (21)
2kPo”o )
kZ
p., =[sin(kl) + sin(2kl)] %y“ + [cos(kl) -
k.
cos(2kl):|kxpx}’0 — [sin(kl) + sin(2kl)] xp,
Vo
YoP’
[3sin(kl) — sin(2kl)] L08x
2pyg
kl
[cos(kl) — cos(2Kl)] % M
Po”o 2pg
p?
[sin(kl) + sin(2kl)] ——5—, (22)
2povg 70
xpy}’osin( kl) pxpy)'o[l - cos(kl)]
2 = - - 2 +
Po kpo
in( kl
sinCkDppe (23)
kpgoe
Py, = 0, (24)

7, = [sin(kl) + sin(2kl)] 5—9;2 + [cos(kl) — cos(2Kkl)] x
0

4.3 Third order

In the similar way, according to Eq. (3), Eq. (19), Eq.
(21) ~ Eq. (26) , the third expression of the Eq. (2)and Eq.
(7) ,and the fifth expression of Eq.(17),we obtain the third
order terms of the trajectories

X3 = [4klﬂgsin( kl) — 8 + cos(kl) + 4cos(2Kkl) +

kl 3
3cos(3kl) ] ad }’0

- [4klﬁ§cos(kl) + Tsin(kl) +

k
4sin(2k1) - 9sin(3kl)] — 5“}"’ — [4kIBsin(kl) -
0
3kx2p,}'0
.
8povo

[4kiBgsin(kl) — 8 — 3cos(kl) + 20cos(2kl) —

8 + cos(kl) + 4cos(2kl) + 3cos(3kl)]

x)’
]P 0

9cos(3kl) + [4kiB5cos(kl) + Tsin(kl) +

xPxPr7o

00

4sin(2kl) - 9sin(3kl) ] + [ kiB3sin(Kl) —

2
2 + cos(kl) + cos(2kl)] %“Z—" + [4kiBsin(kl) -
Po

2
P

8 + cos(kl) + 4cos(2kl) + 3cos(3kl)]

2.2
8povo
[4klB3cos(kl) + 11sin(kl) — 12sin(2kl) + 3sin(3kl)] x

3,2
52—7‘3’ — [4kI2sin( kL) — 8 — 3cos(kl) + 20cos(2kl) —
Po

9cos(3kl)] PxPr

- [ KiB%cos(kl) + sin(kl) -
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sin(2kl) ] M — [4klBcos(kl) + Tsin(kl) +

2kpy

P

4sin(2kl) - 9sin(3kl) ] Skp 75 — LKIR3sin(kl) - 2 +

0

cos(kl) + cos(2kl)] pgp;yo - [4kl,8%sin( kl) -8 +

Povo
»
cos(kl) + 4cos(2kl) + 3cos(3kl)] —55—, (27)
8kpovo Yo

Because of the page limit, the third terms of Px» Y35 Py > T3

and p-, are not listed here.

5 Conclusion

Kuroda®*! analyzed the third order particle trajectories in

the 4-dimensional phase space(x,p,,y,p,) for the Wein fil-
er by solving the differential equations. The results can be
used in the dc beam nonlinear transport. If we want to calcu-
late the nonlinear transport of pulsed beams in the Wein fil-
ter,we have to extend the 4-D phase space into 6-D phase
space. That’ s why we analyze the third order trajectories in
the 6-D phase space(x,p,,y yPys T p.) . The results will be

put into a computer program.
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