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Spin path integral and quantum mechanics in the

rotating frame of reference *
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Abstract: We have developed a path integral formalism of the quantum mechanics in the rotating frame

of reference, and proposed a path integral description of spin degrees of freedom, which is connected to the

Schwinger bosons realization of the angular momenta. We have also given several important examples for the

applications in the rotating frames.
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1 Introduction

The Quantum mechanics in the rotating frame of

reference has many important applications. For ex-

ample, Rabi oscillation is crucial for cavity quantum

electrodynamics [1] and for designing the qubit cir-

cuit of a scalable quantum computer [2–4]. And the

analysis of Coriolis effect is very important in the re-

search of unified geometric phase and spin-Hall effect

in optics [5].

The main purpose of this paper is to develop a

path integral description of the non-relativistic quan-

tum mechanics in the rotating frame. We investigate

a charged particle in the rotating frame with a uni-

form external magnetic field applied to it, and use

the path integral description to explain some related

experiments, e.g. the Sagnac effect [6, 7] due to the

coupling between the orbital angular momentum of

the particle and the rotation of the reference frame

(see Ref. [8] for more specific introduction of this ef-

fect), the spin-rotation coupling analog of the Sagnac

effect, and the Neutron interference [9–14] (especially

in Ref. [15] for the experimental observation of the

phase shift via spin-rotation coupling). We also show

the application in the Rabi oscillation problem which

was traditionally solved in the Hamiltonian formula-

tion [16].

By using the spin path integral description [17]

and connecting it to the Schwinger bosons realization

of the algebra of angular momenta ~J , we can intro-

duce the part of the action for the spin degrees of free-

dom of a charged point particle in a rotating frame

of reference, and develop the corresponding spin path

integral description. Combining the path integral de-

scription with coordinate variables [18], we can de-

velop the full path integral theory of a point particle

in a rotating frame. We can then derive the phase fac-

tor due to the spin-rotation coupling and its orbital

angular momentum counterpart (the Sagnac effect),

give a path integral solution for Rabi oscillation prob-

lem, and extend the Coriolis force from classical me-

chanics to quantum mechanics, by using the quantum

action principle [19].

The paper is arranged as follows. In Section 2,

we present the total action for the charged particle

in a rotating frame of reference and formulate the

path integral description for the corresponding non-

relativistic quantum mechanics of the point particle.

The spin-orbital coupling is also discussed. In Sec-

tion 3 we give some applications on some well known

quantum mechanical effects, the Sagnac effect and its

spin-rotation coupling extension, the Rabi oscillation
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and the operator equation for the Coriolis force. In

these examples, the rotating frame formulations are

more convenient. Finally, we end with some conclud-

ing remarks.

2 The path intergal formalism of

quantum mechanics in the rotating

frame

2.1 Spin path integral and the Schwinger

bosons

To describe the spin degrees of freedom of a non-

relativistic spin s = n/2 particle (with mass m and

electric charge e), we introduce the action [17]

ISpin =

∫
dt

[

iφ† d

dt
φ−λ(φ†φ−n)

]

, (1)

where φ is a two components bosonic variable, φ† =

(φ1,φ2) is its Hermitian conjugation, and λ is a La-

grange multiplier. The action (1) is invariant under a

U(2) transformation U : φ→Uφ, where U ∈U(2). To

realize the SU(2) symmetry of spin, one can consider

operations of multiplication modulo some U(1) fac-

tor from U(2), i.e. φ→ e−iθφ, φ→ eiθ φ, by requiring

that all the physical observables be U(1) invariant.

Furthermore, N(φ) = φ†φ is the conserved charge

of this U(1) transformation, and is also a physical

observable. Other fundamental physical observables1)

are the conservation charges ~S(φ) =
1

2
φ†~σφ of the

SU(2) symmetry, where ~σ are the three Pauli matri-

ces. In the quantum theory, ~S(φ) will realize SU(2)

symmetry algebra, which we identify with the spin.

Thus φ is a Pauli spinor. In the path integral quan-

tization, ~S(φ) can be inserted into the path integral∫
DφDφDλexp(iI/~).

To see the connection between the above spin path

integral and the SU(2) spin algebra more clearly, we

now perform the canonical quantization procedure.

Firstly, iφ† is the canonical momentum of φ, and the

Hamiltonian for the free spin is trivial. Then φ is

now realized as the Schwinger bosons with the com-

mutators
[

φα, φβ
]

= ~δαβ , where α, β = 1, 2 are the

indices of the spinor φ. The constraint equation as-

sociated with λ will restrict us to the Hilbert space

of n Schwinger bosons (φ†φ−n) |ψ〉 = 0, where |ψ〉

is an arbitrary state of the Hilbert space Hs of spin

wave functions, |ψ〉 ∈Hs. The basis of Hs can be con-

structed by acting n creation bosons φα on the Fock

vacuum2), |α1α2 · · ·αn〉=φα1 φα2 · · ·φαn |0〉, where |0〉

is the Fock vacuum which satisfies φα|0〉 = 0. The

spin operators ~S are realized as

~S=
1

2
φ†~σφ . (2)

The action of ~S on Hs turns out to be the s = n/2

representation.

2.2 Spin in the rotating frame of reference

We consider a non-inertial frame of reference S,

which rotates with angular velocity ~ω(t). Firstly, we

note that in terms of the variables in S, the time

derivative of the spinor φ(t) should be

dφ

dt
−

i

2
~ω(t) ·~σφ , (3)

this result is the generalization of the similar ordi-

nary d~v/dt+~ω(t)×~v, where ~v is a vector in S frame.

If ~J is the general generator of the SU(2) group, in

the spin-1 representation , we can rewrite ~J as ~L:

(Lk)
l

j
:= −iεljk, here l, j, k = 1, 2, 3. Our general-

ized form (3) is motivated by noticing that under an

infinitesimal rotation
(

1− iδ~θ · ~J
)

, a vector ~v trans-

forms as3): ~v→ ~v− i
(

δ~θ · ~L
)

~v = ~v+δ~θ×~v. However,

a spinor φ transforms as: φ→φ−
i

2
δ~θ ·~σφ.

Thus, in frame S, the action of the spin is given

simply by replacing the (dφ/dt) of Eq. (1) with dφ/dt

−
i

2
~ω(t) ·~σφ:

IS =

∫
dt

[

iφ†

(

d

dt
−

i

2
~ω (t) ·~σ

)

φ−λ
(

φ†φ−n
)

]

=

∫
dt

[

iφ† d

dt
φ+~ω (t) ·

1

2
φ†~σφ−λ

(

φ†φ−n
)

]

. (4)

In terms of the path integral quantization, spin in

the rotating frame is described as an insertion ~S(φ) =
1

2
φ†~σφ in

∫
DφDφDλexp(iIS/~).

To compare with the Hamiltonian formalism, we

then canonically quantize the action (4). The Hamil-

tonian HS can be easily got4),

HS =−~ω (t) · ~S . (5)

1) It is easy to show that an arbitrary physical observable can be written as the function of ~S(φ) and N(φ).

2) In the full Fock space, one can also construct the spin coherent state |z〉 by defining it as the eigen-states of φ, with

φα|z〉= zα|z〉. The mean value of the spin operator ~S on the spin coherent states is 〈z|~S|z〉=
1

2
z†~σz.

3)The transformation of components is: vl → vl − iδθk ·(Lk)l
jvj .

4)The quantization relation of the Schwinger bosons, the constraint equation and the spin Hilbert space Hs are all the same as

mentioned above.
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This result is consistent with Refs. [6, 16].

In the static frame, one should insert

exp

[

igµ

∫
dt ~B · ~S(φ)/~

]

into the path integration

to account for the spin-magnetism coupling, where

µ= e/2mc, g is the g-factor of the particle, and ~B is a

uniform magnetic field. The total effect is to change

the action from I for the free spin to IB for the spin

in the ~B field, where IB is given as

IB =

∫
dt

[

iφ† d

dt
φ−λ(φ†φ−n)+gµ ~B · ~S(φ)

]

. (6)

From action (6), one can easily get the equations

of motion of the Pauli spinors φ,

i
dφ

dt
+

1

2
gµ ~B ·~σφ= 0

and its complex conjugation. By using these equa-

tions, one can get the equation of motion of the spin

in magnetic field ~B

d~S

dt
+gµ ~B× ~S= 0. (7)

Now we can consider the spin-magnetism coupling

in S frame. For brevity, we assume that the angular

velocity ~ω is time independent. ~B denotes the mag-

netic field in the rotating frame S. To write out the

explicit form of the magnetic field ~Biner(t) in the static

inertial frame, we first decompose ~B into the part ~B‖,

which is parallel to ~ω, and the part ~B⊥, which is per-

pendicular to ~ω. The magnetic field in the static frame

can then be written as ~Biner(t) = ~B‖+~B
+
⊥eiωt+~B−

⊥e−iωt,

where the additional factors eiωt and e−iωt are due to

the rotation of S1). Now, actions (4) and (6) should

be jointed together into the action IBS,

IBS =

∫
dt

[

iφ† d

dt
φ+(~ω+gµ ~B) · ~S(φ)−λ(φ†φ−n)

]

.

(8)

In terms of the canonical quantization, the Hamilto-

nian in S is HBS:

HBS =−gµ ~B · ~S−~ω · ~S, (9)

which is in agreement with the previous results [16].

2.3 Include the position variables

In a uniform magnetic field, the spatial part Ix of

the total action can be written in terms of the vari-

ables of S:

Ix =

∫
dt

[

1

2
m

(

d~x

dt
+~ω×~x

)2

−V (~x)

]

−
e

c

∫
dt ~A(~x) ·

(

d~x

dt
+~ω×~x

)

, (10)

where V (~x) is the potential energy of the particle in

the static inertial frame, the vector potential ~A(~x)

can be written as ~A(x) = −
1

2
~B× ~x for the uniform

magnetic field that we are considering. Thus, Ix can

be rewritten as

Ix =

∫
dt

[

1

2
m

(

d~x

dt

)2

+m
(

~ω+µ~B
)

·

(

~x×
d~x

dt

)

]

−

∫
dt

[

V (~x)−
1

2
m(~ω×~x)

2

−mµ
(

~B×~x
)

·(~ω×~x)

]

. (11)

Furthermore, in the path integral quantization, one

should include the factor

∫
D~xexp(iIx/~).

In the canonical quantization to (11), we take ~x

as the canonical coordinates, the canonical momenta

of ~x can be easily gotten:

~p=m

(

d~x

dt
+~ω×~x+µ~B×~x

)

. (12)

Finally, the Hamiltonian reads

Hx =
~p 2

2m
−
(

µ~B+~ω
)

· ~L+Veff (~x) , (13)

where ~L = ~x× ~p is the angular momentum opera-

tor, and the effective potential Veff(~x) is given by

Veff (~x) =V (~x)+
1

2
µ2m

(

~B×~x
)

·
(

~B×~x
)

.

Thus, after including the part Ix for the position

variable, the action I for the spin s = n/2, mass m,

charge e particle in rotation frame S with an external

magnetic field ~B can be written as

I = IBS +Ix. (14)

The corresponding Hamiltonian is H =HBS+Hx.

2.4 Spin-orbital coupling

We now discuss the coupling between the spin and

the spacial variables by treating it as a perturbation

to I .

In the static frame, the simplest term that pre-

serves the parity is

mξ(~x)~S(φ) ·

[

~x×

(

d~x

dt
+µ~B×~x

)]

, (15)

where the small factor ξ(~x) is an arbitrary function

of ~x. For the hydrogen atom,

ξ (~x) =
1

2m
·

1

|~x|
·
dVC(~x)

d|~x|
,

1)To get the expressions of ~B+
⊥ and ~B−

⊥ explicitly, one can choose the coordinates to make the plane which is perpendicular to

~ω being x-y plane, then ~B+
⊥ = ~Bx

⊥+i ~By

⊥ and ~B−
⊥ = ~Bx

⊥− i ~By

⊥.
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where VC(~x) is the Coulomb potential. Then, in S

frame, we have the perturbation term:

ISLS =

∫
dtξ(~x)m

[

~x×

(

d~x

dt
+~ω×~x+µ~B×~x

)]

· ~S(φ).

(16)

Thus in path integral quantization, we should

insert exp(iISLS/~) into the path integration∫
DφDφDλD~x exp{iI/~}. In the canonical quanti-

zation, the contribution of spin-orbital coupling is

just the usual perturbation VLS = ξ(~x) ~L · ~S.

3 Applications

We now apply the general formalism on some well-

known quantum mechanical effects or experiments

concerning rotating frame of reference to give some

unified interpretations of the formalism.

3.1 Neutron interference

In the neutron interference experiment, earth is

the rotating frame S. The coupling between the an-

gular momentum and rotation of the frame will give

rise to a phase shift ∆ϕ. The relevant terms of the ac-

tion are the kinematic term Ik plus the term Ir which

contributes to the inertial force, where

Ik =

∫
dt

[

1

2
m

(

d~x

dt

)2

+iφ† d

dt
φ−λ(φ†φ−n)

]

, (17)

Ir =

∫
dt

[

m

(

~x×
d~x

dt

)

+ ~S(φ)

]

·~ω. (18)

In the interference experiment, the term exp(iIr/~) in

the path integration brings a phase factor

exp

(

i
~S

~
·

∮

dt~ω

)

·exp

[

i
2m~ω

~
·
1

2

∮

C

(~x×d~x)

]

, (19)

where the term
1

2

∮

C
(~x×d~x) is just the area ~AC sur-

rounded by the moving path of the neutron, and
∮

dt~ω

equals 2T~ω, where T is the flying time of the neutron.

Thus, the total phase shift

∆ϕ=
2

~
(m~AC +T ~S) ·~ω, (20)

in which the first term is the so-called Sagnac effect

[6]. In terms of the Hamiltonian formalism, the rel-

evant terms are Hr = −~ω · (~L+ ~S), which has been

derived to explain the interference experiment done

before.

3.2 Rabi oscillation

In the nuclear-magnetism resonance experiment,

a magnetic momentum gµ is coupled to a control-

lable magnetic field ~B‖ and a transverse rotating field
~B+

⊥eiωt+~B−
⊥e−iωt in the static frame. The problem can

be solved more easily in the frame S rotating along

the direction of ~B‖ with the angular velocity ~ω. The

relevant terms in the action are the kinematic terms

ISk, plus IBr:

ISk =

∫
dt

[

iφ† d

dt
φ−λ(φ†φ−n)

]

, (21)

IBr =

∫
dt
(

~ω+gµ ~B
)

· ~S(φ). (22)

At the resonant frequency ~ω = −gµ ~B‖, the factor

exp

[

i

~

∫
dt(gµ ~B⊥ · ~S)

]

will cause the state of the spin

to oscillate between the up and down state with os-

cillating frequency

ωR =
gµ| ~B⊥|

2~
. (23)

In the more general case the oscillating frequency Ω

is given by Ω2 =
[

(~ω+gµ ~B‖)/2~

]2

+ ω2
R. All these

results can also be derived from the Hamiltonian

HBS =−gµ ~B · ~S−~ω · ~S.

3.3 Coriolis force in quantum action princi-

ple

We now discuss the equation of motions in the ro-

tating frame S derived by using Schwinger’s quantum

action principle to see the quantum extension of the

ordinary non-inertial force in the classical theory, i.e.

the Coriolis force.

The relevant term IC of the action is

IC =

∫
dt

[

1

2
m

(

d~x

dt

)2

+m~ω ·

(

~x×
d~x

dt

)

−V (~x)+
1

2
m(~ω×~x)2

]

. (24)

The quantum action principle [19] tells us

〈ψf |δIC|ψi〉 = 0. In virtue of the variation of IC we

find the equations of motion:
〈

ψf

∣

∣

∣

∣

m
d2~x

dt2
+2m

d~x

dt
×~ω+mω2~x+

∂V (~x)

∂~x

∣

∣

∣

∣

ψi

〉

= 0,

(25)

which is just the quantum mechanical generaliza-

tion of the ordinary Newton equation in the rotating

frame. The term

∫
dtm~ω·

(

~x×
d~x

dt

)

is the origin of the

Coriolis force 2m~ω×
d~x

dt
. In terms of the Hamiltonian

formalism, the Coriolis force comes from the term
(

−~ω · ~L
)

of the Hamiltonian H = ~p 2/2m−~ω·~L+V (~x).
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4 Concluding remarks

We have shown the path integral formalism of

the non-relativistic quantum mechanics of a charged

point particle in a rotating frame of reference, and

give some discussions on the applications of the for-

malism. There are many kinds of rotating frames

in both nature and technology, especially in many

spin systems. To show the quantum properties of

them is very helpful for us to understand the physics

of nature. We mainly focus on the non-relativistic

cases in this paper. It is contemplable that when

the relativistic case is considered, there will be some

other problems. We leave the further issues and the

relativistic generalizations for future work.

We would like to thank both professor Z. Chang

and our colleague H.-Q. Zhang for valuable discus-

sions.
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