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Analytical treatment of the nonlinear electron cloud

effect and the combined effects with beam-beam and

space charge nonlinear forces in storage rings *
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Abstract In this paper we treat first some nonlinear beam dynamics problems in storage rings, such as beam

dynamic apertures due to magnetic multipoles, wiggles, beam-beam effects, nonlinear space charge effect, and

then nonlinear electron cloud effect combined with beam-beam and space charge effects, analytically. This

analytical treatment is applied to BEPC/. The corresponding analytical expressions developed in this paper

are useful both in understanding the physics behind these problems and also in making practical quick hand

estimations.
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1 Introduction

In storage rings many physical phenomena con-

nected with particle motion are caused by nonlinear

forces, either static or dynamic, acting on the mov-

ing particles. Among them one finds dynamic aper-

tures limited by static magnetic multipoles, wigglers,

beam-beam effects due to dynamic nonlinear beam-

beam interaction forces, nonlinear space charge and

electron cloud effects, which are separately treated in

the following sections. It is aimed to demonstrate the

validity of the analytical method in treating multi-

nonlinear sources and there combined effects. Finally,

the combined effects of electron cloud, beam-beam

and space charge nonlinear forces are discussed and

the analytical treatment is applied to BEPCII.

2 Dynamic apertures of multipoles

We start with the simplest case, which is the phys-

ical and mathematical basis for the analytical treat-

ing of other different subjects in the other sections,

i.e., the dynamic aperture limited by a single non-

linear multipole located somewhere inside a storage

ring. The Hamiltonian of this problem is expressed

as follows

H =
p2

2
+

K(s)

2
x2+

1

m!B0ρ

∂m−1
Bz

∂xm−1
xmL

∞
∑

k=−∞

δ(s−kL),

(1)

with

Bz = B0x
m−1bm−1, (2)

where ρ is the bending radius corresponding to B0,

and L is the circumference of the ring. The general

formula for the dynamic aperture limited by this mul-

tipole reads[1]

Adyna,2m,x =
√

2βx(s)

(

1

mβm
x (s(2m))

) 1
2(m−2)

×

(

ρ

|bm−1|L

)1/(m−2)

, (3)

where s(2m) is the location of this multipole. The

dynamic aperture in vertical plane can be estimated

as

Adyna,2m,y =

√

βx(s(2m))

βy(s(2m))
(A2

dyna,2m,x−x2), (4)

where βy(s(2m)) is the vertical beta function where

the multipole is located. If the are many independent
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multipoles, one can estimate their combined effects

through following equation

Adyna,total =
1

√

∑

i,m

1

A2
dyna,2m,i

. (5)

The validity of Eqs. (3), (4), and (5) has been

checked by numerical simulations[1].

3 Dynamic aperture limited by wig-

glers

Considering a wiggler of sinusoidal magnetic field

variation, one can express the wiggler’s magnetic

field, which satisfies Maxwell equations, as follows

Bx =
kx

ky

B0 sinh(kxx)sinh(kyy)cos(ks), (6)

By = B0 cosh(kxx)cosh(kyy)cos(ks), (7)

Bz =− k

ky

B0 cosh(kxx)sinh(kyy)sin(ks), (8)

with

k2
x +k2

y = k2 =

(

2π

λw

)2

, (9)

where B0 is the peak sinusoidal wiggler magnetic

field, λw is the period length of the wiggler, and x,

y, s represent horizontal, vertical, and beam moving

directions, respectively.

The Hamiltonian describing the motion can be

written as

Hw =
1

2
(p2

z +(px−Ax sin(ks))2 +(py −Ay sin(ks))2) ,

(10)

where

Ax =
1

ρwk
cosh(kxx)cosh(kyy), (11)

Ax =−kx

ky

sinh(kxx)sinh(kyy)

ρwk
, (12)

and ρw = E0/ecB0 is the radius of curvature of the

wiggler peak magnetic field B0 with E0 being the elec-

tron energy. After making a canonical transformation

to betatron variables, averaging the Hamiltonian over

one period of wiggler, and expanding the hyperbolic

functions to fourth order in x and y, one gets

Hw =
1

2
(p2

x +p2
y)+

1

4k2ρ2
w

(k2
xx2 +k2

yy
2)+

1

12k2ρ2
w

(k4
xx4 +k4

yy
4 +3k2k2

xx2y2)−

sin(ks)

2kρw

(

px(k
2
xx2 +k2

yy
2)−2k2

xpyxy
)

. (13)

Now we insert a “wiggler” of only one period (or one

cell) into a storage ring located at sw. The total

Hamiltonian of the ring in the vertical plane can be

expressed as follows

H = H0 +
1

4ρ2
y2 +

k2
y

12ρ2
y4λw

∞
∑

i=−∞

δ(s− iL), (14)

where H0 is the Hamiltonian without the inserted

wiggler, L is the circumference of the ring, and ky = k.

It is obvious that the perturbation is a delta function

octupole. Comparing Eq. (1) with Eq. (14), one finds

easily that

b3

ρ
L =

k2
yλw

3ρ2
w

, (15)

and the dynamic aperture limited by this one period

“wiggler” as

A1,y(s) =

√

βy(s)

βy(sw)

(

3ρ2
w

k2
yλw

)1/2

, (16)

where βy(s) is the unperturbed beta function. In fact,

a wiggler is an insertion device which is composed of a

large number of cells, say, Nw, and the wiggler length

Lw = Nwλw. Now, the first question which follows is

what the combined effect of these Nw cells will be.

According to Ref. [1], one has

1

A2
Nw ,y(s)

=

Nw
∑

i=1

1

A2
i,y

=

Nw
∑

i=1

(

k2
y

3ρ2
wβy(s)

)

β2
y(si,w)

Lw

Nw

,

(17)

where the index i labels the different cell. When Nw

is a large number, Eq. (17) can be simplified as:

1

A2
Nw ,y(s)

=
k2

y

3ρ2
wβy(s)

∫ sw0+Lw/2

sw0−Lw/2

β2
y(s)ds, (18)

where sw0
correspond to the center of the wiggler.

For practical purposes, one can replace β2
y(s) inside

the integral by β2
y,m which is the beta function value

in the middle of the wiggler, and one gets

ANw ,y(s) =

√

3β(s)

β2
y,m

ρw

ky

√
Lw

, (19)

ANw ,x(s) =

√

βy(s)

βx(s)
(ANw ,y(s)2−y2). (20)

If there are more than one wiggler in a storage ring,

the total dynamic aperture limited by these wigglers

can be estimated by applying Eq. (5).

Eq. (19) has been checked by numerical simu-

lations[2].
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4 Beam-beam effects and limitations

For two head-on colliding bunches, the incoherent

kick felt by each particle can be calculated as

δy′+iδx′ =−Nere

γ∗

f(x,y,σx,σy), (21)

where x′ and y′ are the horizontal and vertical slopes,

Ne is the particle population in the bunch, re is the

electron radius (2.818×10−15 m), σx and σy are the

standard deviations of the transverse charge density

distribution of the counter-rotating bunch at IP, γ∗

is the normalized particle’s energy, and ∗ denotes the

test particle and the bunch to which the test particle

belongs. When the bunch is Gaussian f(x,y,σx,σy)

can be expressed by Basseti-Erskine formula

f(x,y,σx,σy) =

√

2π

σ2
x−σ2

y

×w





x+iy
√

2(σ2
x−σ2

y)



−

√

2π

σ2
x−σ2

y

×exp

(

− x2

2σ2
x

− y2

2σ2
y

)

w







σy

σx

x+i
σx

σy

y

√

2(σ2
x−σ2

y)






,

(22)

where w is the complex error function expressed as

w(z) = exp(−z2)(1−erf(−iz)). (23)

For the round beam (RB) and the flat beam (FB)

cases one has the incoherent beam-beam kicks ex-

pressed as[3]

δr′[RB] =−2Nere

γ∗r

(

1−exp

(

− r2

2σ2

))

, (24)

δx′[FB] =−2
√

2Nere

γ∗σx

exp

(

− x2

2σ2
x

)∫ x
√

2σx

0

exp(u2)du,

(25)

δy′[FB] =−
√

2πNere

γ∗σx

exp

(

− x2

2σ2
x

)

erf

(

y√
2σy

)

,

(26)

where r =
√

x2 +y2. Since the probability to find the

transverse displacement of the test particle is not con-

stant (in fact, the probability function is the same as

the charge distribution of the bunch to which the test

particle belongs), one is interested in the average kick

felt by the test particle. In the following we assume

that the transverse sizes for the two colliding bunches

at IP are exactly the same. For the round beam case

after averaging one gets

δr̄′[RB] =−2Nere

γ∗r̄

(

1−exp

(

− r̄2

4σ2

))

. (27)

Although this expression is the same as that of the co-

herent beam-beam kick for round beams, one should

keep in mind that we are not finding coherent beam-

beam kick. The difference will be obvious when we

treat the vertical motion in the case of flat beams. For

the flat beam case, we will treat the horizontal and

vertical planes separately. As far as the horizontal

kick is concerned, it depends only on one displace-

ment variable similar to the round beam case. We

will use its coherent form given by the follow expres-

sion

δx′[FB] =−2Nere

γ∗σx

exp

(

− x2

4σ2
x

)∫ x

2σx

0

exp(u2)du.

(28)

As for the vertical kick, one has to make an average

over Eq. (26) with the horizontal probability distri-

bution function of the test particle. This leads to

δy′[FB] =−
√

2πNere

γ∗σx

〈

exp

(

− x2

2σ2
x

)〉

x

erf

(

y√
2σy

)

,

(29)

where 〈〉x means the average over the horizontal

probability distribution function of the test parti-

cle, and for two identical colliding Gaussian beams

〈〉x = 1/
√

2. It is obvious that Eq. (29) is not the

expression for the coherent beam-beam kick. The

average over Eqs. (24) and (26) is only a technical

operation to simplify (or to make equivalent) a two

dimensional problem to a one dimensional one. To

study both round and flat beam cases, we expand

δr̄′ at x = 0 (for round beam we study only vertical

plane since the formalism in the horizontal plane is

the same), δx′ and δy′ of Eqs. (27), (28) and (29),

into Taylor series

δy′[RB] =
Nere

γ∗

(

1

2σ2
y− 1

16σ4
y3 +

1

192σ6
y5−

1

3072σ8
y7 +

1

61440σ10
y9−

1

1474560σ12
y11 + · · ·

)

, (30)

δ′

x[FB] = −Nere

2γ∗

(

2

σ2
x

x− 1

3σ4
x

x3 +
1

30σ6
x

x5−

1

420σ8
x

x7 +
1

7560σ10
x

y9−

1

166320σ12
x

x11 + · · ·
)

, (31)
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δ′

y[FB] = − Nere√
2γ∗

(

2

σxσy

y− 1

3σxσ3
y

y3 +
1

20σxσ5
y

y5−

1

168σxσ7
y

y7 +
1

1728σxσ9
y

y9−

1

21120σxσ11
y

y11 + · · ·
)

. (32)

The differential equations for the motion of the test

particle in the transverse planes are given by

d2y

ds2
+ Ky(s)y =−Nere

γ∗

(

1

2σ2
y− 1

16σ4
y3 +

1

192σ6
y5−

1

3072σ8
y7 +

1

61440σ10
y9− 1

1474560σ12
y11 +

1

41287680σ14
y13−·· ·

) ∞
∑

k=−∞

δ(s−kL) (RB),

(33)

d2x

ds2
+ Kx(s)x =−Nere

2γ∗

(

2

σ2
x

x− 1

3σ4
x

x3 +
1

30σ6
x

x5−

1

420σx8
x7 +

1

7560σ10
x

x9− 1

166320σ12
x

x11 +

1

4324320σ14
x

x13−·· ·
) ∞
∑

k=−∞

δ(s−kL) (FB),

(34)

d2y

ds2
+ Ky(s)y =− Nere√

2γ∗

(

2

σxσy

y− 1

3σxσ3
y

y3 +

1

20σxσ5
y

y5− 1

168σxσ7
y

y7 +
1

1728σxσ9
y

y9−

1

21120σxσ11
y

y11 +
1

299520σxσ13
y

y13−·· ·
)

×

∞
∑

k=−∞

δ(s−kL) (FB), (35)

where Kx(s) and Ky(s) describe the linear focusing of

the lattice in the horizontal and vertical planes. The

corresponding Hamiltonians are given by

H =
p2

y

2
+

Ky(s)

2
y2 +

Nere

γ∗

(

1

4σ2
y2− 1

64σ4
y4 +

1

1152σ6
y6− 1

24576σ8
y8 + · · ·

)

×

∞
∑

k=−∞

δ(s−kL) (RB), (36)

Hx =
p2

x

2
+

Kx(s)

2
x2 +

Nere

2γ∗

(

1

σ2
x

x2− 1

12σ4
x

x4 +

1

180σ6
x

x6− 1

3360σ8
x

x8 + · · ·
)

×

∞
∑

k=−∞

δ(s−kL) (FB), (37)

Hy =
p2

y

2
+

Ky(s)

2
y2 +

Nere√
2γ∗

(

1

σxσy

y2− 1

12σxσ3
y

y4 +

1

120σxσ5
y

y6− 1

1344σxσ7
y

y8 + · · ·
)

×

∞
∑

k=−∞

δ(s−kL) (FB), (38)

with px = dx/ds and py = dy/ds.

Using the general information from section 2 and

comparing Eq. (1) with the Hamiltonians for beam-

beam interactions, we derive the beam-beam effects

and the limitations on the beam lifetimes for a rigid

flat beam[3]

τbb,y,flat =
τy

2

(

3√
2πξy

)

−1

exp

(

3√
2πξy

)

, (39)

τbb,x,flat =
τx

2

(

3

πξx

)

−1

exp

(

3

πξx

)

, (40)

and a rigid round beam

τbb,y,round =
τy

2

(

4

πξx

)

−1

exp

(

4

πξx

)

. (41)

From Eqs. (39) and (40) one finds that for the same

τy,bb,flat/τy, τx,bb,flat/τx, and τy,bb,round/τy, one has

ξx,flat =
√

2ξy,flat, and ξy,round =
4
√

2

3
ξy,flat = 1.89ξy,flat.

In reality the colliding bunch is not rigid. The

transverse emittance will increase due to additional

heating. In the following we will show how emittance

blow-up is included into the beam-beam lifetime ex-

pressions.

In e+e− storage ring colliders, due to strong quan-

tum excitation and synchrotron damping effects, the

particles are confined inside a bunch. The state of

the particles can be regarded as a gas, where the po-

sitions of the particles follow statistic laws. When

two bunches undergo collision at an interaction point

(IP, denoted by “∗”) the particles in each bunch will

receive some additional heating. Taking the vertical

plane for example, one has beam-beam induced kicks

in y and y′ = dy/ds (see Ref. [4])

δy =−σs

fy

y , (42)
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δy′ =− y

fy

y , (43)

1

fy

=
2Nere

γσy,∗,+(σx,∗,+ +σy,∗,+)
, (44)

where σs is the bunch length, Ne is the particle num-

ber inside the bunch, re is the electron radius, σx,∗,+

and σy,∗,+ are the transverse dimensions just before

the two colliding bunches overlap each other, and

σx,∗ and σy,∗ are defined as the transverse dimensions

when the two bunches fully overlap at IP. The in-

variant of vertical betatron motion can be expressed

as[5]

a2
y =

1

β∗

y

(

y2
∗
+

(

βy,∗y
′

∗
− 1

2
β′

y,∗y∗

)2
)

. (45)

From Eqs. (42) and (43) one finds that

δa2
y =

1

βy,∗

(

σs

fy

)2

y2
∗

(

1+

(

βy,∗

σs

)2
)

, (46)

where y∗ is the vertical displacement of the test parti-

cle with respect to the center of the colliding bunch.

Due to the gaseous nature of the particles, one has

to take an average over all possible values of y∗ ac-

cording to its statistical distribution function. From

Eq. (46) one obtains

〈δa2〉=
1

βy,∗

(

σsσy,∗

fy

)2
(

1+

(

βy,∗

σs

)2
)

. (47)

The resulting vertical dimension combining the syn-

chrotron radiation and beam-beam effects can be ex-

pressed as follows

σ2
y,∗ =

1

4
τyβy,∗Qy+

1

4
τyβy,∗

(

1

T0βy,∗

(

σsσy,∗

fy

)2
(

1+

(

βy,∗

σs

)2
))

, (48)

where T0 is the revolution time, τy is the radiation

damping time, and Qy is defined according to Ref. [5]

as σ2
y,∗,0 =

1

4
τyβy,∗Qy with σy,∗,0 being the natural

vertical dimension at IP. Solving Eq. (48) for σy,∗

gives:

σ2
y,∗ =

σ2
y,∗,0

(

1− τy

4T0

(

e2NeKbb,y

E0

)2
) , (49)

where E0 is the energy, and

Kbb,y =
σs

2πε0σy,∗,+(σx,∗,+ +σy,∗,+)
×

(

1+

(

βy,∗,+

σs

)2
)1/2

. (50)

Since σy(s) =
√

εyβy(s) one gets from from Eq. (49)

εy =
εy,0

(

1− τy

4T0

(

e2NeKbb,y

E0

)2
) , (51)

where εy,0 is the natrual transverse emittance. For a

flat bunch (σy,∗,+ � σx,∗,+), we obtain from Eq. (51)

the following relation:

σx,∗,+σy,∗,+ >

(

3RNIP (e2fNeβy,∗)
2

8π2ε0m0c2γ5

)1/2

. (52)

We define

H =
σx,∗,+σy,∗,+

σx,∗σy,∗

, (53)

which is a measure of the plasma pinch effect and

assume that it can be expressed as

H =
H0√

γ
. (54)

Recalling the beam-beam parameter definition

ξy =
Nereβy,∗

2πγσy,∗(σx,∗ +σy,∗)
, (55)

where β∗

y is the beta function value at the interaction

point, σ∗

x and σ∗

y are the bunch transverse dimen-

sions after the plasma pinch effect, a combination of

Eqs. (52), (54) and (55) leads finally to the following

results:

ξy 6 ξy,max,em,flat =
H0

2πF

√

T0

τyγNIP

(56)

for the general case and

ξy 6 ξy,max,em,flat =
H0γ

F

√

re

6πRNIP

(57)

for isomagnetic case. Here H0 ≈ 2845, R is the local

dipole bending radius and F is expressed as follows

F =
σs√
2βy,∗

(

1+

(

βy,∗

σs

)2
)1/2

. (58)

The subscript em in Eqs. (56) and (57) denotes the

beam-beam emittance parameter, limited by blow-

up. For σs = βy,∗ we get F = 1.

Now taking into account the emittance blow-up

effect due to beam-beam interactions, in a heuristic

way, one gets

τbb,y,flat =
τy

2

(

3ξy,max,em,flat√
2πξy,max,0ξyNIP

)

−1

×

exp

(

3ξy,max,em,flat√
2πξy,max,0ξyNIP

)

(59)
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and

τbb,y,round =
τy

2

(

3ξy,max,em,round√
2πξy,max,0ξyNIP

)

−1

×

exp

(

3ξy,max,em,round√
2πξy,max,0ξyNIP

)

, (60)

with

ξy,max,em,round = 1.89ξy,max,em,flat , (61)

where ξy,max,0 refers to rigid beam case limiting value.

Taking ξy,max,0 = 0.0447 means that we quantify the

term “beam-beam limit” for the beam-beam limited

beam lifetime being one hour at τy = 30 ms with

NIP = 1.

Eqs. (56) and (59) have been checked with some

machine operation results[4].

5 Beam-beam effects with crossing

angle

To get a higher luminosity one could run a circu-

lar collider in the multibunch operation mode with

a definite collision crossing angle. Different from the

head-on collision discussed above, the transverse kick

received by a test particle due to the space charge

field of the counter rotating bunch will depend on

its longitudinal position with respect to the center

of the bunch which the test particle belongs. In this

section we consider first a flat beam colliding with an-

other flat beam with a half crossing angle of φ in the

horizontal plane. Due to the crossing angle the two

curvilinear coordinates of the two colliding beams at

the interaction point will no longer coincide. When

the crossing angle is not too large one has

x∗ = x+zφ , (62)

where x∗ is the horizontal displacement of the test

particle to the center of the colliding bunch, z and

x are the longitudinal and horizontal displacements

of the test particle from the center of the bunch to

which it belongs. Now we recall Eq. (37) which de-

scribes the Hamiltonian of the horizontal motion of

a test particle in the head-on collision mode. By in-

serting Eq. (62) into Eq. (37) we get

Hx =
p2

x

2
+

Kx(s)

2
x2 +

Nere

2γ∗

(

1

σ2
x

(x+zφ)2−

1

12σ4
x

(x+zφ)4 +
1

180σ6
x

(x+zφ)6−

1

3360σ8
x

(x+zφ)8 + · · ·
) ∞
∑

k=−∞

δ(s−kL) (FB).

(63)

Since the test particle can occupy a definite z within

the bunch according to a certain probability distri-

bution, say Gaussian, it is reasonable to replace z

in Eq. (63) by σz . In this way we reduce the two

dimensional Hamiltonian of Eq. (63) to a one dimen-

sional. It should be noted that Eq. (63) takes only

the longitudinal position of the test particle into ac-

count which is regarded as a small perturbation in

the head-on collision case. This geometrical effect will

included later. To simplify our analysis we consider

only the lowest synchro-betatron nonlinear resonance,

i.e., 3Qx±Qs = p (where Qs is the synchrotron oscil-

lation tune and p is an integer) which turns out to be

the most dangerous one. Following the same proce-

dure in section 4 one gets the dynamic aperture due

to the lowest synchro-betatron nonlinear resonance as

follows

Asyn-beta,x(s) =

(

2βx(s)

3βx(sIP )3

)1/2
2γ∗σ

4
x

Nereσzφ
, (64)

and

Rsyn-beta,x =
Asyn-beta,x(s)

2

σx(s)2
=

2

3π2

(

1

ξ∗

xΦ

)2

, (65)

where Φ =
σz

σx

φ is Piwinski angle. Now we are fac-

ing the problem of how to combine the two effects:

the principal vertical beam-beam effect and the hori-

zontal crossing angle induced perturbation. To solve

this problem we assume that the total beam lifetime

due to the vertical and the horizontal crossing angle

beam-beam effects can be expressed as

τ∗

bb,total =
τ∗

x +τ∗

y

4









1
1

Ry,8,FB

+
1

Rsyn-beta,x









−1

×

exp









1
1

Ry,8,FB

+
1

Rsyn-beta,x









(FB), (66)

where τ∗

x and τ∗

y are damping times in horizontal and

vertical plane, respectively, Ry,8,FB corresponds to

Eq. (31) of Ref. [3], expressed explicitly as

Ry,8,FB =
Ay,8,FB(s)2

σy(s)2
=

3
√

2γ∗σxσy

Nereβy(sIP )
. (67)

After the necessary preparations, we can try to an-

swer two frequently asked questions. Firstly, for a

machine working at the head-on collision beam-beam

limit, how the beam lifetime depends on the crossing

angle? Secondly, for a finite crossing angle, to keep

the beam lifetime the same as that of the head-on col-

lision at the beam-beam limit, how much one has to
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operate the machine below the designed head-on peak

luminosity? To answer the first question we define a

lifetime reduction factor:

R(Φ) =
τ∗

bb,total

τ∗

bb,y

(FB), (68)

where τ∗

bb,y is given in Eq. (43) of Ref. [3], and R(Φ)

will tell us to what extent one can increase Φ. Con-

cerning the second question, one can imagine to re-

duce the luminosity at beam-beam limit by a factor

of f(Φ) in order to keep the lifetime the same as that

without the crossing angle. Physically, from Eq. (66)

one requires:
(

Asyn-beta,x(s)
2

σx(s)2

)

−1

+

(

Adyna,crossing,8,y(s)
2

σy(s)2

)

−1

=

(

Adyna,head-on,8,y(s)
2

σy(s)2

)

−1

(FB). (69)

Mathematically, one has to solve the following equa-

tion to find the peak luminosity reduction factor f(Φ):

3π2ξ2
x,design,FBf(Φ)2Φ2

2
+

√
2πξy,max,FBf(Φ)

3
=

√
2πξy,max,FB

3
(FB), (70)

f(Φ) =
−b0 +

√

b2
0 +4a0c0

2a0

(FB), (71)

where a0 = 3π2ξ2
x,design,FBΦ2/2, b0 = c0 =√

2πξy,max,FB/3, and ξx,max,FB is the designed maxi-

mum horizontal beam-beam parameter. In fact, f(Φ)

corresponds to the luminosity reduction due to the

synchrobetatron resonance, and to find out the total

luminosity reduction factor, one has to include the ge-

ometrical effects[6, 7]. The total luminosity reduction

factor can be expressed as follows:

F1(Φ) = f(Φ)(1+Φ2)
−1/2

(FB), (72)

where hourglass effect is not taken into account (i.e.

βy,IP > σz). Since Piwinski angle is proportional to

the bunch length, the variation of luminosity with re-

spect to the bunch length can be expressed as

F2(σz) =
L(σz)

L(σz,0)
= F (Φ(σz))

σz,0

σz

, (73)

where βy,∗ has been set to equal σz.

Taking BEPC-/[8] as an example, one has σx =

380 µm, σz = 1.5 cm, φ = 11 mrad, Φ = 0.434,

ξx,design,FB = 0.04, and by putting Φ = 0.434 rad

into Eq. (71) one finds F (0.434) = 85.7%. In Fig. 1

one finds F1(Φ) as a function of Piwinski angle with

bunch length keeping constant. In Fig. 2 we show how

F2(σz) depends on bunch length. It is shown clearly

that if due to bunch lengthening effect, BEPC-/’s

bunch length reaches 2 cm, the luminosity will be

58% of the designed head-on collision luminosity, i.e.,

L = 5.8×1032 (cm−2·s−1).

Finally, when the crossing angle is in the vertical

plane or the beam is round, one gets:

Rsyn-beta,y =
1

3π2

(

r

ξ∗

yΦ

)2

(FB), (74)

and

Rsyn-beta,y =
32

27π2

(

1

ξ∗

yΦ

)2

(RB), (75)

where r = σy/σx and Φ =
σz

σx

φ as defined before. Re-

placing Rsyn-beta,x in Eq. (66) by Eq. (74) or Eq. (75)

and following the same procedure shown above one

can easily make the corresponding discussion about

the luminosity reduction effects. What should be re-

membered is that the geometrical luminosity reduc-

tion factors for the vertical crossing angle and the

round beam cases are (1+(Φ/r)2)−1/2 and (1+Φ2),

respectively.

Eq. (66) has been applied to KEK-B low energy

ring to estimate the the luminosity reduction due to

crossing angle effect[9].

Fig. 1. The luminosity reduction factor F1(Φ)

of BEPC-/ vs Piwinski angle Φ with bunch

length unchanged.

Fig. 2. The luminosity variation factor F2(σz)

of BEPC-/ vs bunch length σz with βy,∗ = σz.
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6 Parasitic crossing effects

Parasitic crossings in e+e− storage ring collid-

ers such as PEP-II working in by-2 mode will in-

troduce additional beam lifetime limitation together

with beam-beam effects at IP with or without cross-

ing angle. The transverse separation of the two par-

asitic crossing bunches is ΣPC =
√

d2
x +d2

y, where

dx and dy are separations in horizontal and vertical

plane, respectively. According to Ref. [10] the beam

lifetime limited by one parasitic crossing

τPC,y,RB =
τy

2
(Ry,PC,RB)

−1
exp(Ry,PC,RB) =

τy

2

(

4

πξPC,y

)

−1

exp

(

4

πξPC,y

)

, (76)

with

ξPC,y =
reNeβPC,x

2πγ∗Σ2
PC

=
reNeβPC,y

2πγ∗d2
x

, (77)

where βPC,y is the vertical beta function value at the

parasitic crossing point, and dy has been set to zero as

a special case of a horizontal separation. The effects

from the beam-beam interactions at IP and PC have

to be combined to obtain the corresponding resultant

beam lifetime as follows

τbb,total =
τy

2
(Rtotal)

−1
exp(Rtotal) , (78)

where

Rtotal =
1

1

Ry,IP,FB

+
1

Ry,PC,RB

, (79)

Ry,IP,FB =
3√

2πξy

, (80)

Ry,PC,RB =
4

πξPC,y

. (81)

If there are NPC parasitic crossings per turn, Eq. (80)

should be replaced by

Rtotal =
1

1

Ry,IP,FB

+

NP C
∑

i=1

1

Ry,PC,RB,i

, (82)

where

Ry,PC,RB,i =
4

πξPC,y,i

, (83)

ξPC,y,i =
reNeβPC,y,i

4πγ∗Σ2
PC,y,i

=
reNeβPC,y,i

2πγ∗d2
x,i

, (84)

and dy has been set to zero. To include emittance

blow-up effects one should follow the same procedure

as explained at the end of section 4.

Eq. (78) has been applied to the PEP-II low en-

ergy ring working in by-2 mode[10].

7 Nonlinear space charge effect

Considering an electron storage ring, particles in-

side a bunch will subject to collective space charge

force from the bunch. As we will show later, in some

special situations, the effect coming from this force

cannot be neglected. We start with the linear inco-

herent space charge tune shift of the machine at the

center of the bunch

ξsc,y =− reNeβav,y

2πγσy(σx +σy)

(

L√
2πβ2γ2σz

)

, (85)

where Ne is the particle population inside the bunch,

σz is the bunch length, and βav,y is the average over

the ring. In fact, as in the previous section, one can

define the differential space charge tune shift from

which the space charge tune shift of the ring can be

obtained

ξ′

sc,y(s0) = − reNeβy(s0)

2πγσy(s0)(σx(s0)+σy(s0))
×

(

1√
2πβ2γ2σz

)

, (86)

where ′ denotes d/ds and s0 is an arbitrary position in

the ring. Recalling the expression of the beam-beam

tune shift of a storage ring collider, one has

ξbb,y(sIP ) =
reNeβy,IP

2πγσy(sIP )(σx(sIP )+σy(sIP ))
, (87)

where sIP denotes the interaction point. By compar-

ing Eq. (86) with Eq. (87), one finds the following

relation between the transverse deflecting forces from

the differential space charge and the beam-beam in-

teractions.

f ′

sc(s) = fbb(sIP )G, (88)

with

G =−
(

1√
2πβ2γ2σz

)

, (89)

where f ′

sc and fbb are the total transverse forces in-

cluding, of course, nonlinear parts. We conclude that

the differential space charge effect can be made equiv-

alent to the problem of beam-beam interaction in an

storage ring collider.

By analogy one derives the dynamic aperture de-

termined by the nonlinear (octupole is the lowest non-

linear multipole) differential space charge force

(Asc,y(s)
2)

′

=
βy(s)

βy(s0)2

(

3
√

2γσx(s0)σ
3
y(s0)

NereG

)

(FB).

(90)

The total dynamic aperture limited by the space
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charge force can be calculated as

Atotal,sc,y(s) =
1

√

√

√

√

L
∑

s0=0

1

(Asc,y(s)2)
′

, (91)

1

A2
total,sc,y(s)

=

∫ L

s0=0

βy(s0)
2

βy(s)

(

Nere

6
√

πβ2γ3σx(s0)σy(s0)3σz

)

ds0, (92)

where the differential space charge forces are assumed

to be independent. After some mathematical simpli-

fication and using Eq. (85), one gets

R2
sc,y =

(

Atotal,sc,y(s)

σy(s)

)2

=
3√

2πξsc

. (93)

The lifetime of the particle limited by the nonlinear

space charge forces can be estimated as:

τsc,y(ξsc,y) =
τy

2

(

R2
sc,y

)

−1
exp

(

R2
sc,y

)

=

τy

2

(

3√
2πξsc,y

)

−1

exp

(

3√
2πξsc,y

)

.

(94)

With the result of Eq. (94) one can calculate the

relative survival population of the particles, R(ξsc,y)

at the moment of ejection (t = τst).

R(ξsc) = exp

(

− τst

τsc,y(ξsc,y)

)

. (95)

In the following we apply Eq. (95) to TESLA damp-

ing ring[11] with τy = 28 ms, and storage time τst

= 200 ms, and calculate the relative survival popu-

lation with respect to the linear space charge tune

shift ξsc,y. From Eq. (95) one finds that to avoid par-

ticle loss due to nonlinear space charge forces, one

has to choose ξsc,y below 0.07 (less than 1% particles

are lost). This coincides with the results from the

numerical simulations in Ref. [11],where it was con-

cluded that the condition ξsc,y < 0.1 should be ful-

filled. Taking the TESLA parameters, E0 = 5 GeV,

L = 17 km, Ne = 2×1010, σz = 6 mm, and the nor-

malized transverse emittances, εx,n = 9× 10−6 mrad

and εy,n = 2×10−8 mrad, one finds ξsc,y = 0.248 and

R(ξsc,y) = 7.7%, which are intolerable. In Ref. [11] a

method was proposed to solve this problem without

having to increase the energy of the damping ring.

Instead it was proposed to increase the beam dimen-

sions in the long straight sections of the “Dog-Bone”

type damping ring by using skew quadrupoles. This

reduces the space charge tune shift well below the

threshold of ξsc,y = 0.1.

8 Electron cloud effect combined with

beam-beam and space charge effects

Electron clouds produced and trapped by the

positron beam in the vacuum chamber can perturb

the motion of positrons in return. In this section

we focus ourselves to the special case where signifi-

cant amount of electrons is traped near the positron

beam axis with almost the same dimensions as those

of trapping positron beam. We will in this sec-

tion not be interested in electron-clouds far from the

positron beam. We define the local electron-cloud

and positron beam interaction force as f ′

ec(s0), this

differential force (where ′ denotes d/ds), can be made

equivalent to a virtual local beam-beam force Fbb(s0).

The relation between f ′

ec(s0) and Fbb(s0) can be ex-

pressed as

f ′

ec(s0) =
1

2L
Fbb(s0), (96)

and the f ′

ec(s0) induced differential positron linear

tune shift is given by

ξ′

ec(s0) =
reNecβ+,y(s0)

2πγ+σ+,y(s0)(σ+,x(s0)+σ+,y(s0))

(

1

2L

)

,

(97)

where σ+,x and σ+,y are the transverse rms dimen-

sions of the electron-clouds and positron beam, L is

the circumference of the storage ring, β+,y is the verti-

cal beta function for positrons, γ+ is the normalized

positrons’ energy, and finally Nec is total electron-

cloud charge numbers around the ring within a trans-

verse cross section of 2πσ+,xσ+,y. Making use of the

analytical results for the beam-beam interactions in

an e+e− storage ring collider developed in Ref. [3], one

can estimate the vertical dynamic aperture limited by

the differential electron-cloud nonlinear forces
(

σ+,y(s0)

A′

ec,y(s0)

)2

=
Necreβy(s0)

6
√

2γ+σ+,x(s0)σ+,y(s0)L
. (98)

The total contribution of the electron-cloud around

the ring to the vertical dynamic aperture can be es-

timated according to Ref. [1] as
(

σ+,y

Aec,y

)2

=

∫ s0+L

s0

Necreβy(s0)

6
√

2γ+σ+,x(s0)σ+,y(s0)L
ds0.

(99)

One finds that

R2
ec,y =

(

Aec,y

σ+,y

)2

≈ 3
√

2γ+

πreβav,yρecL
, (100)

where βav,y is the average vertical beta function

around the ring, and ρec is the average electron-cloud

density inside the vacuum chamber defined by:

ρec =
Nec

2πσav,+,xσav,+,yL
, (101)



144 Chinese Physics C (HEP & NP) Vol. 33

where σav,+,x and σav,+,y are the average beam trans-

verse dimensions around the ring. The total normal-

ized vertical dynamic aperture limited by the beam-

beam and the electron-cloud effects can be obtained

from

R2
total,+,y =

1
1

R2
bb,+,y

+
1

R2
ec,y

+
1

R2
sc,y

, (102)

with R2
bb,+,y expressed as

R2
bb,+,y =

(

Abb,y,IP

σ+,y,IP

)2

=
3√

2πξbb,+,y

, (103)

where ξbb,+,y is the linear beam-beam tune shift of the

positron beam in the vertical plane, and the subscript

IP denotes the interaction point. The positron’s life-

time due to the combined beam-beam and electron-

cloud effects can be estimated from:

τtotal,+,y =
τ+,y

2

(

R2
total,+,y

)

−1
exp

(

R2
total,+,y

)

, (104)

where τ+,y is the damping time of positron in the

vertical plane. Finally, also in case of an electron

storage ring one can still use Eq. (104) to estimate

the electron beam lifetime limited by the combined

beam-beam and nonlinear electron-ion interactions.

9 Application to BEPC/// positron

ring

Taking BEPC/ positron ring as an example[8], we

show in Table 1 the ring parameters. The designed

head-on vertical beam-beam parameter is 0.04. Fig. 3

shows the variation of the head-on vertical beam-

beam parameter with respect to the electron cloud

density, and Fig. 4 shows head-on collision beam life-

time (ξbb,y = 0.042) variation with electron cloud den-

sity.

Table 1. The BEPC/ positron ring’s parameters.

machine γ βav,+,y/m L/km τ+,y/ms

BEPC/(e+) 3699 5.8 0.23753 25

Fig. 3. The maximum attainable beam-beam

tune shift in the vertical plane of BEPC/

positron ring as a function of the electron-

cloud density, ρec.

Fig. 4. BEPC/ positron ring, with ξ+,y =

0.042; the positron beam lifetime as a func-

tion of the electron-cloud density, ρec.

10 Conclusion

Many complex phenomena in storage rings are

connected with nonlinear beam dynamics, such as the

subjects treated in this paper. Together with exper-

iments and numerical simulations, analytical treat-

ment plays an important role in understanding the

relevant physical processes and is very helpful in de-

signing and operating machines.
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