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Abstract: In the context of massive (bi-)gravity, non-minimal matter couplings have been proposed. These cou-

plings are special in the sense that they are free of the Boulware-Deser ghost below the strong coupling scale and can

be used consistently as an effective field theory. Furthermore, they enrich the phenomenology of massive gravity. We

consider these couplings in the framework of bimetric gravity and study the cosmological implications for background

and linear tensor, vector, and scalar Previous works have investigated special branches of solutions. Here we perform

a complete perturbation analysis for the general background equations of motion, completing previous analyses.
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1 Introduction

High precision cosmological observations have made
it possible to test the underlying fundamental theory of
gravity. Together with the assumption of General Rela-
tivity (GR) being the right theory, and the cosmological
principle, the universe is well described by the ACDM
model. It constitutes a predominant amount of dark en-
ergy in form of a cosmological constant and dark matter.
Aside from negligible reported anomalies [1], the model
is still the best fit to current cosmological data [2-4].
In spite of its observational triumph, the model suffers
from serious theoretical problems, the most persistent
being the cosmological constant problem [5].

An alternative scenario for dark energy can be pro-
vided by infrared modifications of gravity. The simplest
case corresponds to modifications in the form of an addi-
tional scalar field [6-10]. The presence of self-interactions
of the scalar field and the non-minimal couplings to
gravity yield interesting cosmological scenarios [11-19].
Other interesting dark energy scenarios can be accom-
modated by considering a vector field as an additional
field. The question about the consistent self-interactions
of the vector field, or similarly its non-minimal coupling
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to gravity, has been receiving renewed interest lately [20—
28].

An unavoidable question is whether the graviton
could be massive, which would correspond to a natu-
ral infrared modification of gravity, since the mediated
force by a massive graviton would be suppressed at large
scales. The weakening of the graviton could be put on an
equal footing with recent cosmological acceleration. At
the linear level the theory is described by the Fierz and
Pauli mass terms [29] without introducing the ghostly
sixth mode. This linear model, however, suffers from
the vDVZ discontinuity [30, 31] when the mass of the
graviton is set to zero, since General Relativity is not
recovered in that limit. Actually, very soon after that,
Vainshtein realized that the linear approximation breaks
down at some distance far from the source and that non-
linear interactions become appreciable close to the source
[32]. Usually, these non-linear interactions reintroduce
the ghostly six mode, the Boulware-Deser ghost [33], and
it was a challenging task to construct potential interac-
tions which would propagate only five physical degrees of
freedom [34-38]. This ghost-free theory of massive grav-
ity is also technically natural and does not obtain strong
renormalization by quantum corrections [39, 40].
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In the context of quantum stability of the theory,
new ways of coupling the matter fields have been ex-
plored [41-43] The classical potential interactions had to
be tuned in a very specific way to keep the Boulware-
Deser ghost absent, and if one wants to keep this prop-
erty also at the quantum level, only very restricted mat-
ter couplings through an effective composite metric are
allowed. This effective metric is built out of the two met-
rics in such a way that the matter quantum loops would
only introduce a running of the cosmological constant for
the effective metric, which in other words correspond ex-
actly to the allowed potential interactions. These doubly
coupled matter fields already introduce the Boulware-
Deser ghost at the classical level [41, 44], but the coupling
through the effective metric is special in the sense that
the decoupling limit of the theory below the strong cou-
pling scale is maintained ghost-free [45, 46]. Therefore,
this coupling can be used as a consistent effective field
theory. In the unconstrained vielbein formulation of the
theory one can construct yet more types of effective met-
rics to which the matter fields can couple as well and the
decoupling limit would still be free of the Boulware-Deser
ghost [47]. Actually, the hope using the unconstrained
vielbein formulation was to preserve the ghost freedom
fully non-linearly with the original effective vielbein [48].
Unfortunately, this resulted in a negative result and also
in this formulation the Boulware-Deser ghost is reintro-
duced [49]. However, it is worth mentioning that if one
is willing to break the local Lorentz symmetry, one can
indeed achieve this fully non-linearly [50]. The inclusion
of the doubly coupled matter fields has very important
implications for cosmological applications [41, 51-60] as
well as for dark matter phenomenology [61-63].

The analysis of cosmological perturbations of the
doubly coupled matter fields in massive gravity revealed
that ghost and gradient instabilities can be successfully
avoided together with the strong coupling issues, since
the vector and scalar perturbations maintain their Kki-
netic terms [52]. The application to massive bimetric
gravity yielded gradient instability in the vector sector
and ghost instability in the scalar sector for one of the
branches of solutions, whereas the other branch of solu-
tions was free of any ghost instability. It is still an open
question whether this second branch of solutions is also
free from any gradient instabilities. The main purpose
of the present work is to investigate the perturbation
analysis of the bimetric gravity theory in the presence
of the doubly coupled matter fields on top of general
background equations of motion, without specifying the
branch and providing also the full quadratic action for
the scalar perturbations. Thus, our work completes the
analysis started in Ref. [56].

2 Dynamical composite metric

A consistent coupling of some extra scalar field ¢ to
both metrics simultaneously was introduced in Ref. [41]
through a composite metric §,,,.,

guuEaQQuu+2aﬂgu>\X>\y+ﬁ2fuuu (1)
with X* defined by
X XA =g (2)

We consider the same action as in Ref. [56],
S=894+57 5rety geom, (3)
with

59 = / d'zy/—g (MTER[g]+Lmatter[g]>, (4)
st = [ewy=f (SRl o
s = [ dtd?’x\/—_gM;mejocnen(X), (6)
son = | d4:z:\/_§P()~(,¢)7n 7 (7)

where R[g] and R[f] are Ricci scalars for g, and f,,,
respectively. As in Ref. [56], in this work we consider
the matter contents of the g,, and f,, metrics to be
two cosmological constants: L™"'[g] = —M?2A, and
Lraser[fl=—M3? Ay SP°* denotes the non-derivative po-
tential interactions SP°" of the two metrics, X stands for

X* , and for a matrix M* , e, (M) are the elementary
symmetric polynomials defined by

en (M)=nIMp! M2 M]'™, (8)
where the antisymmetrization is unnormalized. In

Eq. (7), X denotes the canonical kinetic term of ¢ in
terms of the composite metric,

~ 1
XE—§§W’ u¢ay¢~ (9)

In the following we will study this action on the FLRW
background and establish our parametrization for linear
perturbations.

3 Cosmological parametrization

We parametrize the two metrics g, and f,, to be

Gudatdz” = —N? (eQA— (e= M) BiBJ') de®
+2N,a,B;dtdz’+a? (eH)ij dz'da?, (10)

frudatds? = —N? (ew—(eff)” (zi(zj)dﬁ
+2Nja;2idtdz'+af ("), dz'dz’, (11)

where N,, a,, N; and a; are functions of time only,
and the matrix exponentials are defined perturbatively
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as (e), = 06,+H;+1H H,;+O(H?) and (e=H#)” =
59— H”+ H H’“J+O(H3) etc. Throughout this paper,
spatial 1nd1ces are raised and lowered by d,; and 6. We
further decompose (with 8*=§9,0,),
B; = 0;B+35,, (12
1
H;; = 2C6ij+<8i3j—§5ij32> E+0uFy+hi;, (13
2; = Owto;, (
(

)
)
14)
)

1
Iy = 246,+ (aiaj—§5ij82> X+t (15

)E%(@ZF]+8JF1)) etC, a‘nd

(16)

Accordingly, it is convenient to parametrize the compos-
ite metric to be

G datds” = —N? (eQA—(e_ﬁ)ijBiBj) de?
+2NaB;dtdz'+a? (&™), ;daida?, (17)
where

NEaN—i—ﬁNf, a=aa+pfay. (18)

Similar to Eqs. (12)-(15), we may also decompose

N 5 B} 5 (19
with 6ZS1 = aze = azh” = éz‘jh” =0. Note A etc. are
expressed in terms of {A,B;,H,;,¢,52;,,1;} as

A ZA A BzaHszDthFij) (20)

etc., where n denotes the order in {A,B;, H,;,¢,$2:,I;}.
At the linear order, we have, for the scalar modes,

. N N
AD = a=A+p—Lo, 21
TATBSe (21)
BW = arlB—|—5r2w (22)
(W = azc+By, (23)
EM = a§E+57x7 (24)

a a

with
aN (Nya+a ) agN; (Na+a) )
mE—— L = 7/
" (Na;+aNpaN ' *" (Na;+aN;)aN

for the vector modes,
SO =arSi+frio;,  FO=azFpLe,  (26)
and for the tensor modes,

~ a a
hial'):aghu“w?f%r (27)

The background equations of motion can be deter-
mined by requiring the vanishing of the first order action
of A, ¢, ¢, ¥ and §¢, which is given by

Na?
9@ 9

(28)
The set of equations of motion are thus given by

) ]
E4 = M? (3Hg27/19)+5§°t+a% (szxp, ;() —0, (29)
g

\T 52

£ = M’ (3H2+Nid£9 —Ag) +5§°t+a]]\>fgzgpzo,
(30)
£, = Nt (-7
+ﬂx;’zg (P-2%Py)=0, (31)
£, = xg Zg M? <3H2+ 15 L Af> +£pt
+8 ]\]f\f?j P=0, (32)

979

where P g is the shorthand for P/8X, and H, and H;
are the Hubble parameters associated with the two met-
rics respectively, i.e.,

1 da, 1 dCLf
H,= 33
g N a dt Nfaf dt ( )
In the above,
a? a3
520'; = ]\4';777,2 (CO+3ﬂ61+6—£62+6_§03)3 (34)
g ayg ay
N
gpot — b a fb 35
¢ 1+N af 29 ( )
N 3
S};Ot _ M2m F (C1+6_62+18_63+24_C4)
g Qg g g9
(36)
EX = bytb, (37)
where we have introduced
a2
by = M?m® <CO+2%C1+2_262> ) (38)
Qg ag
2
by = M2m®— (c +4—Cz+6—03) (39)
[ Qg g
2
by = 2M2m <c2+6—c3+12—c4> (40)
Nga/g Qg g

for later convenience.
scalar field is given by

The equation of motion for the

L i(d—fd—%x), (41)

57 _
$T0 Nz dt \ N dt
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4 Cosmological perturbations

The quadratic action for the two tensor perturbations
h;; and ~;; is given by

sy = L far S T (i
+Nyai M (;2 v2— kz 7”>
"’NQGZMQ(hij —%'j) (hij —7“)} (42)
where a dot denotes the derivative with respect to t,
Mm=Y [M;m2 <cl+2ﬂc2+2& <62+3%03>>
ag ag N, ag

“rl. (43)

+aﬂN a,

The quadratic action for the four vector modes S;,
F;, 0; and &; is given by

&k [1 1 1 \°
Svector — dt N 3 M2 k.2 _Sz_ _Fl
? / (271)3{4 9% (ag 2N, )
I
i
2N,

1 a,N 2
__N 3 . f
5 9a,C (SZ Nya, >

1 1
SN MR | —oi—
+4 faf 7 (afO'

N a3
+f—6%M2k2(Fi—a>2}, (44)

where M? is given in Eq. (43) and we also introduce
1 o Naa
C = b2+ ﬂ 3 2f
agN ! ) N, 9%

a,IN
1_|_9_f 1

Nga’f ( +Ngaf
N,a

KH?\IJZ; NZg)(PQXRX)P}, (45)

with by given in Eq. (39) for short. Since the vector
modes S; and o; have no dynamics in Eq. (44), we may
solve them in terms of F; and &; and arrive at the reduced
action for F; and &;, which is given by

vector __ 1 d3k 31.2
S =1 dt( ) gagk‘
|Gz O F-E) M (-6 (0)
g
with

a®Ny 11 1 k2\
f

L T 47
0= ( N, M7 2 26a_3> 47)
From Eq. (46) it is clear that there are two vectorial de-
grees of freedom given that 3#0, which can be identified

as F;—¢;. For the stability condition we have to impose
G,>0.

We study now the linear stability of the scalar modes
in our model. Initially we have 9 scalar modes, of which
four (A4, B, ¢ and E) are from g,,,, four (¢, w, ¢ and x)
are from f,,, and one is the perturbation of the scalar
field d¢. In order to simplify the calculation, we choose
a gauge in which d¢ =x =0. In the residual 7 modes,
only 2 modes are dynamical, which can be conveniently

chosen to be
e
Vs FE

ﬁ

with
Q=C¢

After some mampulatlons, the ﬁnal quadratic action for
these two scalar modes takes the following general struc-
ture (in matrix form),

(49)

Sscalar

d’k ST v 17T T
5 / o (V GV+VTFVA+V WV),(50)

where G,,,, and W,,,, are symmetric while F,,,, is anti-
symmetric, which are given by

_ 1

1
Fia = 7.7'—21:./4*—(1)1./42*1)2-/41), (52)

1 1d
DD _

DT 24dt
with m,n=1,2. In Egs. (51)-(52), we have

2 H2 2 =
Tl Eut -
e |\a\Mg, &

_d= H d H)\ .  _
dt36 +~66+§ﬁ [—_ (hl—g) (Z16—Z54)

Wi =B — [D(D A, +D, A, )], (53)

= 3

D=

2= 4
LT LRT ] (54)
_  d=Z3  pH, (dZu
D, = = —= 55
! R +aHf( dt 44)’ (5)
_ d=ss | k* rdZ5,
b, = a T 56+F( dt _“46>
BH, [k*(_ dZu\ _  dZi
oaH, | 6 (“44 dt ) st | (56)

Ay = 55—5F6+

I
[1]

A;
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A= 555 =24, (59)
and

_ d=

B = Su— dt14’ (60)
. k? _ 1d/_ _ k? _

Bis = By =545 E~44*§a <515+~24 3514) 7(61)

K K _
By = % 44 3545+~55

d [k*_ k? _ k? _
T (%514 E:w E~24+~25> (62)

where =;; with ¢,j=1,---,6 are given in Appendix . Up
to now, no approximation has been made in deriving the
above expressions.

Unlike the tensor and vector modes, the lengthy ex-
pressions in the above make the analysis for the scalar
modes rather cumbersome. In the following, we analyze
the instabilities in the small scale limit k— oco. For the
kinetic terms, we have

Gu=01+0(k™?), and Gu=kGun+O(K°), (63)
where
2
Q(d_¢> dS
R dt
I 7 (PX+2XP ) (64)
and Ca®
. a 1/ .\2
Gro=——F—=(A2) , (65)
274N, p( 2)
with
232 2 d H?
_ 2 - = = _9
o= 3 (50 (i) 1)
+2%%§&_ CalN? BaiN,\?
ag M2 Ny a;H?N2M? a2 Ny

1 24 82 a,
- 240y e, By, 66
M;agNgdt(Hf s H2 9)] (66)

and
~ _ G/z Nf
* " 2aaH;N,

+0

o a} Ny
ﬁG,QNf+Oé
2N N
b, MQA 3M2H2 —ab 91.(67
a2Nf( " ) zang} (67)

It can also be verified that G,5~O(k®). Thus in the large
k limit, the no-ghost condition on the kinetic terms re-
quires that P z+2XP 3 x>0 as well as

Ca’®

g+% (/12)2<0

4N,

(68)

These results can be compared with those derived in
Ref. [56].
For the gradient terms, in the large k£ limit we have

Wa=EWi+0(K°), Waa=kWa+0(k?),  (69)
and Wy, ~O(k?), where
N ay,N, 1 dH 1 ~ =
Wi =2ee 7 (QM;E 2 >_5D1D2, (70)
and
ay Ny ay Ny
N e G s D
2 aN 2
P—M3A
B
2 dH,\ 1
M?(3H? —M?|. 1
(s 2 L] -
In Eq. (70), D is given in Eq. (66), and
p,—_Gs CazN; 1+ﬂa§Ng 72§dlan (1)
MZ2Hy | a3 HgM? aaZNy a dt

R : B [a2a? 1 1d 1 GH, 38H 2 dH,
D, = &®N, (P 2XP ¢ ) b +EY I (N S LA DVE 9 02 (3242 S0y
27 % g{a a2 o s v e\ i, ) T2 \Ma, )M Taam, Mo BT, T
aNP [ H H, N N N
%(_g_a_f>+§ 2]\42|: <Co+61 ﬂ+_f)+2 Qa_f_f>_a_f<cl+202<_f+_f>+6 Bﬂ_f>]
2agNg Hf Qg 2 f Qg Ng agNg g g Ng agNg
C 1 ai
+ZHfHM2 (m N, ;)
1 a’N;H,M? [ & agh
P 2XPy bi—M?AA+3M2H?)+—2 =9 P-2XPg 2
[ ) a( + >+ YN H;M? (6 g( )+aaf
1d I] agbo
——— = (by—M?*A,+3M>H?)——2 . 73
2de { <aHf( 1M A3 ) afo)] ()
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Thus, in the large k limit, the absence of gradient insta-

bility requires
Wll >0, and WQQ >0. (74)

The propagating speeds of the two scalar modes are given
by the eigenvalues of G~'W, which correspond to

== and  ci=—
gll g22

in the same limit.

(75)

5 Conclusion

In this work, we have investigated the cosmological
perturbation analysis of the bimetric theory with a scalar
field coupled simultaneously to both metrics in terms of a
composite metric. The scalar field represents the matter
field that lives on both metrics.

The ghost and gradient instabilities of the tensor and
vector modes as well as the ghost instabilities of the
scalar modes of the same model have been analyzed in
Ref. [56] for some concrete background evolution, while
in this work we complete the analysis by presenting the
full quadratic action for the scalar modes (Eq. (50)) as
well as the conditions for the absence of gradient insta-
bilities (Eq. (74)) on general background evolution in the
presence of matter fields. Although in this work we focus

Appendix A
Expressions of =,

The expressions of =g, with a,b=1,---,6 are given by:

on the small scale limit k—0 due to the lengthy expres-
sions, the results presented in this work enable one to
make further analysis in different limits as well as on
concrete background solutions.

Moreover, we consider only the coupling of the scalar
field to the composite metric in a minimal way, while
in principle one may consider non-minimal derivative
couplings, as was pointed out in Ref. [64]. This bimet-
ric model with doubly coupled matter fields offers an
interesting cosmological framework. In one branch of
solutions, in which the Hubble rates are proportional to
each other, this interesting phenomenology is plagued
by the ghost and gradient instabilities, as was shown in
Ref. [56]. However, in the other branch of background
cosmology with the algebraical ratio between the scale
factors of the two metrics, there are no ghost instabili-
ties associated with the vector and scalar perturbations.
Here, we also show the conditions for the absence of
the gradient instabilities for the scalar perturbations,
which were lacking in the literature. Fulfilling all these
instability conditions, this branch of solutions still offers
a promising dark energy model, which has a very rich
phenomenology [65].

We would like to thank S. Mukohyama for useful dis-

CUSSIONS.

11 5\
gllz_ZN_i 2 (%) k°a’ayaygee Hi M7 Mg N7 Ny [a} M7 N, (3Cal—2k* M, )+3Cag M; Ny) (A1)
_ 1 8 d¢ 2 83 4 20 42 2 3 2 5
Su=pomel ) B eraggee MMy NiNg [2ak”a; Hy My Ng—3CagNy(aH+BH,)], (A2)
- 1 8KSalM2N? [ /dd\ > . : :
Z14 = Z]{;T;f{c (d_f) a3a§9¢¢(aF24Ng—ﬁF14Nf)(aa;HfM?Ng_ﬁagHgM;Nf)
f
+F1aN*a} Hf Hy M7 (a7 M7 N, (2k° M —3Cal ) —3Ca) M, Ny) } (A3)
_ 1 8k MINEN, dp\% .5 » 315 1g2 3 2
S5 = ZW{ﬂC(E> a"aygepNy (ﬂagHgMngfaafoMng)
VS aHFH M [ M, (2003 3Ca3) -3 M3 N (A1)
_ 1 8kSalM2N2 (| (dp\ 2.
=16 = Z]\g,g—aif{ <d_f) @’ aggs (aFasNg—FFi6Ny) (aajHy M} Ng—BagHy Mg Ny)
f
o H, M [0 M N (20° M3 -30a) 3¢ 2N ] |, (43)
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Sy = 729; kagagHy M; M, NN, {9CN3afa HyH;M;M;

N\ 2
_a(%) @9 [aat Hy M7 N, (2k* M} +3Ca’) — 3ca§M§Nf(aHf+2ﬁHg)]},

_ 1 4k®aMZN d
Z24 = AT{C(—QZ)) a a§g¢¢(aF24Ng_/8Fl4Nf)(aa?}HfMJ%Ng_BagHHM;Nf)

+N%a}HyHy M7 M [2F1ak?a} Hy M7 Ng—3Cay (FiaHy Ny+Faa HgNy)] }

1 4 5\’
o5 = Aorsaz leaiM;N?Ng{BC(%) @*algs Ny (BaiHyMgNy—aa}Hy M7 N,)
f

+N?a} Hf Hy M7 M (2k°a} M7 N, 3Cang)}

- 1 AR
56 = 3 370a ng M Nf{c(d—f) a*alges (aFasNyg—BF16Ny) (aa} Hy M7 Ny—Bajy Hy Mg Ny)

+N%a}HyHy M7 M [2F16k’a}Hy M7 Ng—3Cay (Fis Hy Ny+Fas HgNy)] }

[n

1 -
54 = —Z%k%faf,MﬁNng{F24N3angH§M§ [a} M7 N, (3Cal—2k> M) +3Cag M Ny|

de\ 2.
-C (d—‘f) @’ goo (aF2aNg—BF14Ny) (aa} Hy M} Ng—Bay Hy M Ny) }

- 18 do\’ 0. f
Ezs=—— ﬂC(d—(D k0 agagge M7 My N7Ng (oca Hy M Ny—fagHy Mg Ny),

— kﬁafangNfN {F%N agHyH} M [a3 M7 N,y (3Ca?—2k" M) +3Cal MJNy|

d_ 2
-C (d—‘f) @’ goo (aF26Ng—BF16Ny) (aa} Hy M} Ng—Bay Hy Mg Ny) }

1 4k°aiNFN, [ -
=3 N3—9 {N3 [af;HJ% M} (CF{y—A4k* Masag Hy My Ng+6CMasa) Hy My Ny)

+2Ca}al HyHo M} M, (3M44a2HngM§Nf7F14F24)+CF224a3H§M§}
3\’ : 2
72C<dt) M44dgg¢¢ (aa?HfM?NgfﬁagHgM;Nf) }

1 4 . , r

S5 = Fam kaagMgQNszgz{Nda‘}HfM? {CangM; (Fo4—6a)HyHy M, Ny)
a
f

—a}Hy M7 (CF14—4k2agH§M§Ng+GCa3H§M§Ng)}
dq§ 2~3 3 2 3 2 2
+2C 5 ) @960 (aajHyMfNg—BayHgMyNg)™ ¢,

1

= ATea kﬁagN}"Ng{Nﬁ {caiaﬁHngMfMj (FraFag+Fi6F24—6Masay Hy HyMg Ny)

—afHF M} (CFraFi6—4k*> MasagH My Ny+6CMasay H) My Ny) —CFaq Fasay Hy M,
de 2 2
+2C(E> Masa*ges (aajHy M} Ny—BagHy Mg Ny) }
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1 4k°agNFNg

{N?’a;agH?MJ%Mj {a?MfQNg (CkagM; Ny+H; (54CMssa;,—36k> Mss M)

A 9]\73@?
do\? . . )

+54CM55agH§M§Nf] —18C (d—‘f) Ms5° goa (aa’ Hy M3 N, —Ba2 H,M2N;)? } (A16)

- 14
Sse=- §Ck1°afaf,HfM?MjN?N§ (Fiea} Hy M7 —Fagal Hy M), (A17)

_ 1 4kSa3NZN, [ ..
Se6 = _ZNgg)iZ{g{ N3 [ach,%M;% (CFs—4k® Mesag H} My Ny+6C Mesal Hy M Ny)
a
f
+2Catal Hy Hg M7 M (3M66a2HngMg2Nf7F15F25)+CF226a§H§M;}
de 2 2
—-2C (E) Mo’ gpe (ca} Hy M7 Ny —Bal Hg Mg Ny) } (A18)
In the above,
1 ~
9oo=75 (R)‘("’QXP,XX) ; (A19)
C and M are given in Egs. (45) and (43), respectively, and
Fia=ay N, [2k* M2 +30%3 (P—2XR )-() +3a§(b1—M§Ag+3M92H92)] , (A20)
Fio=3N, [aﬁ&Qa ; (P—z)”(R X) —&—aibz] , (A21)
Ny
Foy= F A22
24 ang 16, ( )
Fag=a; Ny [2K* M} +35°8° (P=2X P ¢ ) +3a} (— M} A +3MF H3) | +3a3bs Ny, (A23)
My = 2k2agMjNg+3a§{3(mQanj(clNg+2c2Nf)+a2aNP)
2 2 2 2 ng 2 2 2
+ag |[NgMg | 3m 60—3A9+9Hg+3ﬁ T +NgM“+3m c1 My Ny | o, (A24)
g
Mays = 3ay {3af (mQagMj(clNg—i—QCng)—&—aﬂ&]\?P) +6m2a?M§(CzNg+303Nf)—a§,NgM2:|, (A25)
1 1
M55:1—8k6agM5Ng+6k2a3NgM2, (A26)
Mes = 2k2anfo+3a3NgM2+9af2(2m2agM§(cZNg+3C3Nf)+ﬂ2aNP>
2 dH
+9a} {6m2C3M§Ng+NfMg2 (24m®ca—Ay)+ Ny M7 <3H?+Fd—tfﬂ . (A27)
f
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