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Abstract In this paper we treat first some nonlinear beam dynamics problems in storage rings, such as beam

dynamic apertures due to magnetic multipoles, wiggles, beam-beam effects, nonlinear space charge effect, and

then nonlinear electron cloud effect combined with beam-beam and space charge effects, analytically. This

analytical treatment is applied to BEPCII. The corresponding analytical expressions developed in this paper

are useful both in understanding the physics behind these problems and also in making practical quick hand

estimations.
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1 Introduction

In storage rings many physical phenomena con-
nected with particle motion are caused by nonlinear
forces, either static or dynamic, acting on the mov-
ing particles. Among them one finds dynamic aper-
tures limited by static magnetic multipoles, wigglers,
beam-beam effects due to dynamic nonlinear beam-
beam interaction forces, nonlinear space charge and
electron cloud effects, which are separately treated in
the following sections. It is aimed to demonstrate the
validity of the analytical method in treating multi-
nonlinear sources and there combined effects. Finally,
the combined effects of electron cloud, beam-beam
and space charge nonlinear forces are discussed and
the analytical treatment is applied to BEPCII.

2 Dynamic apertures of multipoles

We start with the simplest case, which is the phys-
ical and mathematical basis for the analytical treat-
ing of other different subjects in the other sections,
i.e., the dynamic aperture limited by a single non-
linear multipole located somewhere inside a storage

Received 11 July 2008
* Supported by NSFC (10525525, 10775154)

ring. The Hamiltonian of this problem is expressed

as follows
2 m—1 oo
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(1)
with

Bz :Boxmilbmfla (2)

where p is the bending radius corresponding to By,
and L is the circumference of the ring. The general
formula for the dynamic aperture limited by this mul-
tipole reads!
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where s(2m) is the location of this multipole. The
dynamic aperture in vertical plane can be estimated
as

By (s(2m))

where (3,(s(2m)) is the vertical beta function where
the multipole is located. If the are many independent

Adynaﬁm,y = \/M (Aflyna,Zm,w - ‘Tz)? (4)

©2009 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute
of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd



136 Chinese Physics C (HEP & NP)

Vol. 33

multipoles, one can estimate their combined effects
through following equation

1
Adyna,total - (5)

Z%

i,m dyna,2m,i

The validity of Eqgs. (3), (4), and (5) has been

checked by numerical simulations!".

3 Dynamic aperture limited by wig-
glers

Considering a wiggler of sinusoidal magnetic field
variation, one can express the wiggler’s magnetic
field, which satisfies Maxwell equations, as follows

k
B, = k—zBo sinh(k,z)sinh(k,y)cos(ks),  (6)

Y

B, = By cosh(k,z)cosh(k,y) cos(ks), (7)

B,.= —kﬁBo cosh(k,x)sinh(k,y)sin(ks),  (8)

Yy

with

k2+k2=k2=(2—”>2 )
x y A, )
where B, is the peak sinusoidal wiggler magnetic
field, A, is the period length of the wiggler, and =z,
y, s represent horizontal, vertical, and beam moving
directions, respectively.

The Hamiltonian describing the motion can be
written as

1
H, =5 (02 + (p: = Ausin(ks))* + (p, — A, sin(ks))*).

(10)
where )
A, = — cosh(k,x)cosh(k,y), (11)
Puwk
A—— k. sinh(k,z)sinh(k,y) 7 (12)

k, puk

and p,, = Ey/ecBy is the radius of curvature of the
wiggler peak magnetic field B, with Fy being the elec-
tron energy. After making a canonical transformation
to betatron variables, averaging the Hamiltonian over
one period of wiggler, and expanding the hyperbolic
functions to fourth order in x and y, one gets

1
=(p2+p))+ (k2x® +koy%) +

Hw:2

1k2p2

1
o (bt iy 4 3R -

sin(ks)
2kp

(pz(kixz—l—k;y) 2k2pyxy). (13)

Now we insert a “wiggler” of only one period (or one
cell) into a storage ring located at s,. The total
Hamiltonian of the ring in the vertical plane can be
expressed as follows

2

1 ky 4
H= H0+4—y v 5" A Zas—lL) (14)

i=—00

where H, is the Hamiltonian without the inserted
wiggler, L is the circumference of the ring, and k, = k.
It is obvious that the perturbation is a delta function
octupole. Comparing Eq. (1) with Eq. (14), one finds
easily that

bs k2w

3=
p 3p2

(15)
and the dynamic aperture limited by this one period

G () -

where 3, (s) is the unperturbed beta function. In fact,

“wiggler” as

Avy(s)=

a wiggler is an insertion device which is composed of a
large number of cells, say, IV,,, and the wiggler length
L, =Ny,\,. Now, the first question which follows is
what the combined effect of these IV, cells will be.
According to Ref. [1], one has

k2 ) L,
ZA? :Z <3pzﬁ (s )> Aol R,
(17)
where the index i labels the different cell. When N,
is a large number, Eq. (17) can be simplified as:

1 kz Swo+Luw /2
A%, (5)  3p28,(s) J

where s, correspond to the center of the wiggler.

Bi(s)ds,  (18)

‘wO*Lw/2

For practical purposes, one can replace (37 (s) inside
the integral by 3
in the middle of the wiggler, and one gets

36(s)  pu
B2, kL,

which is the beta function value

ANw y( )

(19)

AN, (8)= \/gz Ezg (ANw,y(S)2 —y?). (20)

If there are more than one wiggler in a storage ring,
the total dynamic aperture limited by these wigglers
can be estimated by applying Eq. (5).

Eq. (19) has been checked by numerical simu-
lations!?.
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4 Beam-beam effects and limitations

For two head-on colliding bunches, the incoherent
kick felt by each particle can be calculated as

Ne e
Sy +idr' = — 2

f(@,y,00,0y), (21)

*

where x’ and y’ are the horizontal and vertical slopes,
N, is the particle population in the bunch, r, is the
electron radius (2.818x107** m), o, and o, are the
standard deviations of the transverse charge density
distribution of the counter-rotating bunch at IP, ~,
is the normalized particle’s energy, and * denotes the
test particle and the bunch to which the test particle
belongs. When the bunch is Gaussian f(z,y,0,,0,)
can be expressed by Basseti-Erskine formula

27 r+1i
f(@,y,00,0)) = | 53— Xw — |-
Tz =0y 2(02—02)
o, .0,
2 2 —T+1—y
27 e < x y> o o,
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o2—o? P 202 20 2(02 —02)

(22)
where w is the complex error function expressed as

w(z) =exp(—2%)(1 —erf(—iz)). (23)

For the round beam (RB) and the flat beam (FB)
cases one has the incoherent beam-beam kicks ex-

pressed as!®

5/ [RB] = — 2ere (1 ~exp (—2%)) (29

Y

2v2N, 2 Voo
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(25)
21N, 2
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(26)
where r = /22 +%2. Since the probability to find the
transverse displacement of the test particle is not con-
stant (in fact, the probability function is the same as
the charge distribution of the bunch to which the test
particle belongs), one is interested in the average kick
felt by the test particle. In the following we assume
that the transverse sizes for the two colliding bunches
at IP are exactly the same. For the round beam case
after averaging one gets

57 [RB] = — 2T <1 —exp <—47:722)> . (@)

VT

Although this expression is the same as that of the co-
herent beam-beam kick for round beams, one should
keep in mind that we are not finding coherent beam-
beam kick. The difference will be obvious when we
treat the vertical motion in the case of flat beams. For
the flat beam case, we will treat the horizontal and
vertical planes separately. As far as the horizontal
kick is concerned, it depends only on one displace-
ment variable similar to the round beam case. We
will use its coherent form given by the follow expres-
sion

2N, 2
5z’ [FB] = — T exp (— I >

VO 40’5

-l
J exp(u?)du.
0

(28)
As for the vertical kick, one has to make an average
over Eq. (26) with the horizontal probability distri-
bution function of the test particle. This leads to

oo (22)) ()
§y/[FB] = — Y2 e ¢ - f ,
yIFB === (o (<5 ) ) erf (g

(29)

where (), means the average over the horizontal
probability distribution function of the test parti-
cle, and for two identical colliding Gaussian beams
(). = 1/3/2. Tt is obvious that Eq. (29) is not the
expression for the coherent beam-beam kick. The
average over Eqs. (24) and (26) is only a technical
operation to simplify (or to make equivalent) a two
dimensional problem to a one dimensional one. To
study both round and flat beam cases, we expand
07 at x =0 (for round beam we study only vertical
plane since the formalism in the horizontal plane is
the same), 0z’ and 0y’ of Egs. (27), (28) and (29),
into Taylor series

Noro [ 1 1.
0y'[RB] = —=( —y— ¢ -
yIRB] = — (202y 16017 T 192007
1 7 9
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S YL T 30
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The differential equations for the motion of the test
particle in the transverse planes are given by

d?y

_ Nero (1 1 s
ao TRy === (202y 16017 T 102007
1 7 1 9 11
3072057 T 61440007 ~ 1474560027
1 13 =
S S—— 5(s—kL) (RB
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k=—o00

where K, (s) and K,(s) describe the linear focusing of
the lattice in the horizontal and vertical planes. The
corresponding Hamiltonians are given by

p_f/ K, (s) y?

N.r 1 1
H — Tele| _— .2 4
p T VT, (402y Gact? T
1 6 1 8
1152067 ~ 24576057 © )x
> d(s—kL) (RB), (36)
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2
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p.  K,(s Nere (1 1
Yy y( )yz + yz _ - y4
2 V27, \ 0.0, 120,03
1 6 8
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with p, =dxz/ds and p, =dy/ds.
Using the general information from section 2 and
comparing Eq. (1) with the Hamiltonians for beam-

(FB), (38)

beam interactions, we derive the beam-beam effects
and the limitations on the beam lifetimes for a rigid
flat beam!®

3\ " 3
Tbb,y,Aat = % (\/_2—7r§> exp <\/—2—ﬂ_§) , (39)

w3\ " 3
Tob,z,fat — ? <7T§x) exp (ng) ) (40)

and a rigid round beam

o 4\ 4
7-bb,y,round = 5?; (ﬂ_g ) exXp (ﬂ_g ) . (41)

From Egs. (39) and (40) one finds that for the same

Ty,bb,ﬂat/Tyu Tx,bb,ﬂat/Txu a'nd Ty,bb,round/Tyu one haS

4V2

gac,ﬂat = \/igy,ﬂata and §y,rourld = T&y,ﬂat = 1'89§y,ﬂat'

In reality the colliding bunch is not rigid. The

transverse emittance will increase due to additional
heating. In the following we will show how emittance
blow-up is included into the beam-beam lifetime ex-
pressions.

In ete™ storage ring colliders, due to strong quan-
tum excitation and synchrotron damping effects, the
particles are confined inside a bunch. The state of
the particles can be regarded as a gas, where the po-
sitions of the particles follow statistic laws. When
two bunches undergo collision at an interaction point
(IP, denoted by “x”) the particles in each bunch will
receive some additional heating. Taking the vertical
plane for example, one has beam-beam induced kicks
in y and 3y’ =dy/ds (see Ref. [4])

oy =— (42)

- Y,
fy
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oy’ = _%y , (43) Since o,(s) = +/€,0,(s) one gets from from Eq. (49)
y
€y,0
1 2N, €= (51)

—= , (44)
fy 'Yay,*,+(o'z,*,++ay,*,+)
where o, is the bunch length, N, is the particle num-
ber inside the bunch, 7. is the electron radius, o, . .
and o, . are the transverse dimensions just before
the two colliding bunches overlap each other, and

0., and o, , are defined as the transverse dimensions
when the two bunches fully overlap at IP. The in-
variant of vertical betatron motion can be expressed

5]
1 ! 1 ! :
al = 5 <y3+ <6y,*y*—§6y,*y*> ) (45)
Y

From Egs. (42) and (43) one finds that

. 1 Os ’ 2 By« ’

where vy, is the vertical displacement of the test parti-
cle with respect to the center of the colliding bunch.
Due to the gaseous nature of the particles, one has
to take an average over all possible values of y. ac-
cording to its statistical distribution function. From
Eq. (46) one obtains

(6a?) = i (%)2 <1+ (BUL)Z> .

The resulting vertical dimension combining the syn-
chrotron radiation and beam-beam effects can be ex-

as[

pressed as follows

1
05,* = ZTyﬁy,*Q?ﬂ'

imﬁy,* <ﬁ (U}’y> <1+<%’*) )) (48)

where T; is the revolution time, 7, is the radiation
damping time, and @, is defined according to Ref. [5]

2
as Ty.x0

= ZTyﬁwa with o, .0 being the natural
vertical dimension at IP. Solving Eq. (48) for o,.
gives:

0,2

o, = v:2.0 , (49)
o _ i eQNeKbb,y 2
AT, E,

where Ej is the energy, and

Os
K,y = B) X
TE00 w4 (T ut + 0y n )

<1+ (61?;—?)2)1/2. (50)

Yy ’
Ty eQNCKbb,y 2
4Ty E,
where €, ¢ is the natrual transverse emittance. For a

flat bunch (o, .+ < 04...+), we obtain from Eq. (51)
the following relation:

2 2\ 1/2
3ngVIP(e chﬂy,*) ) ) (52)

8m2egmocyS

We define
g =Tt Tt (53)

Og, 5Oy, x

which is a measure of the plasma pinch effect and
assume that it can be expressed as

H,
H=—. 54
val 5
Recalling the beam-beam parameter definition
NerefBy
&y . ; (55)

- 27170y (O + 0y )

where 37 is the beta function value at the interaction
point, o, and o, are the bunch transverse dimen-
sions after the plasma pinch effect, a combination of
Egs. (52), (54) and (55) leads finally to the following

results:

H, Ty
2nF Ty’yN]p

(56)

é.y g gy,max,em,ﬂat -

for the general case and

HO’Y Te
< max,em,flat — T 5 AT o7
S S Sy mamem e = 5 \/ 6nRN,p (57)

for isomagnetic case. Here Hy ~ 2845, R is the local
dipole bending radius and F' is expressed as follows

5 o\ 1/2
O
F=— 1+( y) : (58)
\/iﬂy,* < US
The subscript em in Egs. (56) and (57) denotes the
beam-beam emittance parameter, limited by blow-
up. For 0,=0, . we get F'=1.

Now taking into account the emittance blow-up
effect due to beam-beam interactions, in a heuristic

way, one gets

—1
T _ Ty ( 3§y,max,em,ﬂat ) %
bb,y,Aat — o
y,fat 2 ﬁﬂ'gy,max,()éyNIP
exp ( 3§y,max,em,ﬂat )
\/iﬂ—gy,max»ogyNIP

(59)
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and
Tob,y,round = Ty ( 38y, max,em,round )1 y
2 ﬁﬁgy,max,onyIP
3€y,max,em,round
(Xp<¢%£WM&&ﬂwp>’ (60)
with
&y max,em round = 1.89Ey max.em.flat » (61)

where &, max,0 refers to rigid beam case limiting value.
Taking &, max,0 = 0.0447 means that we quantify the
term “beam-beam limit” for the beam-beam limited
beam lifetime being one hour at 7, = 30 ms with
N;p=1.

Egs. (56) and (59) have been checked with some
machine operation results™.

5 Beam-beam effects with crossing
angle

To get a higher luminosity one could run a circu-
lar collider in the multibunch operation mode with
a definite collision crossing angle. Different from the
head-on collision discussed above, the transverse kick
received by a test particle due to the space charge
field of the counter rotating bunch will depend on
its longitudinal position with respect to the center
of the bunch which the test particle belongs. In this
section we consider first a flat beam colliding with an-
other flat beam with a half crossing angle of ¢ in the
horizontal plane. Due to the crossing angle the two
curvilinear coordinates of the two colliding beams at
the interaction point will no longer coincide. When
the crossing angle is not too large one has

r=x+z¢, (62)

where x* is the horizontal displacement of the test
particle to the center of the colliding bunch, z and
x are the longitudinal and horizontal displacements
of the test particle from the center of the bunch to
which it belongs. Now we recall Eq. (37) which de-
scribes the Hamiltonian of the horizontal motion of
a test particle in the head-on collision mode. By in-
serting Eq. (62) into Eq. (37) we get

_ Pe Ka(s) o, Nere (1 2_
(04 20)' + s (r+20)° -
1201 TP TR0 T
336008(I+z¢)8+~~> > d(s—kL) (FB).
z k=—o00

(63)

Since the test particle can occupy a definite z within
the bunch according to a certain probability distri-
bution, say Gaussian, it is reasonable to replace z
in Eq. (63) by o.. In this way we reduce the two
dimensional Hamiltonian of Eq. (63) to a one dimen-
sional. It should be noted that Eq. (63) takes only
the longitudinal position of the test particle into ac-
count which is regarded as a small perturbation in
the head-on collision case. This geometrical effect will
included later. To simplify our analysis we consider
only the lowest synchro-betatron nonlinear resonance,
ie., 3Q,+Q.=p (where Q, is the synchrotron oscil-
lation tune and p is an integer) which turns out to be
the most dangerous one. Following the same proce-
dure in section 4 one gets the dynamic aperture due
to the lowest synchro-betatron nonlinear resonance as

follows
28.(s) \"* 2v.0!
AS n-beta,r - . 3 64
ya-beta, (S) (3ﬁx(SIP)3) ‘Nve/r'eo-z(l5 ( )
and
As n-beta x(S)Q 2 1 2
Rs n-beta,xz — Y : -5 5 y 65
yn-beta, 0.(8)? 3m2 \ &P (65)

g . o .
where & = —=¢ is Piwinski angle. Now we are fac-
Os

ing the problem of how to combine the two effects:
the principal vertical beam-beam effect and the hori-
zontal crossing angle induced perturbation. To solve
this problem we assume that the total beam lifetime
due to the vertical and the horizontal crossing angle
beam-beam effects can be expressed as

-1

* Tt 1
Tob,total — 1 1 N 1 X
Ry’&FB Rsyn-bcta,z
1
exp 1 T (FB), (66)
+

7Q'y,S,FB Rsyn—beta,x
where 77 and 7, are damping times in horizontal and
vertical plane, respectively, R, s rp corresponds to

Eq. (31) of Ref. [3], expressed explicitly as

R  Aysre(s)? 3\/5%%%
8, FB — = .
vsE o,(s)? N.roB,(srp)

After the necessary preparations, we can try to an-

(67)

swer two frequently asked questions. Firstly, for a
machine working at the head-on collision beam-beam
limit, how the beam lifetime depends on the crossing
angle? Secondly, for a finite crossing angle, to keep
the beam lifetime the same as that of the head-on col-
lision at the beam-beam limit, how much one has to
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operate the machine below the designed head-on peak
luminosity? To answer the first question we define a
lifetime reduction factor:
R((p) — T;b,total
7-b*b,y
where 75, is given in Eq. (43) of Ref. [3], and R(®)
will tell us to what extent one can increase ¢. Con-
cerning the second question, one can imagine to re-

(FB), (68)

duce the luminosity at beam-beam limit by a factor
of f(2) in order to keep the lifetime the same as that
without the crossing angle. Physically, from Eq. (66)
one requires:

(Asyn—bcta,z (5)2 ) - + (Adyna,crossing,&y (5)2 ) - —

4(s) ay(s)?

<Adyna,1:j:;&y(s)2)l (FB).  (69)

Mathematically, one has to solve the following equa-
tion to find the peak luminosity reduction factor f(®):

37T2§i,design,FBf(¢)2¢2 + \/§7T§y,max,FBf(¢)

2 3
2
\/—Trgy?;max,FB (FB)7 (70)
—by++/b2+4
@)= RS (B, (1)
)
where a, = 3n? i,design,FB¢2/2’ bo = ¢ =

ﬁwfy,max,FB/& and &, maxrp 1S the designed maxi-
mum horizontal beam-beam parameter. In fact, f(P)
corresponds to the luminosity reduction due to the
synchrobetatron resonance, and to find out the total
luminosity reduction factor, one has to include the ge-
ometrical effects!® "
factor can be expressed as follows:

Fi(®)=f(0)(1+9) "

I, The total luminosity reduction

(FB), (72)

where hourglass effect is not taken into account (i.e.
By.1p > 0,). Since Piwinski angle is proportional to
the bunch length, the variation of luminosity with re-
spect to the bunch length can be expressed as

02,0

L(o.)
where (3, . has been set to equal o..

Taking BEPC-11'® as an example, one has o, =
380 pm, o, = 1.5 cm, ¢ = 11 mrad, ¢ = 0.434,
&s designrs = 0.04, and by putting & = 0.434 rad
into Eq. (71) one finds F'(0.434) = 85.7%. In Fig. 1
one finds F (&) as a function of Piwinski angle with
bunch length keeping constant. In Fig. 2 we show how
F,(0.) depends on bunch length. It is shown clearly
that if due to bunch lengthening effect, BEPC-1I’s

Fy(o.)=

bunch length reaches 2 cm, the luminosity will be
58% of the designed head-on collision luminosity, i.e.,
L=5.8x10% (cm™2-s71).

Finally, when the crossing angle is in the vertical
plane or the beam is round, one gets:

1 r\°
7?fsyn—bcta,y = ( ) (FB)? (74)

3m2 \ &0
and
32 1)’
Rsyn-beta,y = By (§*¢> (RB), (75)
Y

where r=0,/0, and & = 2(;5 as defined before. Re-
Oy

placing Roynbeta,e it Eq. (66) by Eq. (74) or Eq. (75)
and following the same procedure shown above one
can easily make the corresponding discussion about
the luminosity reduction effects. What should be re-
membered is that the geometrical luminosity reduc-
tion factors for the vertical crossing angle and the
round beam cases are (1+ (@/r)?)"*/2 and (1 + 9?),
respectively.

Eq. (66) has been applied to KEK-B low energy
ring to estimate the the luminosity reduction due to
crossing angle effect!.

1.0

L
n_
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0.9 N

0.8 \
0.7 \'

0.6

luminosity reduction factor
(constant bunch length)

0.5

0 0.2 0.4 0.6 0.8 1.0
Piwinski angle/rad

Fig. 1. The luminosity reduction factor Fi(QP)
of BEPC-1I vs Piwinski angle ¢ with bunch
length unchanged.

1.0 \
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B
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Fig. 2. The luminosity variation factor Fz(o)

of BEPC-II vs bunch length o, with 8y« = 0.
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6 Parasitic crossing effects

Parasitic crossings in eTe~ storage ring collid-
ers such as PEP-II working in by-2 mode will in-
troduce additional beam lifetime limitation together
with beam-beam effects at IP with or without cross-
ing angle. The transverse separation of the two par-
asitic crossing bunches is Ypc = |/d2+d2, where
d, and d, are separations in horizontal and vertical
plane, respectively. According to Ref. [10] the beam
lifetime limited by one parasitic crossing

T, _
TpC,y,RB — Ey (Ry,PC,RB) 1exp (Ry,PC,RB) =
-1
Ty 4 > < 4 >
—= exp , (76
2 (Wfpc,y 7T§PC,y ( )
with
reNeﬁPC x TeNeﬁPC Y
= — = ’ 77
ch,y 271_’_)/*2%30 27T")/*d§ 9 ( )

where pc,, is the vertical beta function value at the
parasitic crossing point, and d, has been set to zero as
a special case of a horizontal separation. The effects
from the beam-beam interactions at I P and PC have
to be combined to obtain the corresponding resultant
beam lifetime as follows

T, _
7'bb,total - Ey (Rtotal) ! eXp (Rtotal) 9 (78)

where )
Rtotal = 1 1 ) (79)

+

7?fy,IP,FB 7?fy,PC,RB
Ry rpwn = —m— (80)
y,I P,FB \/§7T§y )
4

Ry,PCA,RB = ngc,y . (81)

If there are Np¢ parasitic crossings per turn, Eq. (80)
should be replaced by

1

Rtotal = 1 Nro 1 ) (82)

Ry,IP,FB o1 Ry,PC,RB,i

where
4

Ry,PC,RB,i = mv (83)

CNC 7 CNC K3
§poy.i= reNoBroys _ TeNabroy, ) (84)

477%2390,3,,1' B 27T’V*di,i

and d, has been set to zero. To include emittance
blow-up effects one should follow the same procedure
as explained at the end of section 4.

Eq. (78) has been applied to the PEP-II low en-

ergy ring working in by-2 mode!”.

7 Nonlinear space charge effect

Considering an electron storage ring, particles in-
side a bunch will subject to collective space charge
force from the bunch. As we will show later, in some
special situations, the effect coming from this force
cannot be neglected. We start with the linear inco-
herent space charge tune shift of the machine at the
center of the bunch

TCNCBEV,y ( L ) (85)
277’70y(ar+0y) V2r[32ylo, ’

where NN, is the particle population inside the bunch,
o, is the bunch length, and f,,,, is the average over
the ring. In fact, as in the previous section, one can
define the differential space charge tune shift from
which the space charge tune shift of the ring can be
obtained

gsc,y =

. reNeﬁy(SO)
2my0,(80) (04 (S0) +0y(S0))

géc,y(so) =

( ! ) (86)
V2320, )’
where ' denotes d/ds and s, is an arbitrary position in

the ring. Recalling the expression of the beam-beam
tune shift of a storage ring collider, one has

Tchﬁy,IP
21y0,(s1p)(02(s1p) +0y(51P))

§bb,y(51P) = , (87)
where s;p denotes the interaction point. By compar-
ing Eq. (86) with Eq. (87), one finds the following
relation between the transverse deflecting forces from
the differential space charge and the beam-beam in-
teractions.

fi(8) = fun(s1p)G, (88)

with

G=- (\/%51272@)’ )

where f!. and f, are the total transverse forces in-
cluding, of course, nonlinear parts. We conclude that
the differential space charge effect can be made equiv-
alent to the problem of beam-beam interaction in an
storage ring collider.

By analogy one derives the dynamic aperture de-
termined by the nonlinear (octupole is the lowest non-
linear multipole) differential space charge force

Bu(s) [ 3v2704(s0)0(50)
5y(30)2 NereG

(Ase(5)?) = (FB).

(90)
The total dynamic aperture limited by the space
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charge force can be calculated as

Atotal,sc,y(s) - (91)

Agotal,sc,y(s)
J L 574(30)2 ( Ne/re
s0=0 By(s) Gﬁﬁ2’730x(50)0y(30)30z

where the differential space charge forces are assumed
to be independent. After some mathematical simpli-
fication and using Eq. (85), one gets

2 o Atotal,sc,y (S) ) ? _ 3
Rsc’y o ( Uy(s) - \/§7T§sc ' (93)

The lifetime of the particle limited by the nonlinear
space charge forces can be estimated as:

Tsc,y(gsc,y) = % (Ric,y)ileXp (Rgc,y) =

)dso, (92)

Hame) ()
2 \/iﬂ—gsc,y \/§7T§sc,y
(94)
With the result of Eq. (94) one can calculate the

relative survival population of the particles, R(s..,)
at the moment of ejection (¢t =7y,).

Tst
— . (95)
. sc,y(ésc,y))

In the following we apply Eq. (95) to TESLA damp-

11]

R(&.) =exp (—

ing ring!"! with T, = 28 ms, and storage time 7,
= 200 ms, and calculate the relative survival popu-
lation with respect to the linear space charge tune
shift &..,,. From Eq. (95) one finds that to avoid par-
ticle loss due to nonlinear space charge forces, one
has to choose &,.,, below 0.07 (less than 1% particles
are lost). This coincides with the results from the
numerical simulations in Ref. [11],where it was con-
cluded that the condition &,., < 0.1 should be ful-
filled. Taking the TESLA parameters, Fy =5 GeV,
L=17 km, N, =2 x10%, ¢, = 6 mm, and the nor-
malized transverse emittances, €,, = 9 x 107 mrad
and €, , =2 x107® mrad, one finds &, =0.248 and
R(&sc,y) =7.7%, which are intolerable. In Ref. [11] a
method was proposed to solve this problem without
having to increase the energy of the damping ring.
Instead it was proposed to increase the beam dimen-
sions in the long straight sections of the “Dog-Bone”
type damping ring by using skew quadrupoles. This
reduces the space charge tune shift well below the
threshold of &,., =0.1.

8 Electron cloud effect combined with
beam-beam and space charge effects

Electron clouds produced and trapped by the
positron beam in the vacuum chamber can perturb
the motion of positrons in return. In this section
we focus ourselves to the special case where signifi-
cant amount of electrons is traped near the positron
beam axis with almost the same dimensions as those
of trapping positron beam. We will in this sec-
tion not be interested in electron-clouds far from the
positron beam. We define the local electron-cloud
and positron beam interaction force as f/_(so), this
differential force (where ' denotes d/ds), can be made
equivalent to a virtual local beam-beam force F (o).
The relation between f! (so) and Fip(s0) can be ex-
pressed as

Fi(50) = g Finls), (96)

and the f! (s¢) induced differential positron linear
tune shift is given by

5/ (5 )7 reNecﬁ+,y(80) <i>
T 2y 0y (50) (040 (S0) + 04y (50) \2L)

(97)
where o, , and oy, are the transverse rms dimen-
sions of the electron-clouds and positron beam, L is
the circumference of the storage ring, 3. , is the verti-

cal beta function for positrons, v, is the normalized
positrons’ energy, and finally V.. is total electron-
cloud charge numbers around the ring within a trans-
verse cross section of 2moy .o, ,. Making use of the
analytical results for the beam-beam interactions in
an eTe™ storage ring collider developed in Ref. [3], one
can estimate the vertical dynamic aperture limited by
the differential electron-cloud nonlinear forces

( U+,y(80) ) _ Necreﬁy(so)
Al (50) 6V27404 4(50)04 4 (s0) L

The total contribution of the electron-cloud around

(98)

the ring to the vertical dynamic aperture can be es-
timated according to Ref. [1] as

Ncc’rcﬁy (SO)

2 so+L
(U+’y> :J dSO.
Accy s0 6\/§7+0+,m(50)0+,y(50)L
(99)
One finds that
Aeen\’ 2
R, = (22 ~ W2 )
’ U+,y T‘—reﬁav,ypecL

where f,,, is the average vertical beta function
around the ring, and p,.. is the average electron-cloud
density inside the vacuum chamber defined by:

NCC

20 v, 4,00y, +,y L

Pec ; (101)
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where 0,y + , and 0., 1, are the average beam trans- 0.042
verse dimensions around the ring. The total normal- P
. . . .. s 0.040
ized vertical dynamic aperture limited by the beam- % =
: 23
beam and the electron-cloud effects can be obtained g5 0038
o O
>
from =2 0036
2 1 £ B
Riotat,+y =~ T T (102) 22 0034
Ry, m TR "
bb,+,y ec,y sc,y 0.032
with R, | , expressed as 0.030
, 0 5 10 15 20
R2 . Abb,y,IP B 3 103 electron-cloud density/m > (x10'%)
b= () = )
+y,IP bb,+,y Fig. 3. The maximum attainable beam-beam

where &+, is the linear beam-beam tune shift of the
positron beam in the vertical plane, and the subscript
I P denotes the interaction point. The positron’s life-
time due to the combined beam-beam and electron-
cloud effects can be estimated from:

Ttota1,+,y = % (Rfotal,+,y) o €xXp (Rzotal,+,y) ) (104)

where 7, , is the damping time of positron in the
vertical plane. Finally, also in case of an electron
storage ring one can still use Eq. (104) to estimate
the electron beam lifetime limited by the combined

beam-beam and nonlinear electron-ion interactions.

9 Application to BEPCII positron
ring

Taking BEPC I positron ring as an example!® | we
show in Table 1 the ring parameters. The designed
head-on vertical beam-beam parameter is 0.04. Fig. 3
shows the variation of the head-on vertical beam-
beam parameter with respect to the electron cloud
density, and Fig. 4 shows head-on collision beam life-
time (&, = 0.042) variation with electron cloud den-
sity.

tune shift in the vertical plane of BEPCII
positron ring as a function of the electron-
cloud density, pec.

2.0

beam lifetime/h
5

0.5
\
0
0 5 10 15 20
electron-cloud density/m ™ (x10'%)
Fig. 4. BEPCII positron ring, with &4, =

0.042; the positron beam lifetime as a func-
tion of the electron-cloud density, pec-

10 Conclusion

Many complex phenomena in storage rings are
connected with nonlinear beam dynamics, such as the
subjects treated in this paper. Together with exper-
iments and numerical simulations, analytical treat-
ment plays an important role in understanding the
relevant physical processes and is very helpful in de-
signing and operating machines.

Table 1. The BEPCII positron ring’s parameters.

machine 5 Bav,+,y/m L/km T4,y/ms
BEPCII (e+) 3699 5.8 0.23753 25
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