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Abstract: Based on the theory of Klein-Gordon scalar field particles, the Hawking radiation of a higher-

dimensional Kerr-anti-de Sitter black hole with one rotational parameter is investigated using the beyond

semi-classical approximation method. The corrections of quantum tunnelling probability, Hawking temperature

and Bekenstein-Hawking entropy are also included.
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1 Introduction

Since Hawking proved that a black hole emits

thermal radiation [1, 2], various methods have been

adopted by researchers to study Hawking radiation,

and these studies have had a positive impact on the

understanding and exploration of the basic properties

of black holes. Recently, Kraus, Parikh and Wilczek

et al put forward a semi-classical approximate tun-

nelling method to study the Hawking radiation of

black holes [3, 4]. They thought that a virtual par-

ticle situated inside the horizon of black hole tunnels

to outside and becomes a real particle, then radiates

to infinity. The essentials of this method were to use

a dynamic mode to deal with the Hawking radiation

of black holes. In this method, Hawking radiation

was viewed as a tunnelling process, and one can ex-

plain the generation mechanism of Hawking radiation

via the effect of quantum tunnelling and, then, using

this method, the researchers studied a variety of ex-

otic space-time [5–8]. In 2007, Kerner and Mann first

adopted the tunnelling method to study the Hawk-

ing radiation of 1/2 spin uncharged particles [9, 10].

Since then, many researchers have studied the tun-

nelling behavior of various types of black holes using

this new method. These made a great contribution

to the further study of black holes [11–13]. However,

because the higher order items of ~ was neglected, the

previous work only achieved an approximate result.

In 2008, Banerjee and Majhi extended the case of

semi-classical approximation to the case beyond semi-

classical approximation in which the higher order cor-

rection items are included. Finally, the quantum tun-

nelling method beyond semi-classical approximation

was put forward [14–19]. Furthermore, K. Lin et

al improved the method of beyond semi-classical ap-

proximation to make it applicable to a wider range.

They also made a further study of the tunnelling ra-

diation characteristics of black holes and some signif-

icant modified results were obtained [20, 21].

In this paper, we study a higher-dimensional

exotic space-time with this improved method be-

yond semi-classical approximation. Until now, no-

one has used this new method to study higher-

dimensional black holes. It seems important then

to extend this new quantum tunnelling method to

higher-dimensional space-time. We use this im-

proved method to investigate the Hawking radiation

of higher-dimensional Kerr-anti-de Sitter black holes

with one rotational parameter and obtain the cor-

rections of quantum tunnelling probability, Hawking

temperature and Bekenstein-Hawking entropy.
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2 Quantum tunnelling in a n-dimen-

sional Kerr-anti-de Sitter black hole

In some modern physics theories, the concept of

extra dimensions can help to resolve several theoret-

ical issues, so the theory of higher-dimensional black

holes in curved space-time was put forward [22–25].

According to Refs. [26–28], in curved space-time, the

metric of a n-dimensional Kerr-anti-de Sitter black

hole with one rotational parameter is given by

ds2 = −
∆r

ρ2

(

dt−
a

Ξ
sin2 θdφ

)2

+
ρ2

∆r

dr2 +
ρ2

∆θ

dθ2

+
∆θ sin2 θ

ρ2

[

adt−
r2 +a2

Ξ
dφ

]2

+r2 cos2 θdΩ2
n−4,

(1)

where

ρ2 = r2 +a2 cos2 θ,Ξ = 1−a2l−2,

∆r = (r2 +a2)(r2l−2 +1)−2Mr5−n,

∆θ = 1−a2l−2 cos2 θ, (2)

in which, M, l, a are the mass, inverse cosmologi-

cal constant and angular momentum respectively, and

dΩ2
n−4 represents the standard metric of the (n−4)-

dimensional sphere. The event horizon r+ of this

black hole can be valued by the equation ∆r (r+) = 0,

and the non-zero inverse metric of this black hole is

written as

gtt =
a2 sin2 θ

ρ2∆θ

−
(r2 +a2)2

ρ2∆r

,

gφφ =
Ξ2

ρ2∆θ sin2 θ
−

Ξ2a2

ρ2∆r

,

gtφ =
Ξa(r2 +a2)
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,

grr =
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ρ2
, gθθ =

∆θ

ρ2
,

gττ = r−2 cos−2 θhττ. (3)

where, gττ is expressed as the inverse metric of extra-

dimensional terms, and hττ only depends on the

extra-dimensional coordination. Next, the determi-

nant of this metric is obtained as

g =−
ρ4r2 sin2 θ cos2 θ

Ξ2hττ
. (4)

In curved space-time, the Klein-Gordon equation

describing the motion of scalar particles with the

mass m is given by

1√
−g

∂
∂xµ

(√
−g gµν ∂Φ

∂xν

)

−
m2

~2
Φ = 0. (5)

Inserting Eq. (3) into Eq. (5), at the same time,

because the behavior of the particles’ radiation is ra-

dial, for the purpose of separating the radial equa-

tion, one can suppose a spherical waving function as

follows

Φ = R(r)Y (θ)N(τ)e−
i

~
(ωt−jφ), (6)

here, ω is the energy of radiant particles, and j is the

angular momentum corresponding to φ. R (r), Y (θ)

and N(τ) are the terms representing generalized mo-

mentum. Putting Eq. (6) into Eq. (5), we have
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ττ 1

N

∂2
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in which, λ and η are the constants, and Eqs. (7)–

(9) are the radial equation, the angular equation and

the extra-dimensional equation of this black hole, re-

spectively. Similarly, Hawking radiation is the radial

behavior of black holes, so we are only interested in

the radial equation. Simplifying Eq. (7), we get
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+
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1
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1
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R = 0. (10)

In order to simplify Eq. (10), the tortoise coordi-

nate transformation is adopted as follows

∂
∂r

=
a2

∆r

∂
∂r∗

, (11)

∂2

∂r2
=−

a2

∆2
r
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∂
∂r∗

+
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∆2
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∂
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. (12)

Putting Eqs. (11)–(12) into Eq. (10), for ∆r → 0

near the event horizon, we find
[

K2

~2
−∆r

∂
∂r

(

∆r

∂
∂r

)]

R = 0, (13)
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where

K = (a2 +r2)ω+aΞj = (a2 +r2)(ω−Atj). (14)

In the above equation, At =−aΞ/(a2 +r2) is the an-

gular velocity of this black hole. On the other hand,

the radial wave function of the emission spherical shell

should be written as

R∼ e
i

~
S(r), (15)

From Ref. [14], we have S (r, t) = S (r) + Kt, K

is the part relating to the energy of the particle.

Through WKB approximation, expanding the S (r)

and K in powers of ~, we get

S(r) = S0(r)+~S1(r)+~
2S2(r)+ · · · , (16)

K = K0 +~K1 +~
2K2 + · · · , (17)

where, S0 (r) is the semi-classical part of S (r), and

K0 is the semi-classical part of K. From Eq. (19)

in Ref. [14], we can also find that our work differs

from Ref. [14] where the action S (r, t) is expanded,

but the essence is the same. This is because the time

variable part of the action S (r, t) is calculated earlier

[14, 21]. Then substitute Eqs. (15)–(17) into Eq. (13)

and, according to the different powers of ~, it can be

separated into

~
0 :

K2
0

∆r

−∆r

(

∂S0

∂r

)2

= 0, (18)

~
1 :

2K0K1
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+i
∂

∂r

(

∆r

∂S0

∂r

)

−2∆r

∂S0

∂r

∂S1

∂r
= 0. (19)

Simplifying Eq. (18), we obtain

∂S0

∂r
=±

K0

∆r

. (20)

Reforming Eq. (19) and taking Eq. (18) into ac-

count, we have

∂S1

∂r
=±

K1

∆r

. (21)

Similarly, we can obtain all relationships about

Si and S0. We then note that any Si is always pro-

portional to S0. Thus the action S (r) beyond semi-

classical approximation can be rewritten as (in units

of G = c = kB = 1)

S(r) = S0(r)+
∑

i

βi

~
i−1

Si
BH

S0(r)

=

(

1+
∑

i

βi

~
i−1

Si
BH

)

S0(r), (22)

here, βi is an undetermined parameter. It is clear

that we only need to resolve semi-classical approxi-

mate action S0 to get action S. From Eq. (20), the

imaginary parts of action S0 are

ImS0± = ±Im

∫
K0

∆′
r(r−r+)

dr =±
πK0

∆′
r(r+)

= ±
π(ω0−At(r+)j0)(a

2 +r2
+)

∆′
r(r+)

, (23)

where, ∆′

r =
∂∆r

∂r
, the signs (+,−) denote the out-

going and ingoing solutions of semi-classical approx-

imate action respectively. We can get the quantum

tunnelling probability beyond semi-classical approxi-

mation at the event horizon of this black hole as

Γh ∝ exp(−2ImS)

= exp

[(

1+
∑

i
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~
i−1

Si
BH

)

−4πK0
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]

= exp

[(
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(24)

The modified Hawking temperature is

Th =
∆′

r

4π(a2 +r2
+)

(

1+
∑

i

βi

~
i−1

Si
BH

)−1

= TH

(

1+
∑

i

βi

~
i−1

Si
BH

)−1

, (25)

in which, TH = ∆′

r/4π(a2 + r2
+) is the usual semi-

classical Hawking temperature. Next, the correc-

tional entropy of this black hole will be investigated

via the first law of black hole thermodynamics. The

form of the first law of black hole thermodynamics is

stated as

dM = ThdSbh +ΩdJ +V0dQ, (26)

where, Ω, J , V0 and Q are the angular momentum,

the angular velocity, the electromagnetic potential

and the electric charge of black holes, respectively.

The correctional entropy of the higher-dimensional

Kerr-anti-de Sitter black hole with one rotational pa-

rameter in differential forms is given by

dSbh =
1

Th

(dM −ΩdJ), (27)

Integrating the equation above at the event hori-

zon of this black hole, the correctional entropy be-

comes

Sbh =

∫
dSbh =

∫
1

Th

(dM −ΩdJ)

= SBH +β1 lnSBH +const. (28)

where, SBH is the usual semi-classical Bekenstein-

Hawking entropy§and the other terms are the cor-
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rection terms. In Eq. (28), the leading correction

term is the logarithmic correction and it contains

a undetermined parameter β1 which can be ascer-

tained by the theory of loop quantum gravity. Be-

cause the parameter β1 expanded with ~ is equal to

one determined by one loop quantum gravity, they

should have the same related parameter β1, that is

β1 =−n/2(n−2) [20, 29]. From this point of view, this

improved method beyond semi-classical approxima-

tion is reliable. After neglecting all of the correction

items, only SBH in Eq. (28) is left, so the resulted en-

tropy returns to the case of semi-classical approxima-

tion. The whole presentation of Bekenstein-Hawking

entropy is Eq. (28), which is the modified entropy.

3 Conclusions

In this paper, using the Klein-Gordon equation

to describe the movement of scalar particles and the

improved method beyond semi-classical approxima-

tion, the corrections of quantum tunnelling proba-

bility, Hawking temperature and Bekenstein-Hawking

entropy from the higher-dimensional Kerr-anti-de Sit-

ter black hole with one rotational parameter are ob-

tained. The method of beyond semi-classical ap-

proximation that takes the higher order items of ~

into account is a new method of studying quan-

tum tunnelling more accurately. When all higher-

order correction terms are neglected, we can ob-

tain the semi-classical approximate quantum tun-

nelling probability, the Hawking temperature and

the Bekenstein-Hawking entropy. The improved

method of beyond semi-classical approximation is

also successful on a larger scale and we can con-

tinue to study quantum tunnelling behavior from

higher-dimensional charged black holes and other

higher-dimensional non-stationary black holes using

this method. Therefore the whole presentation of

quantum tunnelling probability, Hawking tempera-

ture and Bekenstein-Hawking entropy of these black

holes can be derived. Finally, the undetermined pa-

rameter β1 can be ascertained not only by the the-

ory of loop quantum gravity, but also by the trace

anomaly. This is because the undetermined param-

eter is related to the trace anomaly. What is more,

other more advanced theories and methods are re-

quired with the aim of obtaining a more accurate pa-

rameter β1.
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