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Note on non-vacuum conformal family contributions to Rényi entropy

in two-dimensional CFT *
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Abstract: We calculate the contributions of a general non-vacuum conformal family to Rényi entropy in two-

dimensional conformal field theory (CFT). The primary operator of the conformal family can be either non-chiral or

chiral, and we denote its scaling dimension by ∆. For the case of two short intervals on a complex plane, we expand

the Rényi mutual information by the cross ratio x to order x2∆+2. For the case of one interval on a torus with low

temperature, we expand the Rényi entropy by q = exp(−2πβ/L), with β being the inverse temperature and L being

the spatial period, to order q∆+2. To make the result meaningful, we require that the scaling dimension ∆ cannot

be too small. For two intervals on a complex plane we need ∆ > 1, and for one interval on a torus we need ∆ > 2.

We work in the small Newton constant limit on the gravity side and so a large central charge limit on the CFT side,

and find matches of gravity and CFT results.
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1 Introduction

The investigation of entanglement entropy has drawn
more and more attention in the past decade, not only be-
cause it is interesting in its own right [1], but also because
it opens a new angle in the investigation of AdS/CFT
correspondence [2, 3]. To calculate the entanglement en-
tropy in a quantum field theory, one can use the replica
trick [4, 5]. One first calculates the general n-th Rényi
entropy with n > 1 and being an integer, and then take
the n → 1 limit to get the entanglement entropy. For
a conformal field theory (CFT) that has gravity dual
in anti-de Sitter (AdS) spacetime [6–9], one can use the
Ryu-Takayanagi formula and just calculate the area of
a minimal surface on the gravity side [2, 3]. The Ryu-
Takayanagi area formula of holographic entanglement en-
tropy is the leading classical result in the limit of small
Newton constant, and one can also consider quantum
corrections [10–13].

In AdS3/CFT2 correspondence, the small Newton
constant limit on the gravity side corresponds to a large
central charge limit on the CFT side [14]. There are
many investigations of Rényi entropy and holographic
Rényi entropy in AdS3/CFT2 correspondence. On the
gravity side, one uses the partition function of Einstein

gravity in handlebody background [15–17], and calcu-
lates the classical and one-loop parts of the holographic
Rényi entropy [12, 18, 19]. On the CFT side one uses dif-
ferent methods to calculate Rényi entropy for the cases
of two intervals on a complex plane and one interval on
a torus. For the former case, one uses the operator prod-
uct expansion (OPE) of twist operators [11, 20–22]. For
the latter case, one uses the low temperature expansion
of the density matrix [19, 23]. See Refs. [24–38] for other
investigations.

In AdS/CFT correspondence, different operators in
CFT are dual to different fields on the gravity side, and
it is interesting to compute the contributions of some
specific operators to Rényi entropy on the CFT side
and compare the contributions of corresponding fields
on the gravity side to holographic Rényi entropy. The
cases of some specific operators have been investigated in
the literature, for example the stress tensor [12, 19, 22],
W operators [24, 25, 32], logarithmic partner of stress
tensor [26], general scalars [27], supersymmetric part-
ners of the stress tensor [34, 38], and current operators
[38]. There are also some investigations of the contri-
butions of a general primary operator to Rényi entropy
[12, 20, 23, 25], and in this paper we generalize the re-
sults to higher orders. We consider the contributions of
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a general non-vacuum conformal family to the Rényi en-
tropy, with the primary operator of the conformal family
being non-chiral or chiral. The non-chiral primary oper-
ator with conformal weights (h, h̄) has scaling dimension
∆ = h + h̄, and the chiral primary operator with con-
formal weights (h,0) has scaling dimension ∆ = h. For
the case of two short intervals on a complex plane, we
expand the Rényi mutual information by the cross ratio
x to order x2∆+2. For the case of one interval on a torus
with low temperature, we expand the Rényi entropy by
q = exp(−2πβ/L), with β being the inverse temperature
and L being the spatial period, to order q∆+2.

The rest of this paper is arranged as follows. In Sec-
tion 2 we consider the Rényi mutual information of two
intervals on a complex plane. In Section 3 we consider
the Rényi entropy of one interval on a torus. We con-
clude with discussion in Section 4. In the Appendix we
review some useful properties of the non-vacuum confor-
mal family.

2 Rényi mutual information of two inter-

vals on a complex plane

We calculate the Rényi mutual information of two
short intervals on a complex plane in expansion of the
small cross ratio x. On the gravity side we calculate
the one-loop holographic Rényi mutual information us-
ing the method in Ref. [12], and on the CFT side we
calculate the Rényi mutual information using the OPE
of twist operators [11, 20, 22]. In the CFT calculation
we will use some results from Ref. [26].

2.1 Non-chiral primary operator

The classical part of the holographic Rényi mutual
information only depends on the graviton, but the field
in gravity dual to a nonidentity primary operator X
changes the one-loop result. The non-chiral primary op-
erator X has conformal weights (h, h̄) with h 6= 0 and
h̄ 6= 0, and its conformal weight is ∆ = h+ h̄. The grav-
ity Euclidean space is the quotient of global AdS3 by a
Schottky group Γ , and the one-loop partition function is
multiplied by

Z1-loop
X =

∏

γ∈P

(

1+
qh

γ q̄h̄
γ

(1−qγ)(1− q̄γ)

)1/2

, (1)

with P being a set of representatives of the primitive
conjugacy classes of Γ . The form of qγ can be found
in Ref. [12]. We get the contributions to the one-loop
holographic Rényi mutual information

I1-loop
n,X =

1

n−1

x2∆

24∆+1n4∆−1

{

f2∆+
∆

(

(n2−1)f2∆+f2∆+1

)

n2
x

+
1

72n4

[

∆
(

(36∆+29)(n2−1)+24
)

(n2−1)f2∆

+36∆(2∆+1)(n2−1)f2∆+1

+9(4∆2 +3∆+1)f2∆+2

]

x2 +O(x3)

}

+O(x4∆), (2)

with the definition

fm =

n−1
∑

k=1

1
(

sin πk
n

)2m . (3)

In (2) we only incorporated the contributions of the
so called consecutively decreasing words (CDWs) of the
Schottky generators [12], and the order x4∆ result that is
omitted is from the 2-CDWs. To make the order x2∆+2

part meaningful, we need 4∆ > 2∆ + 2 and so ∆ > 1.
Using [20]

lim
n→1

fm

n−1
=

√
πΓ (m+1)

2Γ (m+3/2)
, (4)

we get the contributions to the one-loop holographic mu-
tual information

I1-loop
X =

√
πΓ (2∆+1)x2∆

42∆+1Γ (2∆+3/2)

[

1+
2∆(2∆+1)x

4∆+3

+
(∆+1)(2∆+1)(4∆2 +3∆+1)x2

(4∆+3)(4∆+5)

+O(x3)

]

+O(x4∆). (5)

The holographic mutual information is in accord with
the result in Ref. [27] when the primary operator X is a
scalar.

On the CFT side, we use the OPE of twist opera-
tors in the n-fold CFT that is called CFTn. The Rényi
mutual information can be calculated as [22, 24, 25]

In =
1

n−1
log

[

∑

K

αKd2
KxhK+h̄K

2

F1(hK ,hK ;2hK ;x)2F1(h̄K , h̄K ;2h̄K ;x)
]

. (6)

with K being all the orthogonalized quasiprimary op-
erators ΦK in CFTn. The coefficients αK and dK are,
respectively, the normalization factors and OPE coeffi-
cients of ΦK . In CFTn, as well as the quasiprimary op-
erators that are constructed solely by the vacuum con-
formal family of the original CFT, we have to consider
the extra ones that are listed in Table 1. In the table we
have the definitions

Rj1j2 =Xj1 i∂Xj2−i∂Xj1Xj2 , Sj1j2 =Xj1 i∂̄Xj2−i∂̄Xj1Xj2 ,

Wj1j2 =Xj1∂∂̄Xj2 +∂∂̄Xj1Xj2 −∂Xj1 ∂̄Xj2 − ∂̄Xj1∂Xj2 ,

Uj1j2 = ∂Xj1∂Xj2 −
h

2h+1
(Xj1∂

2Xj2 +∂2Xj1Xj2 ) , (7)

Vj1j2 = ∂̄Xj1 ∂̄Xj2 −
h̄

2h̄+1

(

Xj1 ∂̄
2Xj2 + ∂̄2Xj1Xj2

)

.
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Table 1. The quasiprimary operators in CFTn from the conformal family of non-chiral primary operator X in the
original CFT. The indices j1, j2, j3 take values from 0 to n−1.

L0 + L̄0 (L0, L̄0) quasiprimary operators degeneracies

∆ (h, h̄) Xj1Xj2 with j1 <j2
n(n−1)

2

∆+1
(h+1, h̄) Rj1j2 with j1 < j2

n(n−1)

2

(h, h̄+1) Sj1j2 with j1 <j2
n(n−1)

2

(h+2, h̄) Xj1Yj2 with j1 6= j2 n(n−1)

(h, h̄+2) Xj1Zj2 with j1 6= j2 n(n−1)

(h+1, h̄+1) Wj1j2 with j1 < j2
n(n−1)

2

∆+2 (h+2, h̄) Uj1j2 with j1 < j2
n(n−1)

2

(h, h̄+2) Vj1j2 with j1 < j2
n(n−1)

2

(h+2, h̄) Tj1Xj2Xj3 with j1 6= j2, j1 6= j3 and j2 <j3
n(n−1)(n−2)

2

(h, h̄+2) T̄j1Xj2Xj3 with j1 6= j2, j1 6= j3 and j2 <j3
n(n−1)(n−2)

2

· · · · · · · · · · · ·

We get contributions to Rényi mutual information from the conformal family of X

In,X =
x2∆

n−1

{

[

1−nx2(αT d2
T +αT̄ d2

T̄ )
]

2F1(2h,2h;4h;x)2F1(2h̄,2h̄;4h̄;x)
∑

αXX

(

dj1j2
XX

)2

+x
[

2F1(2h+1,2h+1;4h+2;x)2F1(2h̄,2h̄;4h̄;x)
∑

αR

(

dj1j2
R

)2

2F1(2h,2h;4h;x)2F1(2h̄+1,2h̄+1;4h̄+2;x)
∑

αS

(

dj1j2
S

)2
]

(8)

+x2
[

∑

(

αXY

(

dj1j2
XY

)2
+αXZ

(

dj1j2
XZ

)2
)

+
∑

(

αW

(

dj1j2
W

)2
+αU

(

dj1j2
U

)2
+αV

(

dj1j2
V

)2
)

+
∑

(

αTXX

(

dj1j2j3
TXX

)2
+αT̄XX

(

dj1j2j3
T̄XX

)2
)]

+O(x3)
}

+O(x3∆),

and the ranges of summations can be found in Ta-
ble 1. The order x3∆ result that is omitted in the
above result is from contributions of the CFTn opera-

tors Xj1Xj2Xj3 with 0 6 j1 < j2 < j3 6 n−1.
We have the normalization factors [26]

αXX = i4sα2
X , αR = 4hi4sα2

X , αS = 4h̄i4sα2
X , αXY =

(2h+1)c+2h(8h−5)

2(2h+1)
i4sα2

X ,

αXZ =
(2h̄+1)c+2h̄(8h̄−5)

2(2h̄+1)
i4sα2

X , αW = 16hh̄i4sα2
X , αU =

4h2(4h+1)

2h+1
i4sα2

X , (9)

αV =
4h̄2(4h̄+1)

2h̄+1
i4sα2

X , αTXX =
c

2
i4sα2

X , αT̄XX =
c

2
i4sα2

X ,

where the factor i4s = (−1)2s arises from the minus
sign when X is an fermionic operator. Note that there

is always i8s = 1. We also have the OPE coefficients [26]

dj1j2
XX =

i2s

αX (2n)2∆

1

s2∆
j1j2

, dj1j2
R =−dj1j2

S =
i2s

αX (2n)2∆+1

cj1j2

s2∆+1
j1j2

,

dj1j2
XY = dj1j2

XZ =
i2s(n2−1)

3αX (2n)2∆+2

1

s2∆
j1j2

, dj1j2
W =

i2s

αX (2n)2∆+2

c2
j1j2

s2∆+2
j1j2

,
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dj1j2
U =

i2s

2h(4h+1)αX (2n)2∆+2

(2h+1)(4h+1)−2h(n2 +4h+1)s2
j1j2

s2∆+2
j1j2

,

dj1j2
V =

i2s

2h̄(4h̄+1)αX (2n)2∆+2

(2h̄+1)(4h̄+1)−2h̄(n2 +4h̄+1)s2
j1j2

s2∆+2
j1j2

,

dj1j2j3
TXX =

i2s

αX (2n)2∆+2

(

− 2h

c

1

s2
j1j2

s2
j1j3

s2∆−2
j2j3

+
n2−1

3

1

s2∆
j2j3

)

,

dj1j2j3
T̄XX

=
i2s

αX (2n)2∆+2

(

− 2h̄

c

1

s2
j1j2

s2
j1j3

s2∆−2
j2j3

+
n2−1

3

1

s2∆
j2j3

)

. (10)

Here for simplicity we have defined sj1j2 ≡
sin

π(j1−j2)

n
, cj1j2 ≡ cos

π(j1−j2)

n
, · · · . Besides, we also

need the normalization factors and OPE coefficients for
the operators Tj and T̄j with j = 0,1, · · · ,n−1

αT = αT̄ =
c

2
, dT = dT̄ =

n2−1

12n2
. (11)

With these coefficients and Eq. (8), in the large c limit
we can reproduce the one-loop holomorphic Rényi mu-
tual information (2).

2.2 Chiral primary operator

The case of chiral primary operator X , with confor-
mal weights (h,0) and h 6= 0, is similar to but a little
different from the non-chiral operator case. Note that we
only consider the contributions of the conformal family
X , and we do not count the contributions of the possi-
ble conformal family of the anti-holomorphic operator X̄
with conformal weights (0,h).

Similar to (1), the one-loop partition function is mul-
tiplied by

Z1-loop
X =

∏

γ∈P

(

1+
qh

γ

1−qγ

)1/2

. (12)

We get the contributions to the one-loop holographic
Rényi mutual information

I1-loop
n,X =

1

n−1

x2h

24h+1n4h−1

{

f2h+
h
(

(n2−1)f2h+f2h+1

)

n2
x

+
1

144n4

[

2h
(

(36h+29)(n2−1)+24
)

(n2−1)f2h

+72h(2h+1)(n2−1)f2h+1

+9(8h2+6h+1)f2h+2

]

x2+O(x3)

}

+O(x4h), (13)

as well as the one-loop holographic mutual information

I1-loop
X =

√
πΓ (2h+1)x2h

42h+1Γ (2h+3/2)

[

1+
2h(2h+1)x

4h+3

+
(h+1)(2h+1)2(4h+1)x2

2(4h+3)(4h+5)
+O(x3)

]

+O(x4h).

(14)

The holographic mutual information is in accord with
the result in Ref. [27].

On the CFT side, we have to consider the extra
quasiprimary operators that are listed in Table 2. In
the table we have the definitions

Rj1j2 =Xj1 i∂Xj2 − i∂Xj1Xj2 ,

Uj1j2 = ∂Xj1∂Xj2 −
h

2h+1
(Xj1∂

2Xj2 +∂2Xj1Xj2) .

(15)

Table 2. The quasiprimary operators in CFTn

from the conformal family of chiral primary oper-
ator X in the original CFT.

L0 quasiprimary operators degeneracies

h Xj1Xj2 with j1 < j2
n(n−1)

2

h+1 Rj1j2 with j1 <j2
n(n−1)

2
Xj1Yj2 with j1 6= j2 n(n−1)

h+2 Uj1j2 with j1 <j2
n(n−1)

2

Tj1Xj2Xj3 with j1 6= j2, j1 6= j3 and j2 < j3
n(n−1)(n−2)

2
· · · · · · · · ·

We get contributions to Rényi mutual information
from the conformal family X

In,X =
x2h

n−1

{

[

1−x2nαT d2
T

]

2F1(2h,2h;4h;x)
∑

αXX

(

dj1j2
XX

)2

+x2F1(2h+1,2h+1;4h+2;x)
∑

αR

(

dj1j2
R

)2
(16)

+x2
[

∑

αXY

(

dj1j2
XY

)2
+

∑

αU

(

dj1j2
U

)2
+

∑

αTXX

(

dj1j2j3
TXX

)2
]

+O(x3)
}

+O(x3h).
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We have the normalization factors

αXX = i4hα2
X , αR = 4hi4hα2

X ,

αXY =
(2h+1)c+2h(8h−5)

2(2h+1)
i4hα2

X ,

αU =
4h2(4h+1)

2h+1
i4hα2

X ,

αTXX =
c

2
i4hα2

X , (17)

and the OPE coefficients

dj1j2
XX =

i2h

αX (2n)2h

1

s2h
j1j2

, dj1j2
R =

i2h

αX (2n)2h+1

cj1j2

s2h+1
j1j2

,

dj1j2
XY =

i2h(n2−1)

3αX (2n)2h+2

1

s2h
j1j2

,

dj1j2
U =

i2h

2h(4h+1)αX (2n)2h+2

·
(2h+1)(4h+1)−2h(n2+4h+1)s2

j1j2

s2h+2
j1j2

,

dj1j2j3
TXX =

i2h

αX (2n)2h+2

(

− 2h

c

1

s2
j1j2

s2
j1j3

s2h−2
j2j3

+
n2−1

3

1

s2h
j2j3

)

. (18)

Using Eq. (16), we can reproduce the one-loop holomor-
phic Rényi mutual information (13).

3 Rényi entropy of one interval on a

torus

We calculate the contributions of a non-vacuum con-
formal family to Rényi entropy of one interval with
length ` on a torus in the low temperature limit. The
torus has spatial period L and temporal period β, with
the temperature being 1/β, and at low temperature we
have β/L� 1. On the gravity side we use the method in
Refs. [12, 19], and on the CFT side we use the method
in Refs. [19, 23].

3.1 Non-chiral primary operator

On the gravity side the one-loop partition function
(1) still applies, and we use a different Schottky group
that can be found in Refs. [12, 19]. We get the contri-
butions of a non-chiral conformal family to the one-loop
holographic Rényi entropy

S1-loop
n,X =− nq∆

n−1

{[

1

n2∆

(

sin π`
L

sin π`
nL

)2∆

−1

]

+

[

2

n2∆+2

(

sin π`
L

sin π`
nL

)2∆(

n2∆cos2
π`

L
−n∆sin

2π`

L
cot

π`

nL
+

sin2 π`
L

sin2 π`
nL

(

∆cos2 π`

nL
+1

)

)

−2

]

q

+

[

1

9n2∆+4

(

sin π`
L

sin π`
nL

)2∆(

n4∆
(

(18∆+29)cos4
π`

L
−16cos2

π`

L
−4

)

−6n3∆sin
2π`

L
cot

π`

nL

(

(6∆+5)cos2 π`

L
−2

)

(19)

+2n2
sin2 π`

L

sin2 π`
nL

(

∆(54∆+19)cos2
π`

L
cos2 π`

nL
+(35∆+18)cos2

π`

L
+4∆sin2 π`

nL

)

−12n
sin3 π`

L

sin3 π`
nL

cos
π`

L
cos

π`

nL

(

∆(6∆+1)cos2 π`

nL
+11∆+6

)

+
sin4 π`

L

sin4 π`
nL

(

∆(18∆+5)cos4
π`

nL
+2(31∆+18)cos2

π`

nL
−4∆+27

)

)

−3

]

q2 +O(q3)

}

+O(q2∆),

with q = e−2πβ/L � 1. In Equation (19) the omitted
order q2∆ result is from the 2-CDWs [12]. To make the
order q∆+2 part meaningful, we need 2∆ > ∆ + 2 and
so ∆ > 2. Taking the n → 1 limit, we get the one-loop
holographic entanglement entropy

S1-loop
X =

(

1− π`

L
cot

π`

L

)

2q∆
(

∆+2(∆+1)

q+3(∆+2)q2 +O(q3)
)

+O(q2∆). (20)

Then we calculate the Rényi entropy on the CFT
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side. For the vacuum conformal family we have the den-
sity matrix

ρvac = |0〉〈0|+ q2

αT

|T 〉〈T |+ q2

αT̄

|T̄ 〉〈T̄ |+O(q3). (21)

Note that we only consider the case without chemical po-
tential. Considering the contributions of the conformal
family of a non-chiral primary operator X , we have the
density matrix

ρ = ρvac +ρX , (22)

with

ρX = q∆
( 1

αX

|X 〉〈X |+ q

α∂X

|∂X〉〈∂X|+ q

α∂̄X

|∂̄X〉

〈∂̄X|+ q2

αY

|Y〉〈Y|+ q2

αZ

|Z〉〈Z|

+
q2

α∂∂̄X

|∂∂̄X〉〈∂∂̄X|+ q2

α∂2X

|∂2X〉

〈∂2X|+ q2

α∂̄2X

|∂̄2X〉〈∂̄2X|+O(q3)
)

. (23)

On the CFT side, we get the Rényi entropy

Sn,X =− nq∆

n−1

{(〈X (∞,∞)X (0,0)〉Cn

αX

−1
)

+
(〈∂X (∞,∞)∂X (0,0)〉Cn

α∂X

+
〈∂̄X (∞,∞)∂̄X (0,0)〉Cn

α∂̄X

−2
)

q

+
[ 〈∂2X (∞,∞)∂2X (0,0)〉Cn

α∂2X

+
〈∂∂̄X (∞,∞)∂∂̄X (0,0)〉Cn

α∂∂̄X

+
〈∂̄2X (∞,∞)∂̄2X (0,0)〉Cn

α∂̄2X

+
〈Y(∞,∞)Y(0,0)〉Cn

αY

−n
〈T (∞)T (0)〉Cn〈X (∞,∞)X (0,0)〉Cn

αT αX

+
〈Z(∞,∞)Z(0,0)〉Cn

αZ

−n
〈T̄ (∞)T̄ (0)〉Cn〈X (∞,∞)X (0,0)〉Cn

αT̄ αX

(24)

+

n−1
∑

j=1

(〈T (∞)T (0)X (∞j ,∞j)X (0j ,0j)〉Cn

αT αX

+
〈T̄ (∞)T̄ (0)X (∞j ,∞j)X (0j ,0j)〉Cn

αT̄ αX

)

−3
]

q2

+O(q3)
}

+O(q2∆).

Note that in ∞j and 0j the subscript j denotes dif-
ferent replicas, and the ∞ and 0 without any subscript
mean the special j = 0 case. The correlation functions on

the n-fold complex plane Cn can be calculated by map-
ping it to an ordinary complex plane C by a conformal
transformation. The results are

〈X (∞,∞)X (0,0)〉Cn

αX

=
1

n2∆

(

sin π`
L

sin π`
nL

)2∆

,

〈∂X (∞,∞)∂X (0,0)〉Cn

α∂X

=
2

n2∆+2

(

sin π`
L

sin π`
nL

)2∆(

n2hcos2
π`

L
−nhsin

2π`

L
cot

π`

nL
+

sin2 π`
L

sin2 π`
nL

(

hcos2
π`

nL
+

1

2

)

)

,

〈∂̄X (∞,∞)∂̄X (0,0)〉Cn

α∂̄X

=
〈∂X (∞,∞)∂X (0,0)〉Cn

α∂X

∣

∣

∣

h→h̄
,

〈∂2X (∞,∞)∂2X (0,0)〉Cn

α∂2X

=
1

2h+1

1

n2∆+4

(

sin π`
L

sin π`
nL

)2∆[

n4h
(

2(h+1)cos2
π`

L
−1

)2

−2n3h(2h+1)sin
2π`

L
cot

π`

nL

(

2(h+1)cos2
π`

L
−1

)

+2n2
sin2 π`

L

sin2 π`
nL

(

2hcos2
π`

nL
+1

)(

(6h2 +6h+1)cos2
π`

L
−h

)

−4n(2h+1)
sin3 π`

L

sin3 π`
nL

cos
π`

L
cos

π`

nL

(

2h2 cos2
π`

nL
+3h+1

)
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+
sin4 π`

L

sin4 π`
nL

(

4h3 cos4
π`

nL
+2(6h2+4h+1)cos2

π`

nL
+3h+1

)

]

,

〈∂̄2X (∞,∞)∂̄2X (0,0)〉Cn

α∂̄2X

=
〈∂2X (∞,∞)∂2X (0,0)〉Cn

α∂2X

∣

∣

∣

h→h̄
, (25)

〈∂∂̄X (∞,∞)∂∂̄X (0,0)〉Cn

α∂∂̄X

=
〈∂X (∞,∞)∂X (0,0)〉Cn

α∂X

〈∂̄X (∞,∞)∂̄X (0,0)〉Cn

α∂̄X

αX

〈X (∞,∞)X (0,0)〉Cn

,

〈Y(∞,∞)Y(0,0)〉Cn

αY

=
1

n2∆+4

(

sin π`
L

sin π`
nL

)2∆[

(n2−1)2

18(2h+1)
sin4 π`

L

(

(2h+1)c+2h(8h−5)
)

+
sin4 π`

L

sin4 π`
nL

]

,

〈Z(∞,∞)Z(0,0)〉Cn

αZ

=
〈Y(∞,∞)Y(0,0)〉Cn

αY

∣

∣

∣

h→h̄

〈T (∞)T (0)X (∞j ,∞j)X (0j ,0j)〉Cn

αT αX

=
1

n2∆+4

(

sin π`
L

sin π`
nL

)2∆

sin4 π`

L

[

(n2−1)2c

18
+

1

sin4 π`
nL

+
(n2−1)h

3
sin2 π`

nL

cos 2πj

n
cos 2π`

nL
−1

sin2 πj

n

(

cos 2πj

n
−cos 2π`

nL

)2

]

+O
(1

c

)

,

〈T̄ (∞)T̄ (0)X (∞j ,∞j)X (0j ,0j)〉Cn

αT̄ αX

=
〈T (∞)T (0)X (∞j ,∞j)X (0j ,0j)〉Cn

αT αX

∣

∣

∣

h→h̄
.

In the last two correlation functions we have omitted
the O(1/c) terms in the large c limit. Also, we have to
use [19]

〈T (∞)T (0)〉Cn

αT

=
〈T̄ (∞)T̄ (0)〉Cn

αT̄

=
c(n2−1)2

18n4
sin4 π`

L
+

1

n4

sin4 π`
L

sin4 π`
nL

.(26)

Given the summation formula

n−1
∑

j=1

cos 2πj

n
cos 2π`

nL
−1

sin2 πj

n

(

cos 2πj

n
−cos 2π`

nL

)2 =
n2

(

cos2 π`
L
−4

)

6sin2 π`
L

sin2 π`
nL

−ncos π`
L

cos π`
nL

sin π`
L

sin3 π`
nL

+
5cos2 π`

nL
+4

6sin4 π`
nL

, (27)

we reproduce the one-loop gravity result (19) in the large
c limit.

3.2 Chiral primary operator

Using the one-loop partition function (12) and the
Schottky group in Refs. [12, 19], we get the contribu-
tions of the fields dual to the conformal family of a chi-
ral primary operator to the one-loop holographic Rényi
entropy

S1-loop
n,X =− nqh

n−1

{[

1

n2h

(

sin π`
L

sin π`
nL

)2h

−1

]

+

[

2

n2h+2

(

sin π`
L

sin π`
nL

)2h(

n2hcos2
π`

L
−nhsin

2π`

L
cot

π`

nL
+

sin2 π`
L

sin2 π`
nL

(

hcos2
π`

nL
+

1

2

)

)

−1

]

q

+

[

1

9n2h+4

(

sin π`
L

sin π`
nL

)2h(

n4h
(

(18h+29)cos4
π`

L
−16cos2

π`

L
−4

)

−6n3hsin
2π`

L
cot

π`

nL

(

(6h+5)cos2
π`

L
−2

)

(28)

+2n2
sin2 π`

L

sin2 π`
nL

(

h(54h+19)cos2
π`

L
cos2

π`

nL
+(26h+9)cos2

π`

L
+4hsin2 π`

nL

)
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−12n
sin3 π`

L

sin3 π`
nL

cos
π`

L
cos

π`

nL

(

h(6h+1)cos2
π`

nL
+8h+3

)

+
sin4 π`

L

sin4 π`
nL

(

h(18h+5)cos4
π`

nL
+2(22h+9)cos2

π`

nL
−4h+9

)

)

−1

]

q2 +O(q3)

}

+O(q2h),

with q =e−2πβ/L � 1. Taking the n→ 1 limit, we get
the one-loop holographic entanglement entropy

S1-loop
X =

(

1− π`

L
cot

π`

L

)

2qh
(

h+(h+1)q+(h+2)

q2 +O(q3)
)

+O(q2h). (29)

Then we calculate the Rényi entropy on the CFT side.
For the vacuum conformal family we have the holomor-
phic part of the density matrix

ρvac = |0〉〈0|+ q2

αT

|T 〉〈T |+O(q3). (30)

Considering the contributions of the conformal family of
a chiral primary operator X we have the density matrix

ρ = ρvac +ρX , (31)

with

ρX = qh
( 1

αX

|X 〉〈X |+ q

α∂X

|∂X〉〈∂X|+ q2

αY

|Y〉〈Y|

+
q2

α∂2X

|∂2X〉〈∂2X|+O(q3)
)

. (32)

Then we get the Rényi entropy

Sn,X =− nqh

n−1

[( 〈X (∞)X (0)〉Cn

αX

−1
)

+
(〈∂X (∞)∂X (0)〉Cn

α∂X

−1
)

q+
(〈∂2X (∞)∂2X (0)〉Cn

α∂2X

+
〈Y(∞)Y(0)〉Cn

αY

−n
〈T (∞)T (0)〉Cn〈X (∞)X (0)〉Cn

αT αX

+

n−1
∑

j=1

〈T (∞)T (0)X (∞j)X (0j)〉Cn

αT αX

−1
)

q2

+O(q3)
]

+O(q2h). (33)

We need the correlation functions

〈X (∞)X (0)〉Cn

αX

=
1

n2h

(

sin π`
L

sin π`
nL

)2h

,

〈∂X (∞)∂X (0)〉Cn

α∂X

=
2

n2h+2

(

sin π`
L

sin π`
nL

)2h(

n2hcos2 π`

L
−nhsin

2π`

L
cot

π`

nL
+

sin2 π`
L

sin2 π`
nL

(

hcos2 π`

nL
+

1

2

)

)

,

〈∂2X (∞)∂2X (0)〉Cn

α∂2X

=
1

2h+1

1

n2h+4

(

sin π`
L

sin π`
nL

)2h[

n4h
(

2(h+1)cos2
π`

L
−1

)2

−2n3h(2h+1)sin
2π`

L
cot

π`

nL

(

2(h+1)cos2
π`

L
−1

)

+2n2
sin2 π`

L

sin2 π`
nL

(

2hcos2
π`

nL
+1

)(

(6h2 +6h+1)cos2
π`

L
−h

)

−4n(2h+1)
sin3 π`

L

sin3 π`
nL

cos
π`

L
cos

π`

nL

(

2h2 cos2
π`

nL
+3h+1

)

+
sin4 π`

L

sin4 π`
nL

(

4h3 cos4
π`

nL
+2(6h2+4h+1)cos2

π`

nL
+3h+1

)

]

,

〈Y(∞)Y(0)〉Cn

αY

=
1

n2h+4

(

sin π`
L

sin π`
nL

)2h[

(n2−1)2

18(2h+1)
sin4 π`

L

(

(2h+1)c+2h(8h−5)
)

+
sin4 π`

L

sin4 π`
nL

]

,
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〈T (∞)T (0)X (∞j)X (0j)〉Cn

αT αX

=
1

n2h+4

(

sin π`
L

sin π`
nL

)2h

sin4 π`

L

[

(n2−1)2c

18
+

1

sin4 π`
nL

+
(n2−1)h

3
sin2 π`

nL

cos 2πj

n
cos 2π`

nL
−1

sin2 πj

n

(

cos 2πj

n
−cos 2π`

nL

)2

]

+O
(1

c

)

. (34)

Taking the large c limit we reproduce the one-loop
gravity result (28).

4 Discussion and conclusions

In this paper we have considered the contributions
of a general non-vacuum conformal family to the Rényi
mutual information of two intervals on a complex plane
and the Rényi entropy of one interval on a torus in two-
dimensional CFT. The primary operator of the confor-
mal family can be either non-chiral or chiral. We got the
results to orders higher than those in the previous liter-
ature, and found matches of gravity and CFT results.

We have only considered the contributions of one non-
vacuum conformal family, and this is not complete for a
concrete CFT. The algebra of the operators in the vac-
uum conformal family and one non-vacuum family is not
close. For example at level 2∆ there may be a new con-

formal family with primary operator

O= (XX )+ · · · . (35)

To make the result in this paper meaningful, we have to
require that the scaling dimension ∆ of the primary oper-
ator cannot be too small. For two intervals on a complex
plane we need ∆ > 1, and for one interval on a torus we
need ∆ > 2. For the contributions of primary operators
with a smaller scaling dimension and the contributions of
more than two non-vacuum conformal families, further
investigations are needed.

The author would like to thank Bin Chen for
valuable discussions, and Peking University for hos-
pitality. The author thanks Matthew Headrick for
his Mathematica code Virasoro.nb, which can be
downloaded at http://people.brandeis.edu/%7E head-
rick/Mathematica/index.html.

Appendix A

Review of non-vacuum conformal family

In this Appendix we review some properties of the non-
vacuum conformal family that are useful for this paper, in-
cluding the conformal family of a non-chiral primary operator
and the conformal family of a chiral primary operator. De-
tails can be found in Refs. [39, 40], or can be easily derived
from the results therein.
1 Non-chiral primary operator

The one-loop partition function of the vacuum conformal
family is

Zvac =

+∞
∏

k=2

1

(1−qk)(1− q̄k)
. (A1)

Considering the contributions of the conformal family of a
non-chiral primary operator X , one has to multiply the re-
sult (A1) by

ZX = 1+
qhq̄h̄

(1−q)(1− q̄)
. (A2)

The non-chiral primary operator X has conformal weights
(h, h̄) with h 6= 0 and h̄ 6= 0. One has the scaling dimension
∆ =h+ h̄ and the spin s =h− h̄. As usual, we require that s
is an integer or a half integer. In the conformal family of X ,
the operators can be written as quasiprimary operators and
their derivatives. At level (h+2, h̄) and level (h, h̄+2) there

are quasiprimary operators, respectively,

Y =(TX )−
3

2(2h+1)
∂2

X , Z =(T̄X )−
3

2(2h̄+1)
∂̄2

X , (A3)

with the normalization factors being

αY =
(2h+1)c+2h(8h−5)

2(2h+1)
αX ,

αZ =
(2h̄+1)c+2h̄(8h̄−5)

2(2h̄+1)
αX . (A4)

Note that αX is the normalization factor of X , and that
we consider a CFT with equaling holomorphic and anti-
holomorphic central charges c = c̄. Under a general conformal
transformation z → f(z), z̄ → f̄ (z̄), the primary operator X

transforms as
X (z, z̄) = f ′hf̄ ′h̄

X (f, f̄), (A5)

and the quasiprimary operators Y, Z transform as

Y(z, z̄) = f ′h+2f̄ ′h̄
Y(f, f̄ )

+
(2h+1)c+2h(8h−5)

12(2h+1)
sf ′hf̄ ′h̄

X (f, f̄),

Z(z, z̄) = f ′hf̄ ′h̄+2
Z(f, f̄ )

+
(2h̄+1)c+2h̄(8h̄−5)

12(2h̄+1)
f ′hs̄f̄ ′h̄

X (f, f̄), (A6)
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with the Schwarzian derivatives

s(z)=
f ′′′(z)

f ′(z)
−

3

2

(

f ′′(z)

f ′(z)

)2

, s̄(z̄)=
f̄ ′′′(z̄)

f̄ ′(z̄)
−

3

2

(

f̄ ′′(z̄)

f̄ ′(z̄)

)2

.

(A7)
2 Chiral primary operator

For the conformal family of a chiral primary operator X

that has conformal weights (h,0) with h 6= 0, one has to mul-
tiply Eq. (A1) by

ZX = 1+
qh

1−q
. (A8)

The scaling dimension is ∆ =h, and the spin s =h is an inte-

ger or a half integer. At level (h+2,0) there is a quasiprimary
operator and its normalization factor,

Y =(TX )−
3

2(2h+1)
∂2

X , αY =
(2h+1)c+2h(8h−5)

2(2h+1)
αX .

(A9)
Under a general conformal transformation z → f(z) the pri-
mary operator X and quasiprimary operator Y transform as

X (z)= f ′h
X (f), Y(z) = f ′h+2

Y(f)

+
(2h+1)c+2h(8h−5)

12(2h+1)
sf ′h

X (f). (A10)
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