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Critical phenomena in a disc-percolation model and

their application to relativistic heavy ion collisions *
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Abstract By studying the critical phenomena in continuum-percolation of discs, we find a new approach to

locate the critical point, i.e. using the inflection point of P∞ as an evaluation of the percolation threshold.

The susceptibility, defined as the derivative of P∞, possesses a finite-size scaling property, where the scaling

exponent is the reciprocal of ν, the critical exponent of the correlation length. A possible application of this

approach to the study of the critical phenomena in relativistic heavy ion collisions is discussed. The critical

point for deconfinement can be extracted by the inflection point of PQGP — the probability for the event with

QGP formation. The finite-size scaling of its derivative can give the critical exponent ν, which is a rare case

that can provide an experimental measure of a critical exponent in heavy ion collisions.
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1 Introduction

The general feature of the phase diagram of

strongly interacting matter has become increasingly

well established[1]. Following the region of crossover

around a temperature of 170 — 190 MeV at zero

baryon chemical potential µB, increasing µB leads to

a critical point, beyond which the system shows a first

order transition from confined to deconfined phase.

Recently, interest in the QCD critical point pro-

gressively arose. With the plan of RHIC low energy

scan and the new GSI facility, the study of relativistic

heavy ion collisions is concentrating more and more

on the search for the critical point and observing rele-

vant critical phenomena, in particular measuring the

critical exponents.

On the theoretical side, studying the criti-

cal phenomena in chiral symmetry restoration is

available[2]. Many discussions about universality have

been active[3]. The chiral condensate and Polyakov

loop are proposed as order parameters for chiral

restoration and color deconfinement, respectively.

However, it is a pity that both of these variables can

not be directly measured by experiment. What ob-

servables should we measure, how to locate the crit-

ical point and extract the corresponding critical ex-

ponents in heavy ion collisions has not been clear so

far.

On the experimental side, what we observed in

heavy ion collisions is the deconfined partonic degree

of freedom[4]. Despite the fact that confinement is

a long standing problem which has not been solved

by theory, studying the critical phenomena in decon-

finement phase transition is more realistic for exper-

iments. Since chiral symmetry is hard to measure

and deconfinement is easier to observe, we propose

to phenomenologically study the critical phenomena

from the deconfinement aspect and give some hints

for experiments.

Principally speaking, it is impossible to get the

critical point because of the limited system size in rel-

ativistic heavy ion collisions. In this paper, by means

of studying the critical phenomena in the finite-size

continuum-percolation of discs, we find that P∞, the

probability for an event for which an infinite clus-

ter occurs, has an inflection point, which is a good

approximation for the critical point. The finite-size

scaling method is further used to extract the critical
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exponents ν from the distribution of the suscepti-

bility. Since percolation has some resemblance to

deconfinement[5], a possible application of the method

used in percolation to the study of the critical phe-

nomena in relativistic heavy ion collisions is dis-

cussed.

2 The continuum-percolation of discs

The continuum-percolation problem has various

formulations among which the problem of spheres

is most popular. Equally sized spheres are placed

at random in a substrate. The spheres support the

transport and the substrate does not. When we

put enough spheres in the substrate, the overlapping

spheres form an infinite cluster, and the system is

able to support a long-range current. This model

has been well studied and has been used to describe

hopping conduction in doped semiconductors[6] and

phase transitions in ferromagnetics[7]. Such a model,

together with its critical behavior, also bears some

resemblance to the transition from a hadron gas to a

quark-gluon plasma.

In QCD, hadrons are color-singlet bound states

of more basic colored objects — quarks and gluons.

Hadronic matter, consisting of colorless constituents

of hadronic dimensions, can turn at high temperature

and/or density to a quark-gluon plasma of colored

quarks and gluons as constituents in a much larger

volume. This deconfinement transition leads to a

color-conducting state and thus is the QCD counter-

part of the insulator-conductor transition in atomic

matter. Suppose hadrons have an intrinsic size. At

low density we have a hadron gas. When this becomes

so dense that the formation of an infinite cluster oc-

curs, it turns into a quark-gluon plasma. In this case,

the connectivity (cluster formation) determines the

different states of many-body systems. The lesson

learned from spin systems also indicates that clus-

ter formation and associated critical behavior are the

more general feature[5].

2.1 Model parameters

In relativistic heavy ion collisions the incom-

ing nuclei become discs of vanishing thickness due

to Lorentz contraction and the collision region is

two-dimensional. So we turn to the study of two-

dimensional percolation.

In a two-dimensional system spheres become

discs. Discs with radius a, called cells, distribute ran-

domly in the system of a big disc with radius R. The

ratio R/a determines the system size and is denoted

by s. The control variable for percolation is η — the

ratio of the total area of all the cells and the area of

the big disc, i.e.

η =
Nπa2

πR2
=

Na2

R2
, (1)

where N is the number of cells. The increase of the

cell number N leads to the increase of η. The value

of η at which an infinite cluster appears is the critical

point and is denoted by ηc.

The definition of an infinite cluster varies. In a fi-

nite system a cluster spanning the system is called an

infinite cluster. Let (ri,θi) be the polar coordinates

of cell i. If ri ∈ [R−a,R] we call the cell i a boundary

cell. If cells i and j are two boundary cells belonging

to the same cluster, and |θi−θj |> θ0 then we say the

current cluster is infinite. Here θ0 is a parameter.

Thus the control variable is η and the model pa-

rameters are s and θ0.

2.2 Locating the critical point

When s and θ0 take on certain values, the proba-

bility for the event for which an infinite cluster occurs

is denoted by P∞ and is an increasing function of η.

For infinite system size, P∞ = 0 holds for all η < ηc.

For η > ηc, P∞ rises sharply and approaches unity.

Systems of infinite size are unrealistic. We have inves-

tigated P∞ for finite systems of three different sizes.

The results are shown in Fig. 1.

Fig. 1. P∞ for different system sizes. From left to right the system sizes are 25, 100, 300, respectively. The

error bar shown is the systematic error induced by the variation of the parameter θ0. The statistical errors

are small and not shown. The dashed curves are the susceptibility defined in Eq. (4).
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Different parameters, e.g. θ0 = 90◦, 135◦ and 175◦,

have been tried and the induced systematic errors are

shown as error-bars in the figures. The solid curves

in Fig. 1 are the fitting results using the function

P∞(η) =
1+tanh[c1 (η−c2)]

2
. (2)

It can be seen that for all three cases the fitting func-

tion always lies within the systematic errors. The

fitting function, i.e. Eq. (2), has an inflection point

at η = c2. As s increases, P∞ tends to a step function

and the inflection point c2 tends to ηc. For finite sys-

tem size, the inflection point η = c2 can be used as an

evaluation of ηc.

The behavior of c2 versus different system sizes

is shown in Fig. 2. A tendency to saturation can be

seen. The saturation value of c2 is 1.1198± 0.0047,

i.e. the percolation threshold is ηc = 1.1198±0.0047.

Fig. 2. The behavior of c2 versus system size.

A tendency to saturation can be seen.

For a nucleus-nucleus collision the contraction in-

duced by the relativistic motion makes the colliding

nuclei appear like a disc in which disc-like nucleons

percolate. For a central Au-Au collision, the radius of

the interacting region is about 7 fm and the hard core

of each nucleon is about 0.1 fm, resulting in a system

size of about 70. The inflection point for s = 70 is

about 1.1054. Using this as an approximation for ηc,

the error is 1.3%. So using the inflection point as an

approximation for the critical point is easy to measure

and exact enough.

In heavy ion collisions, when hadrons connect to

form an infinite cluster, the system become color con-

ductive and quark-gluon plasma is formed. If the for-

mation of QGP is signaled in each collision, then P∞

becomes the probability that the collision will pro-

duce a QGP — PQGP. PQGP should be measurable

in experiment, provided that an available signal is

found, and thus in principle the critical point can be

obtained according to the inflection point of PQGP.

By some authors[8] P∞ is also referred to as

the percolation cumulant, in analogy to the Binder

cumulant[9], which will intersect at the critical point

for different system sizes. Extracting the intersection

point of P∞ is a method to estimate the critical point.

However, it only needs the collisions of one kind of ion

at various energies to use the inflection-point method

proposed above, while using the intersecting-point

method needs collisions of more than one kind of ions

at different energies. Therefore, the inflection-point

method is more realistic and the value of ηc obtained

for system sizes as small as Pb (s = 71), Au (s = 70)

is a good estimate with an error of about 1.3%.

The inflection-point method is also applicable for

another definition of P -infinity. In Ref. [10] P -infinity

is defined as the probability of a cell belonging to an

infinite cluster, which will be denoted by P usual
∞

in the

following. Fig. 3 shows P usual
∞

as a function of η for

s = 1000. In case of s = 1000 the system is very large

and P∞ rises like a step function, cf. Fig. 3, but P usual
∞

has a step function sharp rise only at the bottom side

(P usual
∞

= 0), while at the upper side it tends smoothly

to unity.

Fig. 3. P usual
∞ (open circles) as a function of η

of the system size s =1000. The solid curve is

a fit of the lower part with Eq. (3). For com-

parison P∞ for s = 1000 is also shown with

triangles.

In this case we use the horizontal line P usual
∞

=

0.8 to divide the function P usual
∞

(η) into two parts

— the lower part P usual
∞

(η)
∣

∣

Pusual
∞

60.8
and the up-

per part P usual
∞

(η)
∣

∣

Pusual
∞

>0.8
and fit the lower part

P usual
∞

(η)
∣

∣

Pusual
∞

60.8
, which amounts to 80% of the

height change, to Eq. (2), or alternatively, to a mod-

ified fitting function

P usual
∞

(η) = c1 [c2 +tanh(c3 (η−c4))] . (3)
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The fitting result is shown as a solid curve in Fig. 3.

The inflection point of this part-fitted curve can also

be used as an approximation to the critical point.

2.3 Susceptibility and the critical exponent ν

The susceptibility is defined by the response of the

system to small external forces. We define the sus-

ceptibility in percolation as the derivative of P∞ with

respect to the control variable η, i.e.

κ(η,s) =
∂P∞(η,s)

∂η
. (4)

κ shows a peak at the inflection point of P∞ (see

the dashed line in Fig. 1). Since P∞ becomes a step

function when s tends to infinity, the peak of κ will

become higher and narrower and finally diverge at ηc.

In a realistic case the system is of finite size de-

termined by the size of the colliding nuclei. The

finite-size scaling method[11], investigating the scal-

ing of quantities at ηc as a function of system size, is

adopted to extract values for the critical exponents.

The finite-size scaling of P∞ suggests[12]

P∞ = Φ
[

(η−ηc)s
1/ν

]

for large s, η→ ηc . (5)

Denoting X = (η−ηc)s
1/ν , Φ(X) is some function of

X . ν is the critical exponent of the correlation length

ξ, i.e.

ξ ∝ |η−ηc|−ν
for η→ ηc . (6)

Then, the susceptibility of P∞ is given by

κ(η,s) =
∂P∞(η,s)

∂η
= s1/ν dΦ

dX
. (7)

For η = ηc,
dΦ

dX

∣

∣

∣

X=0
is a constant and

κ(ηc,s)∝ s1/ν for large s . (8)

Thus the divergent behavior of κ near ηc is related to

the critical exponent of the correlation length.

Using the critical point ηc extracted from P∞, we

evaluate κ(ηc,s) as a function of s, shown in Fig. 4.

Fitting it to Eq. (8) we obtain 1/ν = 0.739± 0.041,

ν = 1.353± 0.075. The exponent ν obtained agrees

within 1.5% with the result from other calculations

of two-dimensional percolation[10].

The critical exponent of the correlation length

plays a special role in the theory of critical phenom-

ena, because the scaling behavior of other quantities

depends on the relative magnitude of the correlation

length and system size. Hence, the critical exponent

of the correlation length appears in the scaling re-

lation of various quantities. By definition the cor-

relation length is the distance at which the correla-

tion function reduces to 1/e[10]. However, the cor-

relation function usually has non-monotonic beha-

vior, e.g. in case of a liquid, the correlation func-

tion shows damped oscillations[13], which makes the

correlation length hard to measure. Now we see that

using the scaling behavior of the susceptibility, the

critical exponent of the correlation length can easily

be obtained[12].

Fig. 4. The distribution of the susceptibility κ

at the critical point ηc as a function of the sys-

tem size s. The solid line is a fit with Eq. (8).

3 Application to relativistic heavy ion

collisions

Recently, some kind of scaled third order moment

of the transverse momentum[14]

D3 =
〈pt〉3
〈p3

t 〉
(9)

has been proposed as a possible signal of the critical

point (CP) in the QCD phase diagram. By imposing

a temperature gradient to the two-dimensional con-

tinuum percolation of discs and assuming the trans-

verse momentum for each cell takes on the value of

thermal momentum determined by the temperature,

D3(η) behaves like a step function, similar to that of

P usual
∞

(η) described above, cf. Fig. 5 and Fig. 3. This

similarity makes the methods developed in Sect. 2 ap-

plicable to D3, i.e. we can locate the CP and deter-

mine the critical exponent of a susceptibility related

to D3.

A typical result for D3 and the fitting result of

the lower part (80% height change) with Eq. (3) is

shown in Fig. 5. The inflection point c4 is regarded

as the approximation to the critical point ηc. With

the increasing of system size, the inflection point c4

has an asymptotic behavior which is shown in Fig. 6.

The saturation value indicates ηc = 1.124.
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Fig. 5. D3 as a function of η with system size

s =500. The red line is a fit with Eq. (3).

Fig. 6. The behavior of c4 versus different sys-

tem size showing saturation.

Fig. 7. The distribution of the susceptibility κ′

at the critical point ηc as a function of the sys-

tem size s. The solid line is a fit with Eq. (11).

Similar to Eq. (4) we define the susceptibility re-

lated to D3 as

κ′(η,s) =
∂D3(η,s)

∂η
, (10)

and a critical exponent ν ′ for this thermal system as

κ′(ηc,s)∝ s1/ν′

. (11)

Investigating the finite-size scaling of κ′, 1/ν′ = 0.642

is obtained, cf. Fig. 7.

4 Conclusion

What we are interested in is the phenomena at

the vicinity of the critical point, in particular the

process occurring while the system produced in rel-

ativistic heavy ion collisions evolves passing through

the critical point. This is a second-order phase tran-

sition process[15] and can be well described by the

continuum-percolation model[5].

In general, when a system evolves passing through

a critical point some characteristic quantities of the

system will have a sudden change in value. For an

infinite system such a sudden change is of Heaviside

step function form. The place of this discontinuous

change is just the critical point of the system in con-

sideration. In the case where the system is of finite

size the discontinuity will be smoothed to a continu-

ous abrupt change of the variable.

In this paper we study critical phenomena in con-

tinuum percolation of discs. For an infinite system

P∞ or P usual
∞

versus the control parameter has a step

function discontinuity, which is referred to as the per-

colation threshold. In a finite-size system this dis-

continuity will be smoothed to a continuous abrupt

change of the value of P∞ or P usual
∞

. It is shown that

the continuous curve of P∞ or P usual
∞

versus the con-

trol parameter can be fitted well with a hypertangent-

type function as shown in Eq. (2) or Eq. (3). It is

shown that using the inflection point of this func-

tion as an estimate for the percolation threshold is

a good approximation with the error being less than

2%. The critical exponent ν for the correlation length

is extracted from the distribution of the susceptibility

by using the finite-size scaling method.

For heavy ion collisions, different colliding nuclei

have been tried, e.g. Pb, Au, Cu, S, C etc., which pro-

duce systems of different sizes. The colliding energy

plays the role of a control variable. P∞ in percolation

corresponds to the probability of events with QGP

in heavy ion collision experiments, denoted as PQGP.

Studying the inflection point of PQGP as a function of√
sNN, the critical point can be extracted. A suscep-

tibility defined as the derivative of PQGP determines

the critical exponent ν which is a rare case in which

one can experimentally measure the critical exponent

in heavy ion collisions. This approach is worth try-

ing in future studes of the critical phenomena in real

relativistic heavy ion collisions.
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