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Abstract Two basic motivations for an upgraded JLab facility are the needs: to determine the essential

nature of light-quark confinement and dynamical chiral symmetry breaking (DCSB); and to understand nucleon

structure and spectroscopy in terms of QCD’s elementary degrees of freedom. During the next ten years a

programme of experiment and theory will be conducted that can address these questions. We present a Dyson-

Schwinger equation perspective on this effort with numerous illustrations, amongst them: an interpretation

of string-breaking; a symmetry-preserving truncation for mesons; the nucleon’s strangeness σ-term; and the

neutron’s charge distribution.
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1 Confinement and dynamical chiral

symmetry breaking

Understanding the spectrum of hadrons with

masses less than 2GeV and their interactions is an

essential step toward revealing the essence of light-

quark confinement and dynamical chiral symmetry

breaking (DCSB), and describing hadron structure in

terms of QCD’s elementary degrees of freedom. These

are basic questions, which define a frontier of contem-

porary hadron physics.

In connection with confinement it is important

to appreciate that the static potential measured in

numerical simulations of quenched lattice-regularised

QCD is not related in any known way to the ques-

tion of light-quark confinement. It is a basic feature

of QCD that light-quark creation and annihilation

effects are essentially nonperturbative. Therefore it

is impossible in principle to compute a potential be-

tween two light quarks.

It is known[1] that in the presence of two dynami-

cal flavours of quark, each with a current-quark mass

∼ ms; i.e.,typical of the s-quark, string breaking is

a nonlocal and instantaneous process, which occurs

when the static quark and antiquark are separated

by ≈ 1.25 fm. There is therefore a critical energy

connected with the string; viz., Ec ≈ 1.25 GeV.

It is noteworthy and instructive that Ec ' MS +

MS̄, where MS and MS̄ are, respectively, constituent-

quark masses associated with the lightest quark and

antiquark in the system; namely, the s-quark in this

instance. Our observation suggests an intuitive un-

derstanding of string breaking; namely, the flux tube

collapses instantly and entirely when the energy it

contains exceeds that required to produce the lightest

constituent quark-antiquark pair, and the distorted

and distressed upsilon-like state switches instantly to

a pair of localised heavy-light mesons.

Our estimate of MS = MS̄ is based on exten-

sive experience with QCD’s Dyson-Schwinger equa-

tions (DSEs)[2—5]. Typically, ms ' 25mu and MS '

MU +0.15 GeV' 0.55 GeV. The phenomenon under-

lying this magnification of the current-quark mass is

DCSB, which can be understood via the renormalised

gap equation:
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S(p)−1 = Z2 (iγ ·p+mbm)+

Z1

∫Λ

q

g2Dµν(p−q)
λa

2
γµS(q)Γ a

ν (q,p), (1)

where

∫Λ

q

indicates a Poincaré invariant regularisation

of the integral, with Λ the regularisation mass-scale,

Dµν is the renormalised dressed-gluon propagator, Γν

is the renormalised dressed-quark-gluon vertex, and

mbm is the quark’s Λ-dependent bare current-mass.

The vertex and quark wave-function renormalisation

constants, Z1,2(ζ
2,Λ2), depend on the gauge parame-

ter. The solution to Eq. (1) has the form

S(p) =
Z(p2, ζ2)

iγ ·p+M(p2)
(2)

and it is important that the mass function, M(p2) =

B(p2, ζ2)/A(p2, ζ2) is independent of the renormalisa-

tion point, ζ. The form this function takes in QCD

is depicted in Fig. 1.
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Fig. 1. Dressed-quark mass function, M(p):

solid curves — DSE results,
[6, 7]

“data” –

numerical simulations of unquenched lattice-

QCD.
[8]

In this figure one observes the

current-quark of perturbative QCD evolving

into a constituent-quark as its momentum be-

comes smaller. The constituent-quark mass

arises from a cloud of low-momentum glu-

ons attaching themselves to the current-quark.

This is dynamical chiral symmetry breaking:

an essentially nonperturbative effect that gen-

erates a quark mass from nothing; namely, it

occurs even in the chiral limit.

The behaviour of the dressed-quark mass function

is one of the most remarkable features of the Standard

Model. In perturbation theory it is impossible in the

chiral limit to obtain M(p2) 6= 0: the generation of

mass from nothing is an essentially nonperturbative

phenomenon. On the other hand, it is a longstand-

ing prediction of nonperturbative DSE studies that

DCSB will occur so long as the integrated infrared

strength possessed by the gap equation’s kernel ex-

ceeds some critical value[2]. There are strong indica-

tions that this condition is satisfied in QCD[6—8].

It follows that the quark-parton of QCD acquires

a momentum-dependent mass, which at infrared mo-

menta is roughly 100-times larger than the light-

quark current-mass. This effect owes primarily to a

dense cloud of gluons that clothes a low-momentum

quark. It means that the Higgs mechanism is largely

irrelevant to the bulk of normal matter in the uni-

verse. Instead, the single most important mass gener-

ating mechanism for light-quark hadrons is the strong

interaction effect of DCSB; e.g., one may identify it

as being responsible for 98% of a proton’s mass.

Confinement can be connected with the analytic

properties of QCD’s Schwinger functions[2, 4, 5, 9]. In-

deed, the presence of an inflexion point in the DSE

prediction for the dressed-quark mass function, which

lattice simulations may be argued to confirm, sig-

nals confinement of the dressed-quark[4]. Kindred

behaviour is observed in the gluon and ghost self-

energies[10, 11].

From this standpoint the question of light-quark

confinement can be translated into the challenge of

charting the infrared behavior of QCD’s universal β-

function. (Although this function may depend on the

scheme chosen to renormalise the theory, it is unique

within a given scheme.) This is a well-posed problem

whose solution is an elemental goal of modern hadron

physics and which can be addressed in any framework

enabling the nonperturbative evaluation of renormal-

isation constants.

Through the gap and Bethe-Salpeter equations

(BSEs) the pointwise behaviour of the β-function de-

termines the nature of chiral symmetry breaking; e.g.,

the evolution in Fig. 1. Moreover, the fact that DSEs

connect the β-function to experimental observables

entails that comparison between computations and

observations of hadron properties can be used to chart

the β-function’s long-range behaviour.

2 DSE truncations: preserving sym-

metry

In order to realise this goal a nonperturbative

symmetry-preserving DSE truncation is necessary.

Steady quantitative progress continues with a scheme

that is systematically improvable[12, 13]. Indeed, its

mere existence has enabled the proof of exact non-

perturbative results in QCD. Amongst them are ve-

racious statements about the η-η′ complex and π
0-

η-η′ mixing, with predictions of θηη′ = −15◦ and
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θπ0η = 1◦[14]. Only studies that are demonstrably

consistent with the results proved therein can be con-

sidered seriously.

It is also true that significant qualitative ad-

vances can be made with symmetry-preserving ker-

nel Ansätze that express important additional non-

perturbative effects, which are difficult to capture in

any finite sum of contributions[15]. In order to elu-

cidate we consider the example of pseudoscalar and

axial-vector mesons, which appear as poles in the in-

homogeneous BSE for the axial-vector vertex, Γ fg
5µ.

An exact form of that equation is (q± = q±P/2, etc.)

Γ fg
5µ(k;P ) = Z2γ5γµ−

∫
q

g2Dαβ(k−q) ×

λa

2
γαSf(q+)Γ fg

5µ(q;P )Sg(q−)
λa

2
Γ g

β(q−,k−)+

∫
q

g2Dαβ(k−q)
λa

2
γαSf(q+)

λa

2
Λfg

5µβ(k,q;P ), (3)

where Λfg
5µβ is a 4-point Schwinger function that is

completely defined via the quark self-energy[12, 13].

The pseudoscalar vertex, Γ fg
5 (k;P ), satisfies an anal-

ogous equation and has the general form

i+Γ fg
5 (k;P ) = γ5

[

iE5(k;P )+γ ·PF5(k;P )+

γ ·kG5(k;P )+σµνkµPνH5(k;P )
]

. (4)

In any dependable study of light-quark hadrons

the solution of Eq. (3) must satisfy the axial-vector

Ward-Takahashi; viz.,

PµΓ fg
5µ(k;P )+ i [mf(ζ)+mg(ζ)]Γ fg

5 (k;P ) =

S−1
f (k+)iγ5 +iγ5S

−1
g (k−) , (5)

which expresses chiral symmetry and its breaking pat-

tern. The condition

PµΛfg
5µβ(k,q;P )+i[mf(ζ)+mg(ζ)]Λfg

5β(k,q;P ) =

Γ f
β(q+,k+) iγ5 +iγ5 Γ g

β(q−,k−), (6)

where Λfg
5β is the analogue of Λfg

5µβ in the pseudoscalar

equation, is necessary and sufficient to ensure the

Ward-Takahashi identity is satisfied[15].

Consider Eq. (6). Rainbow-ladder is the lead-

ing-order term in a systematic DSE truncation

scheme[12, 13]. It corresponds to Γ f
ν = γν , in which

case Eq. (6) is solved by Λfg
5µβ ≡ 0 ≡ Λfg

5β. This is

the solution that indeed provides the rainbow-ladder

forms of Eq. (3). Such consistency will be apparent

in any valid systematic term-by-term improvement of

the rainbow-ladder truncation.

However, Eq. (6) is far more than merely a de-

vice for checking a truncation’s consistency. For, just

as the vector Ward-Takahashi identity has long been

used to build Ansätze for the dressed-quark-photon

vertex (e.g., Refs. [2, 16, 17]), Eq. (6) provides a

tool for constructing a symmetry preserving kernel of

the BSE that is matched to any reasonable Ansatz

for the dressed-quark-gluon vertex which appears

in the gap equation. With this powerful capacity

Eq. (6) achieves a goal that has been sought ever since

the Bethe-Salpeter equation was introduced[18]. The

symmetry-preserving kernel it can provide promises

to enable the first reliable Poincaré invariant calcu-

lation of the spectrum of mesons with masses larger

than 1 GeV.

The utility of Eq. (6) can be illustrated through an

application to ground state pseudoscalar and scalar

mesons composed of equal-mass u- and d-quarks. To

this end, suppose that in Eq. (1) one employs an

Ansatz for the quark-gluon vertex which satisfies

PµiΓ f
µ(k+,k−) =B(P 2) [S−1

f (k+)−S−1
f (k−)] , (7)

with B flavour-independent. (NB. While the true

quark-gluon vertex does not satisfy this identity, ow-

ing to the form of the Slavnov-Taylor identity which

it does satisfy, it is plausible that a solution of Eq. (7)

can provide a reasonable pointwise approximation to

the true vertex.) Given Eq. (7), then Eq. (6) entails

(l = k−q)

ilβΛfg
5β(k,q;P ) =B(l2)

[

Γ fg
5 (q;P )−Γ fg

5 (k;P )
]

, (8)

with an analogous equation for PµlβiΛfg
5µβ(k,q;P ).

This identity can be solved to obtain

Λfg
5β(k,q;P ) :=B((k−q)2)γ5Λ

fg

β (k,q;P ) , (9)

with, using Eq. (4),

Λ
fg

β (k,q;P ) = 2`β[i∆E5
(q,k;P )+γ ·P∆F5

(q,k;P )]+

γβΣG5
(q,k;P )+2`βγ ·`∆G5

(q,k;P )+[γβ,γ ·P ]×

ΣH5
(q,k;P )+2`β[γ ·`,γ ·P ]∆H5

(q,k;P ) , (10)

where ` = (q+k)/2, ΣΦ(q,k;P ) = [Φ(q;P )+Φ(k;P )]/2

and ∆Φ(q,k;P ) = [Φ(q;P )−Φ(k;P )]/[q2 −k2].

Now, given any Ansatz for the quark-gluon ver-

tex that satisfies Eq. (7), then the pseudoscalar ana-

logue of Eq. (3) and Eqs. (1), (9), (10) provide a

symmetry-preserving closed system whose solution

predicts the properties of pseudoscalar mesons. The

relevant scalar meson equations are readily derived.

(NB. We are aware of the role played by resonant con-

tributions to the kernel in the scalar channel[19] but

they are not pertinent to this discussion.) With these

systems one can anticipate, elucidate and understand

the impact on hadron properties of the rich non-

perturbative structure expected of the fully-dressed
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quark-gluon vertex in QCD.

To proceed one need only specify the gap equa-

tion’s kernel because the BSEs are completely de-

fined therefrom. To complete the illustration[15] a

simplified form of the effective interaction in Ref. [20]

was employed and two vertex Ansätze were com-

pared; viz., the bare vertex Γ g
µ = γµ, which defines

the rainbow-ladder truncation of the DSEs and omits

vertex dressing; and the Ball-Chiu vertex[16], which

nonperturbatively incorporates vertex dressing asso-

ciated with DCSB.

The procedure outlined herein enables one to cal-

culate the current-quark-mass-dependence of meson

masses using a symmetry-preserving DSE truncation

whose diagrammatic content is unknown. That de-

pendence is depicted in Fig. 2 and compared with

the rainbow-ladder result. The m-dependence of

the pseudoscalar meson’s mass provides numerical

confirmation of the algebraic fact that the axial-

vector Ward-Takahashi identity is preserved by both

the rainbow-ladder truncation and the BC-consistent

Ansatz for the Bethe-Salpeter kernel. The figure also

shows that the axial-vector Ward-Takahashi identity

and DCSB conspire to shield the pion’s mass from

material variation in response to dressing the quark-

gluon vertex[4, 21].

Fig. 2. Current-quark-mass dependence of

pseudoscalar (upper panel) and scalar (lower)

meson masses. The Ball-Chiu vertex result is

compared with the rainbow-ladder result.

As noted in Ref. [15], a rainbow-ladder kernel with

realistic interaction strength yields

εRL
σ :=

2M(0)−mσ

2M(0)

∣

∣

∣

∣

RL

= (0.3±0.1) , (11)

which can be contrasted with the value obtained us-

ing the BC-consistent Bethe-Salpeter kernel; viz.,

εBC
σ . 0.1 . (12)

Plainly, significant additional repulsion is present in

the BC-consistent truncation of the scalar BSE.

Scalar mesons are commonly identified as 3P0

states. This assignment reflects a constituent-quark

model perspective, from which a JPC = 0++ fermion-

antifermion bound-state must have the constituents’

spins aligned and one unit of constituent orbital an-

gular momentum. From this viewpoint a scalar is

a spin and orbital excitation of a pseudoscalar me-

son. We note that although the constituent-quark

model cannot be connected with QCD, the pres-

ence of orbital angular momentum in a hadron’s rest

frame is a necessary consequence of Poincaré covari-

ance and the vector-boson-exchange character of that

theory[22—24].

Extant studies of realistic corrections to the

rainbow-ladder truncation show that they reduce hy-

perfine splitting[21]. Hence, with the comparison

between Eqs. (11) and (12) one has a clear indi-

cation that in a Poincaré covariant treatment the

BC-consistent truncation magnifies spin-orbit split-

ting. This may be attributed to the influence of the

quark’s dynamically-enhanced scalar self-energy[5] in

the Bethe-Salpeter kernel.

This feature may reasonably be expected to have

a material impact on mesons with mass greater than

1 GeV. Indeed, prima facie it can plausibly overcome

a longstanding shortcoming of the rainbow-ladder

truncation; viz., that the splitting between vector and

axial-vector mesons is too small[25]. This expectation

is supported by Ref. [26] wherein, using a separable

Ansatz for the Bethe-Salpeter kernel which depends

explicitly on the strength of DCSB, a vector–axial-

vector mass-splitting is obtained that is commensu-

rate with experiment.

3 Baryons

3.1 Faddeev equation

While a symmetry-preserving description of

mesons is essential, it is only part of the story that

nonperturbative QCD has to tell. An explanation

of the spectrum of baryons and the nature of inter-

actions between them is basic to understanding the
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Standard Model. The present and future resonance

programmes at JLab and the Excited Baryon Analy-

sis Center are critical elements in this effort. They are

a vital complement to the Hall-D meson programme.

QCD confines light-quarks in particle-antiparticle

pairs and also in three-particle composites. No ap-

proach to nonperturbative QCD is comprehensive

if it cannot provide a unified explanation of both.

DCSB, a keystone of the Standard Model and ev-

ident in the momentum-dependence of the dressed-

quark mass function – Fig. 1, is just as important to

baryons as it is to mesons. The DSEs furnish the only

extant framework that can simultaneously connect

both meson and baryon observables with this basic

feature of QCD, having provided, e.g., a direct cor-

relation of meson and baryon properties via a single

interaction kernel, which preserves QCD’s one-loop

renormalisation group behaviour and can systemati-

cally be improved[27, 28].

In quantum field theory a baryon appears as a

pole in a six-point quark Green function. The residue

is proportional to the baryon’s Faddeev amplitude,

which is obtained from a Poincaré covariant Faddeev

equation that sums all possible exchanges and inter-

actions that can take place between three dressed-

quarks. A tractable Faddeev equation for baryons[29]

is founded on the observation that an interaction

which describes colour-singlet mesons also gener-

ates nonpointlike quark-quark (diquark) correlations

in the colour-3̄ (antitriplet) channel[30]. The light-

est diquark correlations appear in the JP = 0+,1+

channels[31, 32] and hence today only they are retained

in approximating the quark-quark scattering matrix

that appears as part of the Faddeev equation[28, 33].

While diquarks do not appear in the strong inter-

action spectrum[13, 21], the attraction between quarks

in this channel justifies a picture of baryons in which

two quarks are always correlated as a colour-3̄ diquark

pseudoparticle, and binding is effected by the iterated

exchange of roles between the bystander and diquark-

participant quarks. Here it is important to empha-

sise strongly that QCD supports nonpointlike diquark

correlations[34, 35]. Models that employ pointlike di-

quark degrees of freedom cannot be connected with

QCD. This, however, is a defect they share with all

approaches that employ pointlike-constituent degrees

of freedom. It is therefore not surprising that ex-

perimental observations contradict the spectroscopic

predictions of such models; e.g., in connection with

the so-called missing resonance problem, the best in-

formation available today indicates that even some

listed ∗∗∗∗-resonances should be discarded[36].

3.2 Strangeness sigma-term

Numerous properties of the nucleon have been

computed using the Faddeev equation just described.

An example is the nucleon’s σ-term, with the

result:[37]

fu
N :=

σN

MN

≈ 6%. (13)

This measures the contribution to the nucleon’s mass

from the explicit chiral symmetry breaking term as-

sociated with u- and d-quarks in QCD’s Lagrangian.

Of material additional interest is the contribution to

the nucleon’s mass from the s-quark mass term.

We will estimate this by analysing the dressed-

quark σ-term[19, 37] using a model gap equation that

incorporates pion and kaon loop contributions and

which has previously been used to estimate the

strangeness contribution to the nucleon’s magnetic

moment: µS
p ≈−0.02 nuclear magnetons[38].

The model yields

fu
U :=

mu

Mu

dMu

dmu

= 6.5%, f s
U :=

ms

Mu

dMu

dms

= 2.4%.

(14)

Comparing Eqs. (13) and (14), one observes f u
N ' fu

U.

One would have equality between these two quanti-

ties in a weak-binding independent particle model.

We therefore anticipate that

f s
N ≈ f s

U = 2.4%. (15)

The results in Eqs. (13) and (15) agree with those

inferred recently[39] from numerical simulations of

lattice-regularised QCD.

It is worth observing here that pseudoscalar me-

son exchange is attractive between a fermion and an-

tifermion. Hence one knows with certainty a priori

that a valid calculation of pseudoscalar-meson-loop

contributions to the gap and Bethe-Salpeter equa-

tions must show a reduction in both the mass of the

fermion the mesons dress and the bound-state they

bind. One check on a study is the effect of the loops

on the vacuum quark condensate: in a realistic trun-

cation they must reduce its magnitude, as is the case,

e.g., in the model employed above. It follows from

this fact and the axial-vector Ward-Takahashi that

in the neighbourhood of the chiral limit

f 2
πm2

π|with loops
< f 2

πm2
π|without loops

. (16)

It has long been known that a model which fails this

test is flawed[40]. Ref. [41] is such a study. The de-

fect probably lies primarily in the Ansatz for the pion

contribution to the quark-antiquark scattering ker-

nel, which does not satisfy Eq. (6) and is not soundly

based in quantum field theory.
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3.3 Neutron electromagnetic form factors

A comprehensive analysis of nucleon electromag-

netic form factors using the DSEs is available[33]

and the calculation of nucleon-to-resonance transition

form factors is underway.

5 10 15 20

q2

GeV2
0.

0.02

0.04

0.06
GE

n

Fig. 3. Sachs neutron electric form factor:

solid curve – DSE prediction;
[33]

dashed curve

– a 2004 parametrisation of data.
[42]

New

JLab Hall-A data on the neutron form fac-

tor at Q2 = 1.71,2.51,3.47 GeV2 will soon be

available.
[43]
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0.0

0.2

0.4

0.6

0.8

1.0
F1

nf

0 1 2 3 4

q2

GeV2
0.0

0.2

0.4

0.6

0.8

1.0
GE
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Fig. 4. Flavour decomposition of neutron form

factors:
[33]

Upper panel – Dirac; Lower panel

– Sachs electric. In both panels: solid curve

– f=d-quark; dashed curve – f=u-quark. All

form factors normalised to unity at q2 =

0. In reality: F nd
1 (0) = Gnd

E (0) = −
2
3

and

F nu
1 (0) =Gnu

E (0) = 2
3
; F nd

1 (q2) is negative defi-

nite, Gnd
E (q2) becomes positive at q2

≈ 9 GeV2,

F nu
1 (q2) becomes negative at q2

≈ 7 GeV2 and

Gnu
E (q2) becomes negative at q2

≈ 10 GeV2.

These studies compute a dressed-quark core con-

tribution to the form factors, which is defined by the

solution of the Poincaré covariant Faddeev equation.

A particular feature of the study cited is a sepa-

ration of form factor contributions into those from

different diagram types and correlation sectors, and

subsequently a flavour separation for each of these.

Amongst the extensive body of results that one might

highlight are: both the neutron (Fig. 3) and proton

Sachs electric form factor possess a zero; and, owing

to the presence of axial-vector quark-quark correla-

tions, rn,u
1 > rn,d

1 but rn,u
E < rn,d

E (Fig. 4).

i
iΨ Ψ

Pf
f

P

Q

Fig. 5. Bystander quark vertex, one of six dia-

grams that contribute to a conserved current

for on-shell nucleons described by the Faddeev

equation solution, Ψi,f .
[44]

The single line rep-

resents S(p), the dressed-quark propagator,

and the double line is the diquark propagator.

In vanishing twice on the domain accessible to re-

liable calculation, at the origin owing to charge neu-

trality, and at Q2 ≈ 11 GeV2 owing to dynamics, the

neutron’s electric form factor is special. The origin

of this second zero can be explained and is consis-

tent with intuition.[33] For example, consider Gn,qb

E ,

which is the contribution to the form factor from a

bystander quark; viz., the contribution from a pro-

cess in which the photon strikes a quark that is nei-

ther within a diquark nor breaking away from one,

illustrated in Fig. 5. (NB. This is one contribution

to the quantity plotted in Fig. 4, which is the total

f-quark contribution to the form factor.) Gn,qb

E is neg-

ative at small-Q2 because the scalar diquark compo-

nent of the Faddeev amplitude is dominant and that is

paired with a d-quark bystander in the neutron. This

dressed-quark is responsible for the preponderance

of negative charge at long range. Gn,qb

E is positive

at large Q2 because F n
2 dominates on that domain,

which focuses attention on the axial-vector diquark

component of the Faddeev amplitude. The positively

charged u-quark is most likely the bystander quark in

these circumstances.

3.4 Neutron charge distribution

These features are manifest in the configuration-

space charge density, obtained through a three-
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dimensional Fourier-Transform; namely,

ρn(r) =
1

2π2r

∫
∞

0

dqq sin(qr)Gn
E(q2) , (17)

which is depicted in Fig. 6. To compute ρn(r) we

inferred Gn
E(q2) from the calculated ratio µnG

n
E(q2)/

Gn
M(q2) (Fig. 16, Ref. [33]) multiplied by the empirical

dipole: 1/[1+q2/(0.84 GeV)2]2. This procedure cor-

rects for the deliberate omission of pion cloud effects

in Ref. [33]. The result is depicted in Fig. 3. Caveats

on the interpretation of ρn(r) as a quantum mechani-

cal charge density are discussed in Sec. 4 of Ref. [33].

These observations notwithstanding, the mapping be-

tween the q2-dependence of the Sachs electric form

factor and the charge density is intuitively appealing

and instructive.

0.25 0.5 0.75

r
fm

0.25

0.5

0.75

1.

Ρn

fm3

0.5 1. 1.5 2.

r
fm

-0.06
-0.03

0.04

0.08

0.12

0.16

4 Π r2 Ρn

fm

Fig. 6. Distribution of charge within the neu-

tron evaluated from the three-dimensional

Fourier transform in Eq. (17): solid curve –

DSE prediction;
[33]

dashed curve – a 2004

parametrisation of data.
[42]

In the comparison made in Fig. 6 between the

DSE prediction[33] and a 2004 parametrisation of

data,[42] two features are striking: a significant de-

pletion of positive charge at the core of the neutron

accompanied by an increased concentration of nega-

tive charge toward the surface; and oscillations in the

charge distribution. NB. We computed the charge

density arising only from the dressed-quark core.

The depletion of charge is associated with the sec-

ond zero in Gn
E(q2) and the domain of negative sup-

port which follows. The amount of charge depletion

is determined by the magnitude of Gn
E(q2) at it’s min-

imum: should the magnitude exceed a critical value,

ρn(r) would become negative in the neighbourhood of

r = 0.

1 2 3 4 5

Q2

MN
2

0.8
0.9
1.

1.1
1.2
1.3

GM
n

Dipole Μn

Fig. 7. Sachs neutron magnetic form fac-

tor divided by dipole fit: solid curve –

DSE prediction;
[33]

points – contemporary

experiment.
[45]

As explained in Sec. 8 of the

DSE study,
[33]

pseudoscalar meson loops, de-

liberately omitted in the calculation displayed

here, will work to flatten the prediction, with

greatest impact for Q2 . 3M2
N.

The oscillations at r & 0.5 fm are connected with

the shape of Gn
E(q2) on its domain of positive sup-

port. Crucial to their appearance and nature are the

following features: Gn
E(0) = 0; the location and mag-

nitude of the maximum of Gn
E(q2); and the fact that

the domain of positive support is bounded.

Given that it is common practice to compare

nucleon form factors with an empirical dipole, it

is of interest to compare the DSE results with a

dipole parametrisation. To that end we fitted 1/(1+

Q2/m2
D)2 to the DSE result on 2 6 Q2/M 2

N < 9. This

domain excludes the region whereupon pion cloud ef-

fects are significant and maximises coverage of the

domain on which the quark-core calculation is most

reliable. The fit produced mD = 1.06 MN, which

is just 18% larger than the empirical dipole mass,

memp
D = 0.89 MN. The ratio obtained with the com-

puted dipole mass is depicted in Fig. 7 and compared

with a modern experimental determination[45].

4 Perspective

Plainly, much has been learnt from the application

of Dyson-Schwinger equations (DSEs) to problems in

nonperturbative QCD. This process will continue.
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For example, comparison between DSE results

and forthcoming precision data on nucleon form fac-

tors, both elastic and resonance-transition, holds

promise as a means by which to chart the momen-

tum evolution of the dressed-quark mass function

and therefrom the infrared behavior of QCD’s β-

function. In particular, it should enable the unam-

biguous location of the transition boundary between

the constituent- and current-quark domains that is

signalled by the sharp drop apparent in Fig. 1 and

which can likely be related to an infrared inflexion

point in QCD’s running coupling, whose properties

are determined by the β-function.

Contemporary theory indicates that this transi-

tion boundary lies at p2 ∼ 0.6 GeV2. Since a probe’s

input momentum q is principally shared equally

amongst the dressed-quarks in elastic and transition

processes, then each can be considered as absorbing

a momentum fraction q/3. Thus in order to scan

the behaviour of the mass function on the domain

p2 ∈ [0.5,1.0] GeV2 one requires q2 ∈ [5,10] GeV2.

This domain will become accessible after completion

of the upgrade underway currently at JLab.
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(Rapid Comm.), 2008, 77: 042202

28 Eichmann G, Cloët I C, Alkofer R et al. Phys. Rev. C

(Rapid Comm.), 2009, 79: 012202

29 Cahill R T, Roberts C D, Praschifka J. Austral. J. Phys.,

1989, 42: 129—145

30 Cahill R T, Roberts C D, Praschifka J. Phys. Rev. D, 1987,

36: 2804—2812

31 Burden C J, Qian L, Roberts C D et al. Phys. Rev. C, 1997,

55: 2649—2664

32 Maris P. Few Body Syst., 2002, 32: 41—52
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