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Abstract: The Ω baryons with JP = 3/2±,1/2± are studied on the lattice in the quenched approximation. Their

mass levels are ordered as M3/2+ < M3/2− ≈M1/2− < M1/2+ , as is expected from the constituent quark model. The

mass values are also close to those of the four Ω states observed in experiments. We calculate the Bethe-Salpeter

amplitudes of Ω(3/2+) and Ω(1/2+) and find there is a radial node for the Ω(1/2+) Bethe-Salpeter amplitude, which

may imply that Ω(1/2+) is an orbital excitation of Ω baryons as a member of the (D,LP
N ) = (70,0+

2 ) supermultiplet

in the SU(6)
⊗

O(3) quark model description. Our results are helpful for identifying the quantum numbers of

experimentally observed Ω states.
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1 Introduction

There are four Ω baryon states (strange number
S = −3) observed from experiments [1]. Except for
the lowest-lying one, Ω(1672), which is well known as
a member of the JP = 3/2+ baryon decuplet, the JP

quantum numbers of the other states, namely, Ω(2250),
Ω(2380), and Ω(2470), have not been completely deter-
mined from experiments. If they are dominated by the
three-quark components, the conventional SU(6)

⊗

O(3)
quark model with a harmonic oscillator confining poten-
tial can be used to give them a qualitative description. In
this picture, the baryons made up of u,d,s quarks can be
classified into energy bands that have the same number
N of the excitation quanta in the harmonic oscillator
potential [2]. Each band consists of a number of su-

permultiplets, specified by (D,LP
N ), where D stands for

the irreducible representation of the flavor-spin SU(6)
group, L is the total orbital angular momentum, and P
is the parity of the supermultiplet. For Ω baryons whose
flavor wave functions are totally symmetric, the ground
state of Ω baryons should be in the (56,0+

0 ) supermulti-
plet with the quantum number JP = 3/2+, namely the
Ω(1672) state. The states in the (70,1−

1 ) supermulti-
plet should have a total spin S = 1/2 and a unit of the
orbital excitation, such that their JP quantum number
can be either 3/2− or 1/2−. Therefore Ω3/2− and Ω1/2−

are expected to be approximately degenerate in mass
up to a small splitting due to the different spin wave
functions. The JP = 1

2

+
Ω baryons should be in either

the (56,2+
2 ) or (70,0+

2 ) multiplets. Therefore the several
lowest Ω states should have the energy levels ordered as
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M3/2+ < M3/2− ≈M1/2− < M1/2+ . On the other hand,
for the (56,2+

2 ) and (70,0+
2 ) multiplets, since they belong

to the different SU(6) representations, their spatial wave
functions can be different and can serve as a criterion to
distinguish them from each other.

However, the quark model is not an ab-initio method
and can only give qualitative results, so studies from first
principles are desired, such as the lattice QCD method.
Early lattice QCD studies can be found in [3, 4]. The
most recent systematic study with unquenched config-
urations was carried out in Ref. [5] where the authors
found 11 strangeness -3 states with energies near or below
2.5 GeV using sophisticated smearing schemes for opera-
tors and a variational method for the extraction of energy
levels, but found it difficult to distinguish the single Ω
states from possible scattering states. In this work, we
explore the excited states of Ω baryons in the quenched
approximation, whose advantage in this topic is that the
excited states are free from the contamination of scatter-
ing states. We focus on the several lowest-lying Ω states

with JP =
1

2

±

,
3

2

±

. In addition to their spectrum, we

also investigate the Bethe-Salpeter amplitudes of these
states through spatially extended operators, which may
shed light on the internal structure of these Ω states.

This paper is organized as follows: Section 2 contains
our calculation method including the operator construc-
tions, fermion contractions and wave function definitions.
The numerical results of the spectrum and the wave func-
tions are presented in Section 3. The conclusions and a
summary can be found in Section 4.

2 Operators and correlation functions

2.1 Interpolating operators for Ω baryons

The interpolating operator for Ω baryons can be ex-
pressed as

Oµ = εabc(sTa Cγµsb)sc, (1)

where C = γ2γ4 is the C-parity operator, a,b,c are color
indices, and sT means the transpose of the Dirac spinor
of the strange quark field s. However, Oµ has no definite
spin and can couple to the J = 3/2 and J = 1/2 states [6].
The J = 3/2 and J = 1/2 components of Oµ

Ω can be dis-
entangled by introducing the following projectors [4]

Pµν
3/2 = δµν− 1

3
γµγν− 1

3p2
(p/γµpν +pµγνp/),

Pµν
1/2 = δµν−Pµν

3/2. (2)

In the lattice studies, only the spatial components of Oµ

are implemented. If we consider the Ω baryons in their

rest frames, the projectors above can be simplified as

P ij
3/2 = δij− 1

3
γiγj ,

P ij
1/2 =

1

3
γiγj . (3)

Thus the spin projected operators with definite spin
quantum number can be obtained as

Oi
3/2 =

∑

j

P ij
3/2Oj

Ω,

Oi
1/2 =

∑

j

P ij
1/2Oj

Ω. (4)

Furthermore, one can also use the parity projectors

P± =
1

2
(1±γ4) to ensure the definite parities of baryon

states.
It should be noted that for now all the operators are

considered in the continuum case. On a finite lattice,
the spatial symmetry group SO(3) breaks down to the
octahedral point group O, whose irreducible representa-
tions corresponding to J = 1/2 and J = 3/2 are the two-
dimensional G1 representation and the four-dimensional
H representation, respectively. Generally, there exist
subduction matrices to project the continuum operators
to octahedral point group operators [7], say,

O(J,Λ)r =
∑

m

S(J,Λ)m
r O(J)m, (5)

where O(J)m is the continuum operator with total spin
J and the third component of spin m, O(J,Λ)r is the
r-th component of the octahedral point group operator
under irreducible representation Λ, S(J,Λ)m

r is the sub-

duction matrices. In our case, S

(

1

2
,G1

)

and S

(

3

2
,H

)

are both unit matrices, so that the operators in Eq. 4,
which are actully used in this study, are already the ir-
reducible representations of the lattice symmetry group
O.

We also consider the spatially extended interpolation
operators by splitting Oµ into two parts with spatial sep-
arations. The expressions are written explicitly as

Oµ
1 (r)=

∑

|~r|

εabc[sTa (x+~r)Cγµsb(x)]sc(x),

Oµ
2 (r)=

∑

|~r|

εabc[sTa (x)Cγµsb(x+~r)]sc(x),

Oµ
3 (r)=

∑

|~r|

εabc[sTa (x)Cγµsb(x)]sc(x+~r), (6)

where the summations are over ~r’s with the same r= |~r|
in order to guarantee the same quantum number as the
case of r= 0. These three splitting procedures have been
verified to be numerically equivalent, so we make use of
the third type, O3(r), in the practical study. These op-
erators are obviously gauge variant, so we carry out the
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lattice calculation by fixing all the gauge configurations
to the Coulomb gauge first.

The general form of the two-point function of a
baryon of quantum number JP with P =± is

C±,i
J (r, t) = Tr

[

(1±γ4)
∑

~x,j

〈P ij
J Oj

3(r,x)Ōj
3(0)P ji

J 〉
]

. (7)

The summation on ~x ensures a zero momentum. For Ω
baryons, there exist six different Wick contractions as
shown in Fig. 1.

Fig. 1. Six ways of contraction. We use color in-
dices to label the three s quarks. Each solid line
stands for a quark propagator.

Fig. 2. (color online) The effective mass plateaus
of Ω baryons using a point source with/without

projections. Except for J =
3

2
states, the point-

source two-point functions have no good plateaus
at the short time range.

2.2 Source technique

In principle, all states with the same quantum num-
ber JP contribute to the two-point functions CP,i

J (r, t).
For baryons, it is known that the the signal-to-noise ra-
tio of the two-points damps very quickly since the noise
decreases as ∼ e−3/2mπt in t, which is much slower than
the decay of the signal e−MBt, where MB is the baryon
mass. Therefore, in order to obtain clear and reliable
signals of the ground state from two-point functions in
the available early time range, some source techniques
are implemented by replacing the local operator Oj

3(0,0)
by some versions of spatially extended source operators

Oj,(s)
3 (0) which enhance the contribution of the ground

state and suppress that from excited states. The ex-
tended source operator Oj,(s)

3 is usually realized by cal-
culating the quark propagators through a source vector
with a spatial distribution φ(x),

M(x;y)S(s)
F (y; t0) =

∑

z

δ(x−z)δ(t− t0)φ(z), (8)

thus the effective propagator S(s)
F (y; t= 0) relates to the

normal point source propagator SF (y;z, t0) as

S(s)
F (y; t0) =

∑

z

φ(z)SF (y;z, t0). (9)

When one calculates a baryon two-point function using
the same Wick contraction by replacing the point-source
propagators with the effective propagators, it is equiva-
lent to using the spatially extended source operator

O(s)(t0) =
∑

z,w,v

φ(z)φ(w)φ(v)ψ(z, t0 )ψ(w, t0)ψ(v, t0),

(10)
where ψψψ stands for the original baryon operator (the
color indices and corresponding γ matrices are omitted
for simplicity. Note that gauge links should be consid-
ered if one requires the gauge invariance of spatially ex-
tended operators). The matrix element of O(s) between
the vacuum and the baryon state |B〉, which manifests
the coupling of this operator to the state, can be ex-
pressed as,

〈0|O(s)|B〉=
∑

z,w,v

φ(z)φ(w)φ(v)ΦB (z,w,v)ζB , (11)

where ζB is the spinor reflecting the spin of |B〉, and
ΦB(z,w,v) is its Bethe-Salpeter amplitude, which is de-
fined as the corresponding matrix element of the original
operator,

〈0|ψ(z)ψ(w)ψ(v)|B〉≡ΦB(z,w,v)ζB . (12)

In order to enhance the coupling 〈0|O(s)|B〉 and suppress
the related coupling of excited states, the essence is to
tune the parameters in φ(x) such that φ(z)φ(w)φ(v) re-
sembles ΦB(z,w,v) as closely as possible and the over-
lap integration in Eq. (11) (actually summations over
the spatial lattice sites) can be maximized. If the BS
amplitudes can be approximately interpreted to be the
spatial wave function of a state, the coupling of this op-
erator to excited states can be subsequently minimized
according to the orthogonality of the wave functions.
Commonly used source techniques include the Gaussian
smeared source [8,9] and the wall source in a fixed gauge.
The Gaussian smeared source corresponds to the func-
tion φ(x)∼ e−σ2|x|2 with σ2 a tunable parameter, while
the wall source in a fixed gauge is the extreme situation
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of the Gaussian smeared source when σ→∞. The Gaus-
sian smeared source usually works well for states whose
BS amplitude has no radial nodes. This is similar to the
case in quantum mechanics where a Gaussian-like func-
tion serves as a good trial wave function of the ground
state in solving a bound state problem using the varia-
tional method with σ the variational parameter.

For this work, we first try the Gaussian smeared
source for Ω baryons and find it works well for Ω 3

2

+ .

This is not surprising since the Ω 3
2

+ is the ground state

whose spatial wave functions is (1s)(1s)(1s) in the stan-
dard quark model with a harmonic oscillator potential.
However for other states, especially for Ω 1

2

+ , we can-

not get a good effective mass plateau before the signals
are overwhelmed by noise. Similar phenomena were ob-
served in previous works (see Ref. [4] for example). In-

spired by the quark model description that the JP =
1

2

+

decuplet baryons belong to the higher excitation energy
bands, we conjecture that the BS amplitude of Ω 1

2

+ has

radial node(s), and thereby propose a new type of source
which reflects some node structure, say,

φ(x) = (1−A|x|2)e−σ2|x|2 , (13)

where σ and A are parameters to be tuned to give a good
effective mass plateau in the early time range. The effects
of the extended source operator on the effective masses of

different states are illustrated in Fig. 3. For JP =
3

2

±

,
1

2

−

states, we use the Gaussian smeared sources which im-
prove the qualities of the effective mass plateaus as ex-

pected. For the JP =
1

2

+

state, the new type of source

operators with the nodal structure makes the effective
mass plateaus fairly satisfactory, in contrast to the case
of a point source. We advocate that this new type of
source operator can be potentially applied to other stud-
ies on radial excited states of hadrons.

Fig. 3. (color online) Smeared source Ω spectrum.

For JP =
3

2

±

and JP =
1

2

−

, we use a common

Gaussian smeared source, while for JP =
1

2

+

, we

use a novel smeared source with a radial node.

3 Numerical details and simulation re-

sults

The gauge configurations used in this work were
generated on two anisotropic ensembles with tadpole-
improved gauge action [10]. The anisotropy ξ≡ as/at = 5
and the lattice sizes are L3×T = 163×96 and 243×144,
respectively. The relevant input parameters are listed in
Table. 1, where the as values are determined through the
static potential with the scale parameter r−1

0 = 410(20)
MeV. The spatial extensions of the two lattices are larger
than 3 fm, which are expected to be large enough for Ω
baryons such that the finite volume effects can be ne-
glected. We use the tadpole improved Wilson clover ac-
tion [11] to calculate the quark propagators with the bare
strange quark mass parameter being tuned to reproduce
the physical φ meson mass value. (In the calculation
of the two-point function of the φ meson, we ignore the
ss̄ annihilation diagram, which contributes little to the
two-point function. This can be understood qualitatively
through the OZI rule). We used a modified version of a
GPU inverter [12] to calculate all the inversions in this
work.

Table 1. The input parameters for the calculation.
Values of the coupling β, anisotropy ξ, the lattice
size, and the number of measurements are listed.
as/r0 is determined by the static potential, the
first error of as is the statistical error and the
second comes from the uncertainty of the scale
parameter r−1

0 =410(20) MeV.

β ξ as Las/fm L3
×T Nconf

2.4 5 0.222(2)(11) ∼ 3.55 163
×96 1000

2.8 5 0.138(1)(7) ∼ 3.31 243
×144 1000

As mentioned before, the spatially extended opera-
tors we use for Ω baryons are not gauge invariant, so we
calculate the corresponding two-point functions in the
Coulomb gauge by first carrying out gauge fixing to the
gauge configurations. By use of source vectors with prop-
erly tuned parameters, we generate the quark propaga-
tors in this gauge, from which the two-point functions
in different channels are obtained. Since we focus on
the ground states in each channel, the related two-point
functions are analyzed with the single-exponential func-
tion form in properly chosen time windows,

CJ
2 (r, t)

t→∞∼ NJΦJ(r)e−mJ t, (14)

where J denotes different quantum numbers, NJ stands
for an irrelevant normalization constant, ΦJ(r) is the BS
amplitude and mJ is the mass. In order to take care of
the possible correlation, we fit CJ

2 (r, t) with different r
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simultaneously through a correlated miminal-χ2 fit pro-
cedure, where the covariance matrix is calculated by the
bootstrap method. As such, in addition to the masses
mJ , we can also obtain the r-dependence of the the BS
amplitudes ΦJ(r). Figure 4 shows the effective mass
plateaus for CJ(r = 0, t) and the fit range. We quote
the bootstrap errors as the statistical ones for masses
and BS amplitudes.

Fig. 4. (color online) Effective mass plots of the
Ω system. The two ensembles are both included.
The points with error bars are lattice data, while
the colored bands are fit results indicating both
the fit range and the fit error.

Table 2. The spectrum of the JP =
3

2

±

,
1

2

±

Ω

baryons on the two lattices. The errors of masses
are all statistical (we do not include the error
owing to the uncertainty of r−1

0 = 410(20) MeV
here). On the last line, except for the well estab-
lished Ω(1672), we tentatively assign the other
three Ω baryons in experiments to the states
we observe in this study (labelled with question
marks) .

β mΩ
3/2+

mΩ
3/2−

mΩ
1/2−

mΩ
1/2+

/GeV /GeV /GeV /GeV

2.4 1.668(9) 2.176(26) 2.189(13) 2.464(26)

2.8 1.695(4) 2.153(5) 2.125(14) 2.492(14)

Exp. Ω(1672) Ω(2250)? Ω(2380)? Ω(2470)?

The masses for different Ω states on the two lat-
tices are listed in Table 2, where the mass values are

expressed in physical units using the lattice spacings in
Table 1. The masses of these states are insensitive to the
lattice spacings, which implies that the discretization un-
certainty is small for these states. It is seen that the mass

of the JP =
3

2

+

Ω we obtain is consistent with the phys-

ical mass of Ω(1672), and the masses of JP =
3

2

−

and

1

2

−

are almost degenerate, as expected from the quark

model, but lower than the experimental states Ω(2250)

and Ω(2380). For the JP =
1

2

+

state, we get a mass of

2.464(26) GeV on the coarse lattice and 2.492(14) GeV
on the fine lattice, which is in agreement with the mass
of Ω(2470).

The BS amplitudes for the
3

2

+

and
1

2

+

states are plot-

ted in Fig. 5 (normalized as ΦJ(r = 0) = 1). In order to
compare the results from different lattices, we plot the
x-axis in physical units. From the figure one can see that
the discretization artifacts are also small for BS ampli-
tudes. We do observe a radial node in the BS amplitude

of
1

2

+

state. We use the following functions

Φ 3
2

+(r) =e−(r/r0)κ

,

Φ 1
2

+(r) =(1−b rκ)e−(r/r0)κ

, (15)

1

0.8

0.6

0.4

0.2

0

−0.4

−0.2

0 0.5 1 1.5 2

Ф
(r
)

r/fm

3/2
+
β=2.8

3/2
+
β=2.4

1/2
+

β=2.8
1/2+β=2.4

Fig. 5. (color online) The BS amplitudes of Ω 3
2

+

and Ω 1
2

+ . The dots are lattice results while the

lines are the fitting functions in Eq. (15). A radial
node of the BS amplitude of the Ω 1

2

+ is observed.

to fit the data points, which are also plotted in curves in
the figure. The fit results are summarized in Table 3.

Now we resort to the non-relativistic quark model
to understand the radial behavior of the BS amplitude
of JP = 1/2+ Ω. In the non-relativistic approximation,
the relativistic quark field ψ can be expressed in terms
of its non-relativistic components through the Foldi-
Wouthuysen-Tani transformation

ψ= exp

(

γ ·D
2ms

)

(

χ

η

)

, (16)
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Table 3. Fit results of the BS amplitudes for Ω 3
2

+

and Ω 1
2

+ .

Jp β r0/fm κ b

3

2

+

2.4 0.504(3) 1.49(2)

3

2

+

2.8 0.494(4) 1.55(2)

1

2

+

2.4 0.568(5) 1.74(3) 3.7(1)

1

2

+

2.8 0.529(8) 1.73(4) 4.5(2)

where the Pauli spinor χ annihilates a quark and η cre-
ates an anti-quark, and D is the covariant derivative
operator. η and χ satisfy the conditions

χ|0〉= 0, 〈0|χ† = 0, η†|0〉= 0, 〈0|η= 0. (17)

With this expansion, the operator Oi
Ω can be expressed

as

Oi
Ω∼ εabc

[

χaT

(

1+
(σ ·←−D)2

4m2
s

)

σ2σi

(

1+
(σ ·−→D)2

4m2
s

)

χb

−χaT σ ·
←−
D

2ms

σ2σi

σ ·−→D
2ms

χb

]











(

1+
(σ ·−→D)2

4m2
s

)

χc

σ ·−→D
2ms

χc











+ . . . . (18)

We would like to caution that this expansion is not justi-
fied rigorously for the strange quark since its relativistic
effect in the hadron might be important. However, the
non-relativistic quark model usually gives reasonable de-
scriptions of hadron spectra, so we tentatively follow this
direction to make the following discussion. The non-
relativistic wave function for a baryon state in its rest
frame is defined in principle as

ΨJ(x1,x2,x3)ζ ∼〈0|εabcχaT (x1)χ
b(x2)χ

c(x3)|ΩJ〉,
(19)

where ζ stands for the spin wave function for ΩJ . If we
introduce the Jacobi coordinates,

R=
1

3
(x1 +x2 +x3)

ρ=
1√
2
(x1−x2)

λ=
1√
6
(x1 +x2−2x3), (20)

as is usually done in the non-relativistic quark model
study of baryons, in the rest frame of Ω1/2+ (R = 0), the
matrix element of Oi

J(x1,x2,x3) between the vacuum
and the Ω state can be written qualitatively as

〈0|Oi
J(x1,x2,x3)|ΩJ〉

∼
(

Di +Ai ∂
2

∂ρ2
+Bi ∂2

∂ρ∂λ
+Ci ∂

2

∂λ2

)

ΨJ(ρ,λ)ζ, (21)

where we approximate the covariant derivative D by the
spatial derivative ∇.

In the standard non-relativistic quark model with
harmonic oscillator potentials for baryons, baryons can
be sorted into energy bands of the the two independent
oscillators, the so-called ρ-oscillator and λ-oscillator,
which are depicted by the radial and orbital quantum
numbers (nλ, lλ) and (nρ, lρ) [2]. For baryons made up of
u,d,s quarks, these energy bands are labelled as (D,LP

N ),
where D is the irreducible representation of the flavor-
spin SU(6) group, L= |lρ−lλ|, |lρ−lλ|+1, . . . , lρ+lλ is the
total orbital angular momentum, N = 2(nρ+nλ)+(lρ+lλ)
is the total number of the excited quanta of the har-
monic oscillators, and P is the parity of baryons. For

the flavor symmetric Ω baryons, the lowest JP =
1

2

+

states can be found in the supermultiplets (56,2+
2 ), and

(70,0+
2 ). (56,2+

2 ) has the excitation mode (nλ,nρ) = (0,0)

and (lλ, lρ) = (2,0) or (0,2) with the total spin S =
3

2
,

and gives the quantum number JP =
1

2

+

,
3

2

+

,
5

2

+

,
7

2

+

.

(70,0+
2 ) has the excitation mode (nλ,nρ) = (0,0) and

(lλ, lρ) = (1,1) with S =
1

2
, which corresponds to the

quantum number JP =
1

2

+

. In this picture, the spatial

wave function of the (56,2+
2 ) multiplet can be written

qualitatively (here we ignore the angular part) [13,14]

Ψ(ρ,λ)∼ (ρ2 +λ2)e−α(ρ2+λ2), (22)

while the spatial wave function of the (70,0+
2 ) multiplet

is either

Ψ(ρ,λ)∼ (ρ2−λ2)e−α(ρ2+λ2), (23)

or

Ψ(ρ,λ)∼ ρλe−α(ρ2+λ2), (24)

where the parameter α depends on the constituent quark
mass and the parameters in the potential. Obviously,
the local operators correspond to λ = ρ = 0, such that

their coupling to the JP =
1

2

+

state can be largely sup-

pressed. Recall that the interpolation operator we use for
Ω baryons isO3(r), which corresponds to ρ= 0 and λ∝ r.
As such, we have the qualitatively radial behaviour of the
Bethe-Salpeter amplitudes

〈0|Oi

3, 1
2

+(r)|Ω 1
2

+〉∼ (A′ +B′r2 +C ′r4)e−αr2

ζi, (25)

if we use the wave functions in Eq. (22) and Eq. (23),
and

0|Oi

3, 1
2

+(r)|Ω 1
2

+ ; (70,0+
2 )〉∼ (A′′ +B′′r2)e−αr2

ζi (26)
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for the wave function form in Eq. (24). Obviously, the
former may have two nodes in the r direction, while the
latter has only one. In this sense, the radial behavior of

the BS amplitudes in Fig. 5 may imply that the JP =
1

2

+

Ω baryon we have observed is possibly mainly the (70,0+
2 )

state, whose spatial wave function may have the quali-
tative form in Eq. (24). It should be noted that these
discussions are very tentative and the the reality can be
much more complicated. This can be seen in Table 3
where the parameters κ deviate substantially from κ= 2
which corresponds to the harmonic oscillator potential.

4 Summary

We have carried out a lattice study of the spectrum
and the Bethe-Salpeter amplitudes of Ω baryons in the
quenched approximation. In the Coulomb gauge, we pro-
pose a new type of source vector for the calculation of
quark propagators, which is similar in spirit to the con-
ventionally used Gaussian smearing source technique,
but is oriented to increase the coupling to the states
whose Bethe-Salpeter amplitude may have more compli-
cated nodal behavior than that of the ground state. As
for excited states, whether orbital excitation or radial ex-
citation, it is expected that their BS amplitude may have
radial nodes, so we use source vectors with nodal struc-
tures, which resemble the node structure of its BS am-
plitude. This technique works in practice, since we can

obtain fairly good effective mass plateaus for JP =
1

2

+

at the early time slices.
With the quark mass parameter tuned to be at the

strange quark mass using the physical mass of the φ me-
son, we calculate the spectrum of Ω baryons with the

quantum number JP =
3

2

±

,
1

2

±

on two anisotropic lat-

tices with the spatial lattice spacing set at as = 0.222(2)
fm and as = 0.138(1) fm, respectively. On both lat-

tices, the JP =
3

2

−

and
1

2

−

Ω baryons have almost de-

generate masses in the range from 2100 MeV to 2200
MeV. This is compatible with the expectation of the
non-relativistic quark model that they are in the same
supermultiplet (70,1−

1 ) with the same excitation mode,
say, (nλ,nρ) = (0,0) and (lρ, lλ) = (1,0) or (0,1), and the

same total quark spin S =
1

2
. For the

1

2

+

Ω baryon,

we obtain its mass at roughly 2400–2500 MeV. Further-

more, we also calculate the BS amplitude of the
1

2

+

Ω

baryon in the Coulomb gauge and observe a radial node,
which can be qualitatively understood as the reflection of
the second order differential of the non-relativistic wave
function of (70,0+

2 ) baryons. Therefore it is preferable to

assign the
1

2

+

Ω state we observe to be a member of the

(70,0+
2 ) supermultiplet instead of that of (56,2+

2 ).
We notice that the latest Nf = 2+1 full-QCD lattice

calculation has obtained 11 energy levels of the Ω spec-
trum around and below 2500 MeV, but has difficulties
in the assignment of their states because there is no re-
liable criterion to distinguish single particle states from
the would-be scattering states. Fortunately we are free
of this kind of trouble with the quenched approximation,
so that the masses we obtain can be taken as those of
the bare Ω baryon states before their hadronic decays are
switched on. In comparison with the experiments, our

predicted masses of JP =
3

2

−

and
1

2

−

Ω baryons are close

to that of Ω(2250), and the mass of JP =
1

2

+

is consis-

tent with Ω(2470). This observation may be helpful in
determining their JP quantum numbers.
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