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Effect of Wigner energy on the symmetry energy coefficient in nuclei *
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Abstract: The nuclear symmetry energy coefficient (including the coefficient a
(4)
sym of the I4 term) of finite nuclei

is extracted by using the differences of available experimental binding energies of isobaric nuclei. It is found that

the extracted symmetry energy coefficient a∗
sym(A,I) decreases with increasing isospin asymmetry I, which is mainly

caused by Wigner correction, since e∗sym is the summation of the traditional symmetry energy esym and the Wigner

energy eW. We obtain the optimal values J =30.25±0.10 MeV, ass =56.18±1.25 MeV, a
(4)
sym =8.33±1.21 MeV and

the Wigner parameter x = 2.38± 0.12 through a polynomial fit to 2240 measured binding energies for nuclei with

20 6 A 6 261 with an rms deviation of 23.42 keV. We also find that the volume symmetry coefficient J ' 30 MeV

is insensitive to the value x, whereas the surface symmetry coefficient ass and the coefficient a
(4)
sym are very sensitive

to the value of x in the range 1 6 x 6 4. The contribution of the a
(4)
sym term increases rapidly with increasing isospin

asymmetry I. For very neutron-rich nuclei, the contribution of the a
(4)
sym term will play an important role.

Keywords: symmetry energy, Wigner energy, binding energy, isobaric nuclei

PACS: 21.10.Dr, 21.65.Ef, 21.65.Mn DOI: 10.1088/1674-1137/40/9/094101

1 Introduction

It is evident that the symmetry energy coefficient
plays an extremely important role, not only in nuclear
physics, where it is involved in processes such as the
dynamics of heavy-ion collisions induced by radioactive
beams, the proper description of the nuclear binding en-
ergies along the periodic table, and the structure of ex-
otic nuclei near the nuclear drip lines [1–12], but also
in astrophysics, including the dynamical evolution of
the core collapse of a massive star and the associated
explosive nucleosynthesis [13–19]. In the global fitting
of nuclear masses in the framework of the liquid drop
mass formula, the symmetry energy per particle is usu-
ally written as esym = asymI2, where I = (N −Z)/A is
the isospin asymmetry and the symmetry energy coef-
ficient asym enters as a mass-dependent phenomenolog-
ical parameter [20–25]. In fact, asym is also a function
of the isospin asymmetry I , which is usually written as
asym(A,I) = J−ass/A

1/3+a(4)
symI2 by neglecting the higher

order term [26, 27]. But how does asym change with
increasing isospin asymmetry I for given mass number
A? It is mainly determined by the high-order I4 term

coefficient a(4)
sym of the symmetry energy. However, the

coefficient a(4)
sym is difficult to determine. It is necessary

to investigate the symmetry energy coefficient of finite
nuclei.

In Ref. [28], Min Liu et al. obtained the mass depen-
dence of asym(A) through performing a two-parameter
parabolic fitting to the energy per particle after remov-
ing the Coulomb energy en(A,I) = e(A,I)− ec(A,I) for
a series of nuclei with the same mass number A. The
extracted asym is only dependent on mass number A. In
this work, with similar approach to Ref. [28], we con-
sider the mass and isospin dependence of asym, and at
the same time include the higher-order (I4) term of the
symmetry energy. It is found that the Wigner energy
EW should be considered in the extraction of the nuclear
symmetry energy coefficient. However, the Wigner en-
ergy was not included in our previous paper [29]. The
nature of the symmetry and Wigner energy are inter-
twined in the nuclear mass formula and one term cannot
be reliably determined without knowledge of the other
[30]. This leads to considerable uncertainty in the value
for the symmetry energy, especially the coefficient a(4)

sym

of the I4 term in the symmetry energy coefficient expres-
sion.
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The paper is organized as follows. In Section 2, the
symmetry energy and the Wigner energy are presented,
and the summation of both are extracted by using the ex-
perimental binding energies differences between isobaric
nuclei. In Section 3, the method of extracting the sym-
metry energy coefficient is described and the correspond-
ing coefficients are obtained through polynomial fitting.
The effect of the Wigner energy on the symmetry energy
coefficient is studied in Section 4. Finally, a summary is
given in Section 5.

2 Symmetry energy and Wigner energy

Nuclear mass is one of the most precisely measured
quantities in nuclear physics. It can provide information
about the symmetry energy coefficient through the liq-
uid drop mass systematics. In the semi-empirical Bethe-
Weizsäcker mass formula [31, 32], the energy per particle
e(A,I) of a nucleus can be expressed as a function of the
mass number A and the isospin asymmetry I ,

e(A,I) = av +asA
−1/3 +ec(A,I)+asymI2 +δ, (1)

with

δ =±apA
−3/2 or 0, (2)

where the “+” is for even-even nuclides, the “–” is for
odd-odd nuclides, and for odd-A nuclides (i.e. even-odd
and odd-even) δ = 0. The av, as, asym and ap are the
volume, surface, symmetry and pairing energy coeffi-
cients, respectively. The Coulomb energy per particle
is ec(A,I) = Ec/A, where the Coulomb energy of a nu-

cleus Ec = 0.71
Z2

A1/3
(1−0.76Z−2/3) and Z =

A

2
(1−I) are

usually used [33, 34].
Let us assume the binding energy per particle

e(A,I) = en(A,I)+ec(A,I), en(A,I) and ec(A,I) denote
the nuclear energy part and the Coulomb energy part per
particle, respectively. Subtracting the Coulomb energy
term from the binding energy, one obtains the nuclear
energy part per particle,

en(A,I)= e(A,I)−ec(A,I)

= e0(A)+esym(A,I)

= e0(A)+asym(A,I)I2, (3)

where e0(A) = av + asA
−1/3 + δ, including the volume,

surface and pairing energy terms, is only dependent on
nuclear mass number A. esym(A,I) is the symmetry en-
ergy per particle of a nucleus. If we take the difference
in the nuclear energy part per particle en(A,I) between
two isobaric nuclei with same odd-even parity, the e0(A)
term is canceled and the difference of the symmetry en-
ergy per particle can be written as

∆esym = en(A,I)−en(A,I1)

=asym(A,I)I2−asym(A,I1)I
2
1 . (4)

Here en(A,I1) is the nuclear energy part per particle of
a reference nucleus (A,I1), and the symmetric nucleus
(I1 = 0) is selected as the reference nucleus if its exper-
imental binding energy exists for even-even nuclei. For
any other case, the nucleus with the minimum value of
I1 = Imin > 0 is selected as the reference nucleus among
each series of isobaric nuclei. en(A,I) indicates any other
value of isobaric nuclei for given mass number A.

If the experimental binding energy of a symmetric
nucleus (I1=0) is known, we obtain

esym(A,I) = en(A,I)−en(A,0) = asym(A,I)I2, (5)

or

asym(A,I) =
esym(A,I)

I2
=

en(A,I)−en(A,0)

I2
, (6)

where only even-even nuclei are taken into account in our
calculations to consider the pairing effects for the even
mass number nuclei.

Fig. 1. Experimental symmetry energy coefficients
as a function of I extracted from Eq. (6) for all
even-even nuclei with mass number A=80 (solid

squares). The dotted line (a
(4)
sym=0), the solid line

(a
(4)
sym=50 MeV) and the dashed line (a

(4)
sym=–50

MeV) are the results using the expression of sym-
metry energy coefficient of Eq. (7).

On the other hand, according to the liquid drop
model, the symmetry energy coefficient of a finite nu-
cleus is usually written as

asym(A,I)=a(2)
sym +a(4)

symI2 +o(I4)

'J−assA
−1/3 +a(4)

symI2, (7)

by using the Leptodermous expansion in terms of powers
of A−1/3. J ≈ 28−34 MeV denotes the symmetry energy
of nuclear matter at normal density. ass is the coefficient
of the surface symmetry term. a(4)

sym is the coefficient of
the I4 term in the expression of symmetry energy.

Figure 1 shows the experimental symmetry energy co-
efficients as a function of isospin asymmetry I extracted
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from Eq. (6) for all even-even nuclei with mass number
A=80 (solid squares), where en(A,I) = e(A,I)−ec(A,I),
the experimental binding energy per particle e(A,I) is
taken from the mass table AME2012 [35], and ec(A,I) =

0.71
Z2

A4/3
(1−0.76Z−2/3). The dotted line (a(4)

sym=0), the

solid line (a(4)
sym=50 MeV) and the dashed line (a(4)

sym =
−50 MeV) are the results using the expression of symme-
try energy coefficient Eq. (7) with a(2)

sym=23 MeV. From
Fig. 1, one can see that only using the expression of
symmetry energy coefficient of Eq. (7), the extracted
experimental symmetry energy coefficient cannot be re-
produced whether it is positive, zero or negative for a(4)

sym.

Fig. 2. (a) Two forms of Wigner energy as a func-
tion of I, and (b) the extracted symmetry energy
coefficients asym by using the two forms of Wigner
energy applied to all even-even nuclei with A=80.
The solid squares denote the result of excluded
Wigner energy.

The effect of the Wigner energy is responsible for the
decrease of esym(A,I)/I2 with increasing isospin asym-
metry I at a given mass number A. To reproduce
the experimental data better, one should include the
Wigner energy term in Eq. (5). Let us rewrite the ex-
pression of Eq. (5) as e∗

sym(A,I) = en(A,I)− en(A,0),
where e∗

sym(A,I) is defined as the summation of the tra-
ditional symmetry energy esym(A,I) and the Wigner en-
ergy eW(A,I). However, the different Wigner energy
expression and parameters will directly affect the ex-
traction of symmetry energy coefficients. Figure 2 (a)
presents two forms for Wigner energy as a function of
isospin asymmetry I and applied to all even-even nuclei

with mass number A=80 in the mass table AME2012.
One is eW = 29.156I2[(2 − |I |)/(2 + |I |A)] (solid tri-
angles), which is proposed in Ref. [33], the other is
eW = −10exp(−4.2|I |)/A [37] (solid circles), which is
usually used in the literature. For convenience we de-
note the former by “form (1)” and the latter by “form
(2)”. From Fig. 2 (a), the value of eW is positive for
form (1) and negative for form (2). While the value
e∗
sym(A,I) is the summation of the traditional symmetry

energy and the Wigner energy, the negative Wigner en-
ergy of form (2) will lead to a larger traditional symmetry
energy and thus larger symmetry energy coefficient than
that with form (1). Figure 2 (b) presents the extracted
symmetry-energy coefficients asym using the two Wigner
energy forms for all even-even nuclei with A=80. An ob-
vious discrepancy can be observed by using the two forms
for Wigner energy. The solid triangles and solid circles
denote the results with form (1) and form (2), respec-
tively. The value of the extracted symmetry-energy co-
efficients asym is larger with form (2) than that with form
(1), especially for the range of I close to zero, and the
discrepancy decreases with increasing isospin asymmetry
I . It is therefore necessary to determine the Wigner en-
ergy of nuclei for a better description of the symmetry
energy coefficient.

3 Theoretical framework

In the semi-empirical mass formula, the Wigner en-
ergy is usually decomposed into two parts [38, 39]

EW(N,Z) =−W (A)|N −Z|−d(A)δN,Zπnp, (8)

where W (A) and d(A) are smooth functions of the nu-
clear mass number A. The first term on the right-hand
side of Eq. (8) contributes to all N 6= Z nuclei. The
quantity πnp equals 1 for odd-odd nuclei and vanishes
otherwise, and therefore the second term d(A) is nonzero
only for N = Z odd-odd nuclei. The Wigner effect mainly
stems from the first term in Eq. (8). By combining the
first term in Eq. (8), the traditional symmetry energy
term (N−Z)2/A is replaced by the T (T+x) term [40–43].
So odd-odd symmetric nuclei are not considered in the

following calculation. T = |Tz| =
|N −Z|

2
is the isospin

value of the nuclear ground state, and I = (N −Z)/A is
the isospin asymmetry of a nucleus. Then one has the
relation,

T =
|I |A

2
. (9)

The symmetry energy term including the Wigner energy
can be expressed as

E∗
sym(A,T ) =

4asym

A
T (T +x) =

4asym

A
T 2 +

4asym

A
Tx. (10)
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Inserting Eq. (9) into Eq. (10), we can obtain the sym-
metry energy per particle expression as a function of
mass number A and isospin asymmetry I ,

e∗
sym(A,I) =

E∗
sym(A,I)

A
= asymI2 +

2asymx|I |

A
, (11)

where e∗
sym(A,I) = esym(A,I)+ eW and asym is the sym-

metry energy coefficient expressed as a function of mass
number A and isospin asymmetry I . 2asymx denotes the
Wigner energy coefficient, the value of x is not well de-
termined from nuclear masses, x = 1 is associated with
neutron-proton exchange interactions in SU(2) symme-
try, while x = 4 corresponds to the full supermultiplet
symmetry SU(4) [44]. Further discussion on the Wigner
energy can be found in Ref. [45–48]. Here x as a pa-
rameter is introduced, named the Wigner energy param-
eter. The x values have a crucial effect on the sym-
metry energy coefficient, since the symmetry energy is
the summation of the traditional symmetry energy and
the Wigner energy. Different x values denote different
Wigner energies. Inserting Eq. (11) into Eq. (3) and re-
placing esym(A,I) by e∗

sym(A,I), the nuclear energy part
per particle Eq. (3) becomes

en(A,I)= e0(A)+e∗
sym(A,I)

= e0(A)+asym(A,I)

(

1+
2x

|I |A

)

I2, (12)

Inserting Eq. (7) into Eq. (12), and taking the dif-
ference of en(A,I) between two isobaric nuclei with the
same odd-even parity, Eq. (4) becomes

∆e∗(i)
sym = en(A,I)−en(A,Ii)

=a(2)
sym(I2−I2

i )+a(4)
sym(I4−I4

i )

+
2a(2)

symx

A
(|I |−|Ii|)

+
2a(4)

symx

A
(|I |3−|Ii|

3), (13)

where i=1, 2, 3, ..., n, a(2)
sym = J − assA

−1/3. The de-
pendence of the reference nuclei (A,I1), (A,I2), ... , and
(A,In) can be cancelled through the summation, and the
average value ∆e∗

sym of the difference of symmetry energy
can be expressed as

∆e∗
sym =

1

n
(∆e∗(1)

sym +∆e∗(2)
sym + ...+∆e∗(n)

sym )

= en(A,I)−
1

n

n
∑

i=1

en(A,Ii)

=a(2)
sym

(

I2−
1

n

n
∑

i=1

I2
i

)

+a(4)
sym

(

I4−
1

n

n
∑

i=1

I4
i

)

+
2a(2)

symx

A

(

|I |−
1

n

n
∑

i=1

|Ii|

)

+
2a(4)

symx

A

(

|I |3−
1

n

n
∑

i=1

|Ii|
3

)

, (14)

When neglecting the microscopic shell corrections of
nuclei, the result of Eq. (14) ∆e∗

sym = en(A,I) −
1

n

∑n

i=1
en(A,Ii) is obtained by the measured binding en-

ergy per nucleon of each series of isobaric nuclei compiled
in AME2012. By using the expression of the right-hand
side in Eq. (14) and fitting ∆e∗

sym from more than 2200
measured nuclear binding energies, we obtain the opti-
mal values J = 30.25±0.10 MeV, ass = 56.18±1.25 MeV,
a(4)

sym = 8.33±1.21 MeV and x = 2.38±0.12 with an rms
deviation of 23.42 keV.

4 Results and discussion

In Fig. 3(a), we show the extracted symmetry energy
coefficients of nuclei as a function of nuclear mass num-
ber. The solid squares denote the extracted symmetry
energy coefficients from the measured nuclear masses by

using
∆e∗(1)

sym

I2−I2
1

in Eq. (13). The open circles denote the

fitting results by Eq. (14) with the optimum parameter

values. The experimental value of
∆e∗(1)

sym

I2−I2
1

obtained in

our approach by Eq. (13) shows some oscillations and
fluctuations, which is probably caused by the shell effect
and other nuclear structure effects. In Fig. 3 (b), we
show the same data as in Fig. 3(a), but as a function
of isospin asymmetry I . From Fig. 1 and Fig. 3(b),
we find that the extracted symmetry energy coefficients
depend on the corresponding isospin asymmetry of nu-
clei, which decreases with increasing isospin asymmetry
I for the same mass number A, the largest values lo-
cated in the range of nearly symmetric nuclei. However,
the Wigner energy parameter x value influences every
parameter in Eq. (14). Figure 4 shows the coefficients
J , ass, a(4)

sym (in MeV) and σ deviation (in keV) as a
function of Wigner energy parameter x. From Fig. 4,
the coefficients J (solid squares), ass (solid circles) and
a(4)

sym (solid triangles) first increase then decrease with in-
creasing x values in the range from 0 to 12. The rms
deviation σ (downward triangles) first decreases then in-
creases with increasing x values. The minimum value of
σ = 23.42 keV corresponds to the set optimal parame-
ters values. One may thus expect the coefficient x to lie
somewhere between 1 and 4. The volume symmetry co-
efficient J ' 30 MeV is insensitive to the value x in the
range 1 6 x 6 4. The surface symmetry coefficient ass is
sensitive to the value x in the range 1 6 x 6 4, and its
value changes from 38.72 MeV to 65.85 MeV. The coef-
ficient a(4)

sym is more sensitive to the value x in the range
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1 6 x 6 4, changing from −6.98 MeV to 16.56 MeV. So
we conclude from the figure that a(4)

sym is not well deter-
mined from nuclear masses since x is ill-determined. For
example, if we change x somewhat from 1.5 to 1.6, the

value of a(4)
sym changes from negative to positive. So the

sign (positive or negative) of a(4)
sym is very sensitive to the

value of x.

Fig. 3. Symmetry energy coefficients of nuclei as a function of (a) nuclear mass number A and (b) of isospin

asymmetry I. The solid squares and open circles denote the experimental data
∆e

∗(1)
sym

I2−I2
1

and the fitting results by

Eq. (14) with the optimum parameter values J = 30.25 MeV, ass =56.18 MeV, a
(4)
sym =8.33 MeV and x =2.38.

Fig. 4. The volume symmetry coefficient J , sur-
face symmetry coefficient ass, the coefficient a

(4)
sym

of I4 term (in MeV) and σ deviation (in keV) as
a function of Wigner energy parameter x.

The contributions of symmetry energy and Wigner

energy were also studied. As an example, the contribu-

tion per term is shown in Fig. 5, where the asymmetric

nucleus I1 = 0.07 is selected as the reference nucleus,

since it is the minimum value of known nuclei in the

mass table AME2012 for A = 168. From Fig. 5 (a)

one can see that the values of all three terms increase

with increasing isospin asymmetry I . When I < 0.39,

the value of the a(4)
sym term a(4)

sym(I4−I4
1 ) is less than that

of the Wigner term
2x

A
[a(2)

sym(|I |−|I1|)+a(4)
sym(|I |3−|I1|

3)]

in Eq. (13), and when I > 0.39 the value of the a(4)
sym

term is larger than that of the Wigner term. Figure 5

(b) shows the contribution ratio of each term. The ratio
is calculated by the ratio of each term value to the sum

of the three term values. From Fig. 5 (b) we can see the

changing details per term with increasing isospin asym-

metry I . The average contribution ratios of the three

terms are 87.92%, 8.27% and 3.81% for the a(2)
sym term

a(2)
sym(I2−I2

1 ), Wigner term and a(4)
sym term respectively in

the range I = 0.07−0.5. With the increasing of isospin
asymmetry I , the a(2)

sym term is the major contributor,
which first increases and reaches a maximum at I = 0.27,
and then decreases with increasing isospin asymmetry I .
The Wigner term decreases and the a(4)

sym term increases
with increasing isospin asymmetry I . The contribution
ratio of a(4)

sym term is less than that of the Wigner term in

Fig. 5. (a) The values of the a
(2)
sym term (thin

curve), Wigner term (thick curve) and a
(4)
sym term

(dashed curve) in Eq. (13) as a function of I, and
(b) the contribution ratio per term for A=168.
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the range of I = 0.07−0.39 and larger than the Wigner
term when I > 0.39.

5 Summary

In summary, we have proposed a method to extract
the symmetry energy coefficient (including the coeffi-
cient a(4)

sym of I4 term) from the differences of available
experimental binding energies of isobaric nuclei. The
advantage of this approach is that one can efficiently
remove the volume, surface and pairing energies in the
process. It is found that the extracted experimental
symmetry energy e∗

sym(A,I) should be the summation
of the traditional symmetry energy esym(A,I) and the
Wigner energy eW(A,I). a∗

sym(A,I) decreases with in-
creasing isospin asymmetry I , which is mainly caused
by the Wigner energy effect. Through the polynomial fit
to the result of ∆e∗

sym by the right-hand side expression

of Eq. (14), we have obtained the optimum parame-
ters values J = 30.25± 0.10 MeV, ass = 56.18± 1.25
MeV, a(4)

sym = 8.33±1.21 MeV and the Wigner parameter
x = 2.38± 0.12. We also find that the volume symme-
try coefficient J ' 30 MeV is insensitive to the value x,
while the surface symmetry coefficient ass and the coef-
ficient a(4)

sym are very sensitive to the value x in the range
1 6 x 6 4, especially for a(4)

sym, whose value can change
from negative to positive due to the change of x value in
the range 1 to 4. The contribution of the Wigner energy
term decreases and the contribution of the a(4)

sym term
increases with increasing isospin asymmetry I . For very
neutron-rich nuclei, the a(4)

sym term will play an impor-
tant role since its contribution is larger than that of the
Wigner energy term.

The authors would like to thank Dr. H. Jiang for

helpful communications.
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