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Scalar meson spectroscopy with a fine lattice

FU Zi-Wen(Ff©)1;1) Carleton DeTar2;2)

1 Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education;

Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
2 Physics Department, University of Utah, Salt Lake City, UT 84112, USA

Abstract: With sufficiently light u and d quarks the isovector (a0) and isosinglet (f0) scalar meson propagators

are dominated at large distances by two-meson states. In the staggered fermion formulation of lattice QCD,

taste-symmetry breaking causes a proliferation of multihadron states that complicates the analysis of these

channels. Of special interest is the bubble contribution, which makes a considerable contribution to these

channels. Using numerical simulation we have measured the correlators for both a0 and f0 channels in the

“Asqtad” improved staggered fermion formulation in a MILC fine (a = 0.09 fm) lattice ensemble. We analyze

those correlators using rooted staggered chiral perturbation theory (rSχPT) and achieve chiral couplings that

are well consistent with previous determinations.
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1 Introduction

The recent evident successes of lattice QCD simu-

lations with improved staggered fermions demand an

intensive examination of the “fourth-root trick” us-

ing fractional powers of the determinant to simulate

the correct number of quark species. This trick au-

tomatically performs the transition from four tastes

to one taste per flavor for staggered fermions at all

orders. The procedure is known to introduce nonlo-

calities and violations of unitarity at nonzero lattice

spacing [1]. Hence there are strong theoretical argu-

ments [2–5] that the fourth-root trick is valid.

One can test the fourth-root trick numerically [6–

12]. Alternatively, low-energy results of staggered

fermion QCD simulations can be compared with pre-

dictions of rSχPT [13, 14]. Since staggered chi-

ral perturbation theory becomes standard chiral per-

turbation theory in the continuum limit, agreement

between rooted QCD and rSχPT at nonzero lat-

tice spacing would suggest that lattice artifacts pro-

duced by the fourth-root approximation are innocu-

ous. There are two recent tests of agreement between

rooted staggered fermion QCD and rSχPT [15, 16].

The a0 channel has been studied in staggered

fermion QCD. An explanation of the nonstandard fea-

tures of the scalar correlators is provided by rSχPT

[17–19]. In that theory all pseudoscalar mesons come

in multiplets of 16 tastes. The π and K multiplets

are split in similar ways. For η and η
′ mesons only

the taste singlet η and η
′ obtain physical mass. Some

of the remaining members of the η multiplet remain

degenerate with the pions. According to taste sym-

metry selection rules, any two mesons coupling to a

taste-singlet a0 must have the same taste. All tastes

are equally allowed. Among other states, the taste

singlet a0 couples to the Goldstone pion (pseudoscalar

taste) and an η, also with pseudoscalar taste and of

the same mass. This two-body state at twice the mass

of the Goldstone boson accounts for the anomalous

low-energy component in that channel.

In our previous work we extended the analysis of

Refs. [18, 19], examined the scalar meson correlators

in full QCD on a MILC coarse (a = 0.12 fm) lat-

tice ensemble and compared their two-meson content

with predictions of rSχPT [20, 21]. Since the appear-

ance of the two-meson intermediate state (i.e. bubble

contribution) is a consequence of the fermion deter-

minant, an analysis of this correlator gives a direct

test of the fourth root recipe. In this work we extend
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the analysis of Refs. [20, 21] and carry out a quan-

titative comparison of the measured correlators and

the predictions of rSχPT at a fine (a= 0.09 fm) lat-

tice ensemble. Despite the considerable complexity

of channels with dozens of spectral components, the

chiral theory models the correlators precisely in terms

of only a small number of chiral couplings, which we

may determine through fits to the data [20, 21].

2 Pseudoscalar meson taste multiplets

In Refs. [20, 21] we give a brief review of the rooted

staggered chiral perturbation theory with particular

focus on the tree-level pseudoscalar mass spectrum,

and achieve the rooted version of the theory through

the replicated theory [22].

The tree-level masses of the pseudoscalar mesons

are [13, 21]

M 2
ff′

b

=B0(mf +mf′)+a
2∆b, (1)

where ff′ are two flavors which make up, b= 1, · · · ,16

are the taste, B0 =m2
π
/2mq is the coupling constant

of the point scalar current to the pseudoscalar field,

and the term of a2∆b comes from taste-symmetry

breaking.

In this work we investigate degenerate u and d

quarks (mu = md), so it will be convenient to intro-

duce the notation

M 2
Ub = 2B0mu +a2∆b,

M 2
Sb = 2B0ms +a

2∆b, (2)

M 2
Kb = B0(mu +ms)+a

2∆b.

The isosinglet states (η and η
′) are modified

both by the taste-singlet anomaly and by the two-

trace (quark-line hairpin) taste-vector and taste-

axial-vector operators [17, 23]. When the anomaly

parameter m0 is large, we obtain the usual result

M 2
η,I =

1

3
M 2

UI+
2

3
M 2

SI, Mη′,I =O(m2
0). (3)

In the taste-axial-vector sector we have

M 2
ηA =

1

2

[

M 2
UA+M 2

SA+
3

4
δA−ZA

]

,

M 2
η′A =

1

2

[

M 2
UA+M 2

SA+
3

4
δA +ZA

]

, (4)

Z2
A = (M 2

SA−M 2
UA)2− δA

2
(M 2

SA−M 2
UA)+

9

16
δ2
A,

where δV is the hairpin coupling of a pair of taste-

vector mesons, δA is the hairpin coupling of a pair of

taste-axial mesons [17].

In the taste-pseudoscalar and taste-tensor sectors,

in which there is no mixing of the isosinglet states, the

masses of the ηb and η
′
b by definition are

M 2
η,b =M 2

Ub; M 2
η′,b =M 2

Sb. (5)

In Table 1 we list the masses of the resulting

taste multiplets in lattice units for the lattice ensem-

ble used in the present study with taste-breaking pa-

rameters δA and δV determined in Refs. [15, 17] as

measured or inferred from the measured masses and

splittings. The mass of the η
′
I depends on m0.

Table 1. Mass spectrum of pseudoscalar meson

for the MILC fine (a = 0.09 fm) lattice en-

semble β = 7.09, amud = 0.0062, ams = 0.031.

b aπb aKb aηb aη′
b

P 0.1479 0.2532 0.1479 0.3273

A 0.1646 0.2633 0.1530 0.3325

T 0.1743 0.2695 0.1743 0.3400

V 0.1820 0.2745 0.1780 0.3430

I 0.1926 0.2816 0.3064 —

3 Scalar correlators from SχPT

In Refs. [20, 21], using the language of the replica

trick [13, 24] and through matching the point-to-point

scalar correlators in chiral low energy effective theory

and staggered fermion QCD, we rederive the “bub-

ble” contribution to the a0 channel of Ref. [19], and

then extend the result to the f0 channel. Here we just

review some results required for this work.

3.1 Isovector a0 correlator

For simplicity we consider the ud̄ flavor state for

the a0 correlator. Only the quark-line-connected con-

tribution appears in the QCD correlator. The times-

lice correlator for the a0 meson is given by,

C(p, t) =
∑

x

eip·x〈d̄(x, t)u(x, t)ū(0,0)d(0,0)〉, (6)

where p is the chosen momentum. There exist many

multihadron states with JP = 0+ and I = 1 which can

propagate between the source and the sink. Of spe-

cial interest in multihadron states is the intermediate

state with two pseudoscalars P1 P2 which we refer to

as the bubble contribution (B) [19]. If the masses of

P1 and P2 are small, the bubble contribution B gives

a considerable contribution to the a0 correlator, and

it should be included in the fit of the lattice correlator

in Eq. (6), that is,

C(p, t) =Ae−ma0
t +Ba0

(p, t), (7)
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where for notational simplicity we omit the contribu-

tions from the excited a0 meson; the oscillating terms

correspond to a particle with opposite parity, and

other high-order multihadron intermediate states.

The Ba0
(p, t) is in detail denoted in Appendix B of

Ref. [20]. For 1+1+1 theory, if we rearrange the terms

of the time Fourier transform of bubble correlator in

Eq. (53) in Ref. [21], we obtain

Ba0
(p, t) =

B2
0

4L3

{

fB(p, t)+fhairpin
V (p, t)+fhairpin

A (p, t)

}

,

where B0 =
m2

π

2mu

is the coupling constant of the point

scalar current to the pseudoscalar field, and

fhairpin
V (p, t)

≡
∑

k







−8
e
−

(

√

(p+k)2+M2
UV

+
√

k2+M2
UV

)

t

√

(p+k)
2
+M 2

UV

√

k2 +M 2
UV

+ 4CVη

e−(
√

(p+k)2+M2
ηV

+
√

k2+M2
ηV)t

√

(p+k)
2
+M 2

ηV

√

k2 +M 2
ηV

− 4CV
η′

e
−

(

√

(p+k)2+M2

η′V
+

√

k2+M2

η′V

)

t

√

(p+k)
2
+M 2

η′V

√

k2 +M 2
η′V











,

fB(p, t) ≡
∑

k







2

3

e−(
√

(p+k)2+M2
ηI

+
√

k2+M2
ηI)t

√

(p+k)2 +M 2
ηI

√

k2 +M 2
ηI

−2
e
−

(

√

(p+k)2+M2
UI

+
√

k2+M2
UI

)

t

√

(p+k)
2
+M 2

UI

√

k2 +M 2
UI

+
1

8

16
∑

b=1

e
−

(

√

(p+k)2+M2
Ub

+
√

k2+M2
Ub

)

t

√

(p+k)
2
+M 2

Ub

√

k2 +M 2
Ub

+
1

16

16
∑

b=1

e
−

(

√

(p+k)2+M2
Kb

+
√

k2+M2
Kb

)

t

√

(p+k)
2
+M 2

Kb

√

k2 +M 2
Kb







,

(8)

where

CVη
=

(M 2
SV

−M 2
UV

− 1

4
δV +ZV)

ZV

, (9)

CV
η′ =

(M 2
SV

−M 2
UV

− 1

4
δV−ZV)

ZV

, (10)

MηV, MηA, Mη′V, Mη′A, ZV, ZA are given in Eq. 5,

and for fhairpin
A (t), we just require V→A in fhairpin

V (t).

3.2 Isosinglet f0 correlator

We use the isosinglet operator for the f0 cor-

relator. Both quark-line-connected and quark-line-

disconnected contributions appear in the lattice QCD

correlator. The timeslice correlator for the f0 meson

is given by,

C(p, t) =
∑

x

eip·x〈ū(x, t)u(x, t)ū(0,0)u(0,0)〉CC

+
1

2

∑

x

eip·x〈ū(x, t)u(x, t)ū(0,0)u(0,0)〉DC,

(11)

where the subscript CC stands for the connected con-

tribution, and the subscript DC stands for the discon-

nected contribution. Like the a0 correlator the bubble

term of the scalar f0 correlator also gives a consider-

able contribution, and it should be included in the fit

of the lattice correlator in Eq. (11),

C(p, t) =Ae−mf0
t +Bf0(p, t). (12)

The Bf0(t) is in detail denoted in Appendix C in

Ref. [20]. For 1+1+1 theory, if we rearrange the terms

of the time Fourier Transform of bubble correlator in

Eq. (64) in Ref. [21], we obtain

Bf0(p, t) =
B2

0

4L3

{

fB(p, t)+fhairpin
V (p, t)+fhairpin

A (p, t)

}

and

fhairpin
V (p, t)

≡
∑

k







−4
e
−

(

√

(p+k)2+M2
UV

+
√

k2+M2
UV

)

t

√

(p+k)
2
+M 2

UV

√

k2 +M 2
UV

+C2
Vη

e−(
√

(p+k)2+M2
ηV

+
√

k2+M2
ηV)t

√

(p+k)2 +M 2
ηV

√

k2 +M 2
ηV

+C2
V

η′

e
−

(

√

(p+k)2+M2

η′V
+

√

k2+M2

η′V

)

t

√

(p+k)
2
+M 2

η′V

√

k2 +M 2
η′V

−CVη
CV

η′

e
−

(√
(p+k)2+M2

ηV
+

√

k2+M2

η′V

)

t

√

(p+k)
2
+M 2

ηV

√

k2 +M 2
η′V

−CVη
CV

η′

e
−

(

√

(p+k)2+M2

η′V
+
√

k2+M2
ηV

)

t

√

(p+k)
2
+M 2

η′V

√

k2 +M 2
ηV







,
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fB(p, t) ≡
∑

k







1

9

e−(
√

(p+k)2+M2
ηI

+
√

k2+M2
ηI)t

√

(p+k)2 +M 2
ηI

√

k2 +M 2
ηI

− e
−

(

√

(p+k)2+M2
UI

+
√

k2+M2
UI

)

t

√

(p+k)
2
+M 2

UI

√

k2 +M 2
UI

+
1

16

16
∑

b=1

4
e
−

(

√

(p+k)2+M2
Ub

+
√

k2+M2
Ub

)

t

√

(p+k)
2
+M 2

Ub

√

k2 +M 2
Ub

+
1

16

16
∑

b=1

e
−

(

√

(p+k)2+M2
Kb

+
√

k2+M2
Kb

)

t

√

(p+k)2 +M 2
Kb

√

k2 +M 2
Kb







,

where δV, δA, B0, CVη
, CV

η′ , CAη
, CA

η′ are con-

stants, which are given in the above subsection, and

for fhairpin
A (t), we just require V→A in fhairpin

V (t).

4 Simulations and results

In the present work we analyzed the MILC fine

(a = 0.09 fm) lattice ensemble of 500 283×96 gauge

configurations generated in the presence of 2+1 fla-

vors of Asqtad improved staggered quarks with bare

quark masses amud = 0.0062 and ams = 0.031 and

bare gauge coupling 10/g2 = 7.09 [17].

We set valence quark masses equal to the sea

quark masses. Table 1 gives the pseudoscalar masses

used in our fits with the exception of the massesMηA
,

Mη′
A
, MηV

, Mη′
V
. Those masses vary with the fit pa-

rameters δA and δV.

After we perform the Wick contractions of the

fermion fields, and sum over the index of the taste

replica for Eqs. (6) and (11), for the light quark Dirac

operator Mu, we measure the point-to-point quark-

line connected correlator

CCC(p, t) =
∑

x

(−)xeip·x

×
〈

Tr
[

M−1
u (x, t;0,0)M−1†

u (x, t;0,0)
]〉

,

(13)

and the point-to-point quark-line disconnected corre-

lator

CDC(p, t) =
∑

x

(−)xeip·x

×〈TrM−1
u (x, t;x, t)TrM−1

u (0,0;0,0)〉 .
(14)

In the latter case we use noisy estimators based on

random color fields [25] ξi for i= 1, · · · , N = 100:

TrM−1
u (x, t;x, t)TrM−1

u (0,0;0,0)

≈ 1

N(N−1)

∑

i6=i′,y,y′

ξ̄k(x, t)M
−1
u (x, t;y)ξi(y)

×ξ̄i′(0,0)M−1
u (0,0;y′)ξi′(y

′). (15)

We use the conjugate gradient method (CG) to obtain

the required matrix element of the inverse fermion

matrix Mu. In order to improve the statistics, when

we calculate the connected part, we compute the cor-

relators from eight source time slices evenly spread

through the lattice (i.e., only one source time slice

is chosen at a time), and average the correlators. In

terms of these correlators the timeslice a0 and f0 cor-

relators are

Ca0
(p, t) = CCC(p, t),

Cf0(p, t) = CCC(p, t)− 1

2
CDC(p, t).

(16)

Correlators in each channel are measured at five

momenta p = (0,0,0), (1,0,0), (1,1,0), (1,1,1), and

(2,0,0). In this work we also measure the
〈

ψψ̄
〉

. All

ten correlators are then fit to the following model

Ca0
(p, t) = Cmeson

a0
(p, t)+Ba0

(p, t),

Cf0(p, t) = Cmeson
f0

(p, t)+Bf0 (p, t),
(17)

where

Cmeson
a0

(p, t) = ba0
(p)e−Ea0

(p)t

+bπA(p)(−)te−EπA
(p)t +(t→Nt− t),

Cmeson
f0

(p, t) = c0(p)+bf0(p)e−Ef0
(p)t

+bηA
(p)(−)te−EηA

(p)t +(t→Nt− t).

This fitting model includes the explicit a0 and f0
poles, as well as the corresponding negative par-

ity states, and the bubble contribution. The con-

stant c0(p) is the vacuum expectation value for the

f0 correlator, hence it is zero for all momenta ex-

cept p = (0,0,0), in which case it gives the vacuum-

disconnected part of the f0 correlator.

As discussed in Ref. [21], we chose the empirical

fitting form for the parameterization of the momen-

tum dependence of the overlap factors. In this work

we concentrate on the other physical fitting param-

eters, hence we just fit the data of the momentum
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p = (0,0,0), thus

Cmeson
a0

(t) = ba0
e−Ea0

t +bπA(−)te−EπA
t +(t→Nt− t),

Cmeson
f0

(t) = c0 +bf0e
−Ef0

t +bηA
(−)te−EηA

t

+(t→Nt− t).

There are nine fit parameters for the meson terms

alone, but the two negative-parity masses were con-

strained tightly by priors: the πA, to the previously

measured value, and the ηA, to the same derived mass

that we used in the bubble term.

The bubble terms Ba0
(p, t) and Bf0(p, t) were pa-

rameterized by the three low-energy couplings B0 =

m2
π
/(2mu), δA, and δV in the notation of Ref. [15].

They were allowed to vary to give the best fit. The

taste multiplet masses in the bubble terms were fixed

as noted above. The sum over intermediate momenta

was cut off when the total energy of the two-body

state exceeded 1.8/a or any momentum component

exceeded π/(3a). We determined that such a cutoff

gave an acceptable accuracy for t> 6.

In summary, we simultaneously fitted all two

correlators with eleven parameters, nine of which

were needed to parameterize the four explicit meson

terms, and three low-energy couplings were needed

for the bubble contribution. Our best fit gave χ2/dof=

26.4/22.

The fitted functional form is compared with the

data in Figs. 1–2.

The results of the three fitted low-energy cou-

plings are compared with the results from fits to the

Fig. 1. The best fit to the a0 correlator for zero

cm momentum. The fitting range is indicated

by points and fitted solid lines. We shift all

the points and fitted lines 6e−6 in y axis for

good visualization.

Fig. 2. The best fit to the zero momentum f0
correlator. The fitting range is indicated by

points and fitted solid lines.

meson masses and decay constants in Table 2. In

Ref. [21], through a prior, we constrained the value

of δV to conform to previous fits to the pseudoscalar

masses and decay constants [15], leaving only two

of the low energy couplings to be adjusted indepen-

dently. The agreement is worse if we let the value of

δV vary. In this work we let all the three low-energy

couplings be adjusted independently, and achieve chi-

ral couplings that are well consistent with previous

determinations. This suggests, perhaps, that for the

coarse (a = 0.12 fm) lattice ensemble a higher-order

calculation of the bubble contribution might improve

the agreement, and for the fine (a= 0.09 fm) lattice

ensemble the bubble contribution with low order is

enough.

Table 2. Comparison of our fit parameters for

the rSχPT couplings with the results from

[15].

our fit meson masses and decays

r1m2
π/(2mu,d) 7.2(1.4) 6.5

δV −0.0053(10) −0.0056(80)

δA −0.0137(19) −0.014(2)

In Ref. [15] the values of δA and δV on the fine lat-

tices are not fitted separately but are constrained to

be 0.35 times as large for the central-value fits. Our

fitted results confirm this estimations.

As is computed in Eq. (37) in Ref. [21], the quark-

line disconnected correlator includes the vacuum dis-

connected piece which does not vanish,that is,

c0 =
L3

2

〈

ψψ̄
〉2
, (18)
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where we consider the factor 1/2 for the disconnected

part in Eq. (16), and the normalizationM = 2D+2am

for the Dirac matrix. In this work, we have also mea-

sured the value of
〈

ψψ̄
〉

, which is in good agreement

with the value in Ref. [26], i.e.,
〈

ψψ̄
〉

= 0.015622(17).

Hence we can estimate its value as c0 = 2.697(5). The

fitted c0 is 2.701(6).

The fitted masses of the a0 and f0 in units of the

lattice spacing are 0.59(3) and 0.35(4), respectively.

5 Summary and outlook

In Refs. [20, 21], we derived the two-pseudoscalar-

meson “bubble” contribution to the a0 and f0 corre-

lators in the lowest order SχPT. We have used this

model to fit the simulation data for the point-to-point

a0 and f0 correlators for the fine (a= 0.09 fm) lattice

ensemble and found that the best-fit values of all the

three chiral low-energy couplings are in good agree-

ment with the values previously obtained in fits to

the light meson spectra and decay constants [15].

The two-meson bubble term in SχPT provides

a useful explanation of the lattice artifacts induced

by the fourth-root approximation [20, 21]. The ar-

tifacts include thresholds at unphysical energies and

thresholds with negative weights. These contributions

are still clearly present in the a0 and f0 channels

in our QCD simulation with the Asqtad action at

a= 0.09 fm. We have found that the “bubble” term

must be included in a successful spectral analysis.

The rSχPT further predicts that these lattice ar-

tifacts disappear in the continuum limit, leaving only

the physical two-body thresholds. This result is in

full accord with the fourth-root analysis of Ref [2].

Although we have minimized the lattice artifacts by

using an improved action with the fine (a= 0.09 fm)

lattice ensemble, an empirical investigation of these

effects is necessary. It would be very nice to be able

to see whether this expectation is ruled out in numer-

ical QCD simulations at much smaller lattice spacing.

We are beginning a series of simulations with a MILC

super-fine a= 0.06 fm lattice ensemble to investigate

these effects.
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