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Phenomenological study on the significance

of the scalar potential and Lamb shift *
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Abstract: We indicated in our previous work that for QED the contributions of the scalar potential, which

appears at the loop level, is much smaller than that of the vector potential, and in fact negligible. But the

situation may be different for QCD, the reason being that the loop effects are more significant because αs is

much larger than α, and secondly the non-perturbative QCD effects may induce the scalar potential. In this

work, we phenomenologically study the contribution of the scalar potential to the spectra of charmonia. Taking

into account both vector and scalar potentials, by fitting the well measured charmonia spectra, we re-fix the

relevant parameters and test them by calculating other states of the charmonia family. We also consider the

role of the Lamb shift and present the numerical results with and without involving the Lamb shift.
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1 Introduction

By a symmetry consideration, Chen et al. sug-

gested [1] that for the Coulomb interaction, to main-

tain the hidden symmetry SO(4) in the Schrödinger

equation, the scalar and vector potentials must have

the same weight in the Dirac equation. The hid-

den symmetry is just the familiar Lenz symmetry,

which also exists in classical physics. However, if so,

the orbit-spin coupling would disappear. In fact, the

scalar and vector potentials make opposite contribu-

tions to the orbit-spin coupling, thus if they have the

same weight, their contributions would exactly can-

cel each other. This definitely contradicts the data.

Therefore, one concludes that this symmetry does

not exist in the relativistic extension. Usually, one

is tempted to think that the relativistic Dirac equa-

tion should possess a higher symmetry than its non-

relativistic approximation, but this is not the case we

are confronting. A general theory that only considers

the Lorentz structure of the vertices [2], there are five

types of coupling. But which one dominates should be

selected by the underlying physics. We turn to look

at the deeper side, namely starting to investigate the

problem in quantum field theory.

The basic theory that induces the electric

Coulomb potential is QED, whose coupling is vector-

type ψ̄γµψA
µ, thus at the tree-level, the induced po-

tential is the vector one and the other types should

be induced at higher order, i.e. loop level. In our

earlier work [3], we showed explicitly that the scalar

coupling 1⊗1, which results in the scalar potential,

appears at the loop level and its contribution is sup-

pressed by a factor α/π. For QED, it is a small value

and cannot make a sizable contribution. Thus the

apparent SO(4) symmetry at the classical level is al-

most fully violated. However, the situation would be

different for the QCD case, because first αs at the

charm-mass-scale is much larger than α and secondly

the non-perturbative QCD effects may also cause the

scalar potential.

This case is noticed by Leviatan and some studies
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have been carried out [4–6]. In this work, we are not

going to further discuss the origin of the scalar poten-

tial or try to derive it from the quantum field theory,

but generally assume its existence and by fitting the

spectra of the charmonia family, we obtain its frac-

tion. Moreover, the QED theory predicts the Lamb

shift, which is due to the vacuum effects. In QM, it

only shifts the S-wave spectra because in the non-

relativistic limit, it is proportional to δ(r), but by

the quantum field theory, the other l-states are also

affected. In other words, by considering the Lamb

shift, the positions of the spectra would deviate from

those obtained without the Lamb shift. In this work,

we include its contribution and re-fit the charmonia

spectra to obtain a new set of the model parameters.

For a comparison, we will present the numerical re-

sults with and without taking the Lamb shift into

account.

Unlike the hydrogen-like atoms where the nucleus

is very heavy and approximated at rest, therefore only

the motion of the electron is considered and the corre-

sponding equation, either the relativistic Dirac equa-

tion or non-relativistic Schrödinger equation, is a one-

body equation. However, for charmonia, the charm

and anti-charm quarks are of the same mass and the

equation that properly describes charmonia should be

a two-body equation.

For simplicity but without losing the significant

characters, we do not directly solve the two-body

Dirac equation, which is very complicated. One can

derive the effective potential between the two con-

stituents (c and c̄) in terms of the perturbative theory

where the effective Lorentz vertices are set accord-

ing to the general Lorentz structures [7]. Because of

the limitation of the perturbative theory, we can only

obtain the Coulomb-type interaction and the corre-

sponding spin-orbit, spin-tensor and relativistic cor-

rection pieces. It is noted that the fundamental QCD

indeed provides only the vector potential at the tree

level, but, as indicated above, the loop effect and even

the non-perturbative effect may result in a scalar po-

tential. Thus we just keep the potential forms and

introduce two phenomenological constants in front

of the scalar and vector potentials and the induced

terms. For the confinement piece, we employ the lin-

ear confinement i.e. the Cornell-type. In fact, the

exact form of the full potential including both scalar

and vector pieces was given by Lucha et al. [7], and

we just re-check their results and then substitute the

potential into the Schrödinger equation.

Now we can reduce the two-body Schrödinger

equation into one particle equation where the kinetic

term is
1

2µ
p

2 where µ is the reduced mass and is

mc/2 in our case. Solving the differential equation,

we obtain the spectra. Since there exist several phe-

nomenological parameters that so far cannot be de-

rived from the underlying theory, we can fix them by

fitting a few well measured charmonia states.

Moreover, as is well known, the vacuum fluctua-

tion induces the Lamb shift. The basic Lagrangian of

the Lamb shift has been derived by some authors, and

for interaction, we have Hint =−Lint [8, 9]. Thus we

substitute the expression into our data fitting pro-

cess to re-derive the phenomenological parameters.

Indeed, the Lamb shift only occurs at the loop level,

but the Coulomb-type −αs/r appears at the tree level

of QCD. It seems that they belong to different lev-

els, but as we introduce the phenomenological pa-

rameters that include the loop and non-perturbative

QCD effects, we cannot distinguish between the tree

level contribution and that of higher orders. How-

ever, for the Lamb shift, we do not introduce a

new phenomenological parameter but use the derived

form1).

There are some subtleties in the calculations that

we will address in the text.

This paper is organized as follows. In Sections 2

and 3, we introduce the generalized Breit-Fermi

Hamiltonian and the Schördinger equation for the

cc̄ bound states: J/ψ, χc0(1P ), χc1(1P ), ηc(2S) and

ψ(2S). Then we numerically solve the eigen-equations

for these bound states and fix the parameters. In Sec-

tion 4, the Lamb shift is concerned and another set

of the parameters is given to improve our predictions.

The last section is devoted to our conclusion and dis-

cussion.

2 The Schördinger equation and the

generalized Breit-Fermi Hamilto-

nian

For the cc̄ meson, the generalized Breit-Fermi

Hamiltonian was given in Refs. [2, 10] as

H =H0 +H1 + ..., (1a)

and,

H0 =
p2

m
+S(r)+V (r), (1b)

1) It is noted that for a formula that is derived in the field theory, one can separate the contributions corresponding to different

orders as long as there are no phenomenological parameters involved, and that is the case we deal with for the Lamb shift. Please

see the text for details.
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H1 = Hsd +Hsi, (1c)

Hsd = Hls +Hss +Ht =
1

2m2r
(3V ′−S′) ~L ·(~S1+ ~S2)

+
2

3m2
~S1 · ~S2∇

2V (r)

+
1

12m2

(

1

r
V ′−V ′′

)

S12, (1d)

Hsi = −
p4

4m3
+

1

4m2

{

2

r
V ′(r) · ~L2 +[p2,V −rV ′]

+ 2(V −rV ′)p2 +
1

2

[

8

r
V ′(r)+V ′′−rV ′′′

]}

(1e)

where V and S stand for the vector and scalar poten-

tials and Hsi and Hsd represent the spin-independent

and spin-dependent pieces, respectively. For the con-

finement piece, we adopt the Cornell type linear po-

tential [11]. Thus the total potential at lowest order

reads

U(r) =V (r)+S(r) =−aCF

αs

r
+bκ2r, (2a)

where






V (r) =−c CFαs/r+dκ2r

S(r) =−(a−c)CFαs/r+(b−d)κ2r.
(2b)

With the Hamiltonian (1) and the potential (2), one

can solve the Schördinger equation,

(E−2m)Ψ(r) =HΨ(r) = (H0 +H1)Ψ(r). (3)

If we define the radial wave function as R(x) with

the dimensionless variable, x = κr, then the radial

equation is written as1)

d2

dx2
u(x) =A(x)u(x) (4a)

where,

A(x) = −m̃
(

Ẽ−2m̃− Ũ(x)−H̃ ′

1

)

+
l(l+1)

x2

−
1

4

(

Ẽ−2m̃− Ũ(x)
)2

(4b)

with






















m̃=m/κ, Ẽ=E/κ,

H̃ ′

1 =H ′

1/κ, Ũ(x) =U(x)/κ,

and, H1 =H ′

1−
p4

4m3
.

(4c)

The approximation

p2
≈m(E−2m−U(r)) (4d)

is used in (3). This approximation is only applied to

the terms such as the L–S coupling, S–S coupling

and relativistic correction, etc., which are small com-

pared with the leading one and in the common treat-

ment are taken as a perturbation to the solution of

the Schrödinger equation. Therefore, one can expect

that the changes caused by the approximation are

not significant. However, as is known, the perturba-

tion method does not work perfectly for the charmo-

nia system, so this approximation might induce some

larger errors when convolution is carried out. Since

this approximation has been widely adopted in the

literature and greatly simplifies the calculation, we

still keep it in this work. We will further investigate

its legitimacy in our coming work.

3 The energy gap function of the cc̄

charmonia and the numerical results

The radial Eq. (4) can be solved in terms of

the method called “the iterative numerical process”,

which is introduced in the literature (for example,

see [12, 13]). We have improved this method, and

then fix the parameters a, b, c, d by fitting the well

measured spectra of cc̄ charmonia: J/ψ; χc0(1P );

χc1(1P ); ηc(2S) and ψ(2S). Instead of directly fit-

ting the masses, we construct a series of relations that

should be fitted,































m [ψ(2S)]−m [χc1(1P )]=E [23S1]−E [13P1] ;

m [ψ(2S)]−m [J/ψ(1S)]=E [23S1]−E [13S1] ;

m [ψ(2S)]−m [η(2S)]=E [23S1]−E [21S0] ;

m [ψ(2S)]−m [χc0(1P )]=E [23S1]−E [13P0] .

(5)

where E [n2S+1
r lj ] represents the eigen-values of the

radial Eq. (4) with various quantum numbers nr, j,

l, and s. Because the parameters a, b, c and d are in-

volved in the potential (2), E [n2S+1
r lj ] must be func-

tions of these parameters. m[meson] are the masses of

the individual states, which are shown in Table 1 [14].

Sequentially, the parameters a, b, c and d are obtained

by solving Eq. (5). By means of Newton’s iterative

method, we have achieved as (the details about the

numerical method can be found in Ref. [15])

a= 1.1715, b= 1.2250, c= 0.8087, d= 0.5291 (6)

Here, we set αs = 0.36 and κ = 0.42 GeV, which

seem somehow different from the values given in the

1)The standard form of the radial equation can be easily found in Ref. [12], and the method to make it dimensionless is given

in Ref. [13].
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literature [16–18]. But as noticed, the deviation may

be included in the phenomenological parameters a, b,

c and d.

Table 1. The experimental central values of the

spectra of the cc̄ charmonia states.

state m/GeV state m/GeV

J/ψ(13S1) 3.0969 ηc(21S0) 3.6370

χc0(13P0) 3.4148 ψ(23S1) 3.6861

χc1(13P1) 3.5107

A few words are about our choice of the input. In

principle, any five well measured states of the char-

monia can be used as the input. However, unfortu-

nately, the relationship between the E [n2S+1
r lj ] and

the parameters in (5) is complicated, taking the cen-

tral values of the masses of J/ψ; χc0(1P ); χc1(1P );

ηc(2S) and ψ(2S) as the inputs, one can obtain rea-

sonable solutions, otherwise, Eq. (5) doesn’t render

solutions for a, b, c and d. The reason is due to the

experimental errors.

Given a, b, c and d in (6), the masses of the char-

monia states can be written as

M1(n
2S+1
r LJ) =E

[

n2S+1
r LJ

]

+E0 (7)

where E0 is the zero-point energy,

E0 =m[J/ψ]−E[13S1] (8)

and the final result is shown in Table 2.

Table 2. The mass spectra for the charmonia states (in GeV), with mc = 1.84 GeV. The mass of the EXP is

the value given in PDG [14].

meson EXP prediction meson EXP prediction meson EXP prediction

ηc(11S0) 2.9803 3.0189 χc1(13P1)fit 3.5107 3.5107 ηc(21S0)fit 3.6370 3.6370

J/ψ(13S1)fit 3.0969 3.0969 hc(11P1) 3.5259 3.5100 ψ(23S1)fit 3.6861 3.6861

χc0(13P0)fit 3.4148 3.4148 χc2(13P2) 3.5562 3.5564 ψ(33S1) / 4.1164

Explicitly, in the process, the masses of J/ψ, χc0,

ψ(23S1) and χc1(1
3P1) are taken as inputs to obtain

the parameters and then the masses of other states in

the family: ηc(1S), hc(1P ), χc2(1P ) and ψ(3S). The

numbers are predicted.

4 The mass spectrum as the Lamb

shift is taken into account

As is well known, the Lamb shift is due to the

vacuum fluctuation and may cause sizable effects on

the meson spectra. Indeed, the QED Lamb shift may

not be very significant because of the smallness of the

fine structure constant α, but for the QCD case, the

situation will be different.

On the other hand, the Breit-Fermi Hamiltonian

used in Section 3 does not include the effects of the

Lamb shift in the eigen-energy (4). In this section,

we will take the Lamb shift into account. However,

we do not introduce the Hamiltonian induced by the

Lamb shift into the differential equation because the

corresponding pieces are very complicated and it is

not necessary to do so. Instead, we simply add the

estimated values of the effects to the binding energies

of various states. Repeating the procedure carried

out in last sections and adding the Lamb shift effects

to the spectra, we re-fit the data to obtain a, b, c

and d again and predict the mass spectra of the rest

resonances.

Namely, we set the mass of a bound state as

2mc +Eb +∆ELS =M exp, (9)

where Eb is the solution of the eigen-equation, ∆ELS

is the energy caused by the Lamb shift. Solving the

equation, one can obtain the parameters again.

The authors of Refs. [8, 9] gave the theoretical ex-

pressions for the binding energies, which involve con-

tributions of the Lamb shift. When we only concern

the Lamb shift, we must single it out from the general

formulas. It is not difficult, as a matter of fact, be-

cause the Lamb shift starts at O(α3
s ) [19]. The Lamb

shift can be written as

∆E[n,j, l,s] = m[∆E(α3
s )+∆E(α4

s )+∆E(α5
s )

+∆E(α6
s )+ . . . ] (10a)

For readers’ convenience, let us directly copy

Titard’s formulas [9] below, where we dropped the

tree-level terms and the relativistic corrections, and

we have

∆E(α3
s ) = −α3

s

C2
F

8πn2
(2β0γE +4a1) ; (10b)

∆E(α4
s ) = −α4

s

C2
F

4n2π2

{

(

a1 +γE

β0

2

)2

+2

[

γE

(

a1β0 +
β1

8

)
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+

(

π2

12
+γ2

E

)

β2
0

4
+b1

]}

. (10c)

Hoang et al. estimated the contribution of higher

orders O(α5
s ) and O(α6

s ) to the binding energies [8].

Phenomenologically, these high-order terms can be

attributed to the effects of the Lamb shift,

∆E(α5
s ) = α5

s lgαs

C2
F

4πn2

{

CA

3

[

C2
A

2
+

4CACF

n(2l+1)

+
2C2

F

n

(

8

2l+1
−

1

n

)

]

+
3δl0C

2
F

2n
(CA +2CF)−

7CAC
2
Fδl0δs1

3n

−
CAC

2
F(1−δl0δs1)

4nl(l+1)(2l+1)
(4Xljs +〈S12〉ljs)

}

;

(10d)

∆E(α6
s ) = α6

s lg2αs

C2
F

4π2n2

{

δl0C
2
F

6n

[

β0

(

13CA

2
−CF

)

+
CA

3
(25CA +22CF)

]

−
CAC

2
Fδl0δs1
6n

[5β0

+7CA]−
CAC

2
F(1−δl0)δs1

8nl(l+1)(2l+1)

[

β0

(

2Xljs

+
1

2
〈S12〉ljs

)

+CA(2Xljs +〈S12〉ljs)

]}

.

(10e)

n in Ref. [10] stands for the principal quantum

number as n = nr + l, where nr and l are defined in

Section 3. All of the constants as a1, a2, b1, βi (i=1,

2, 3) are given in Ref. [20] (also see Refs. [9, 21–24]).

The Lamb shift ∆E[n,j, l,s] depends on the cou-

pling constant αs (see Eq. (10)) [9] as

αs(µ
2) =

2π

β0 lnµ/Λ

{

1−
β1

β2
0

ln(lnµ2/Λ2)

lnµ2/Λ2

+
β2

1 ln2(lnµ2/Λ2)−β2
1 ln(lnµ2/Λ2)−β2

1 +β2β0

β4
0 ln2µ2/Λ2

}

.

(11)

It is noted that unlike the others in the full Hamil-

tonian, which can be written in the pure operator

form, the contributions of the Lamb shift to the spec-

trum energies are always associated with the concrete

states.

Using the formulas given above, one can evaluate

the Lamb shift of the charmonia states. The scheme

of renormalization is suggested by Pineda et al [9, 20].

Actually, there is a term ln
[naµ

2

]

in the theoretical

expression of the energy (see Refs. [8, 9]), where a(µ2)

stands for the Bohr radius and µ is the renormaliza-

tion scale,

a(µ2) =
2

mCFα̃s(µ2)
(12a)

where,

α̃s(µ
2) = αs

{

1+

(

a1 +
γEβ0

2

)

αs

π

[

γE

(

a1β0 +
β1

8

)

+

(

π2

12
+γ2

E

)

β2
0

4
+b1

]

α2
s

π2

}

. (12b)

If one defines [20]

µ=
2

na
, (13)

this choice of µ will cancel the terms related to

ln
[naµ

2

]

in the spectrum energy.

The value of the parameter Λ is near 0.30 GeV

[20]. Here, we choose it as 0.275 GeV. The reason is

that, at this point, αn=2
s = 0.36, just the same as the

value of αs that we used in section 3.

It is obviously different from the conventional

renormalization scheme we commonly use. A con-

sequence is that the coupling constant αs is different

for different quantum numbers n,

αn=1
s = 0.31, αn=2

s = 0.36, αn=3
s = 0.43. (14)

Simply adding the Lamb shift to the total binding

energy is like changing the zero-point energy for each

state. We still select masses of J/ψ, χc0(1P ), χc1(1P ),

ηc(2S) and ψ(2S) as inputs, and solve the Eq. (5)

again as we did in the last Section. But the value of

αs in (5) is taken as the value given in Eq. (14), which

depends on n. The new solutions of a, b, c, and d are






a(1) = 1.3943, b(1) = 1.4057,

c(1) = 0.6243, d(1) = 0.9910;
(15)







a(2) = 1.4191, b(2) = 1.3292,

c(2) = 0.6459, d(2) = 0.9438.
(16)

where expression (15) is the solution when the Lamb

shift is taken up to order O(α3
s )

∆E[n,j, l,s] =m [∆E(α3
s )]

and (16) is for the Lamb shift,

∆E[n,j, l,s] = m[∆E(α3
s )+∆E(α4

s )+∆E(α5
s )

+∆E(α6
s )]
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Table 3. The charmonia mass spectra with contributions of the Lamb shift being taken into ac-

count. ∆E stands for the contribution of the Lamb shift, M1,2 are the eigen-energies of the (4) and
(

M ′

1,2 = M1,2 +∆E(1,2)
)

are the real masses of charmonia. The indices (1,2) in M and M ′ correspond

to the parameters set in Eq. (15) or Eq. (16) respectively.

meson ∆E(1) M1 M ′

1 ∆E(2) M2 M ′

2

ηc(11S0) −0.0674 3.0820 3.0146 −0.1196 3.1612 3.0416

J/ψ(13S1)fit −0.0674 3.1643 3.0969 −0.1245 3.2215 3.0969

χc0(13P0)fit −0.0310 3.4458 3.4148 −0.0799 3.4946 3.4148

χc1(13P1)fit −0.0310 3.5417 3.5107 −0.0802 3.5909 3.5107

hc(11P1) −0.0310 3.5593 3.5283 −0.0803 3.6063 3.5260

χc2(13P2) −0.0310 3.6079 3.5769 −0.0804 3.6552 3.5748

ηc(21S0)fit −0.0310 3.6680 3.6370 −0.0714 3.7084 3.637

ψ(23S1)fit −0.0310 3.7171 3.6861 −0.0728 3.7589 3.6861

ψ(33S1) −0.020 4.1460 4.1260 −0.0531 4.1746 4.1215

up to the order O(α6
s ). With these two solutions, our

predictions are given in Table 3.

5 Conclusion and discussion

In this work, we study the role of scalar potential

in the spectra of charmonia. Our strategy is that the

scalar and vector potentials have different fractions,

which manifest in their coefficients (in the text, they

are a, b, c and d for the Coulomb and confinement

pieces, respectively). By fitting some members of the

charmonia family, we can fit them. Then with the ob-

tained parameters, we further predict the mass spec-

tra of the rest resonances of charmonia. It is shown

that unlike the QED case where the fraction of scalar

potential is very small and negligible, the fraction of

scalar potential is of the same order of magnitude as

the vector potential. This is consistent with the con-

clusion of Ref. [25], and this is not surprising. As we

indicated, for the vector-like coupling theories QED

and QCD, the scalar potential can only appear at loop

level or is induced by non-perturbative effect (QCD

only). Thus it is loop-suppressed. However, for QCD,

the coupling is sizable and the non-perturbative ef-

fects are somehow significant, so one can expect the

fraction of scalar potential to be large.

Moreover, the Lamb shift is induced by the vac-

uum fluctuation and only appears at the loop level;

indeed the leading contribution is at O(α3
s ). There-

fore, for the QED case, it is hard to observe the Lamb

shift (observation of the Lamb shift is a great suc-

cess for theory and experiment indeed). However, for

QCD, the effects are not ignorable. By taking into

account the Lamb shift, we re-fit the model param-

eters and find that they are obviously distinct from

those without considering the Lamb shift.

In this work, by studying charmonia spectra, we

investigate the contribution of higher orders of αs and

non-perturbative QCD effects. However, to distin-

guish between them, one needs to do more theoreti-

cal research. This result helps us to get a better un-

derstanding of QCD, especially the non-perturbative

effects. Even though it is only half-quantitative, it is

an insight into the whole picture.

When we take into account the contribution of

the Lamb shift to the mass spectra, it is more obvi-

ous that higher order effects are important in QCD.

Because the Lamb shift only appears at order O(α3
s ),

its existence manifests higher order effects. Our cal-

culations show that while higher orders up to O(α6
s )

are involved, the fitted values of a, b, c, d are different

from those when only O(α3
s ) is considered.

The same strategy can be applied to the botto-

mia family and even the Bc resonances, where one

can further test the theoretical framework and inves-

tigate the higher order QCD behaviors. That will be

the focus of our next work.
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