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Abstract: By incorporating hidden scale symmetry and hidden local symmetry in the nuclear effective field theory,

combined with the double soft-pion theorem, we predict that the Gamow-Teller operator coming from the space

component of the axial current should remain unaffected by the QCD vacuum change caused by the baryonic density,

whereas the first forbidden beta transition operator coming from the time component should be strongly enhanced.

While the latter has been confirmed for some time, the former was given support by a powerful recent ab initio

quantum Monte Carlo calculation for light nuclei, which also confirmed the old/chiral filter hypothesis.” Formulated

in terms of the Fermi-liquid fixed point structure of strong-coupled nuclear interactions, we offer an extremely simple

resolution to the long-standing puzzle of the /quenched gA,” g
eff
A ≈ 1 [1], found in nuclear Gamow-Teller beta

transitions, giant Gamow-Teller resonances, and double beta decays.
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1 Introduction

The behavior of the axial-vector coupling constant
gA in a nuclear medium has a long history of puzzles in
the fields of nuclear physics, astrophysics, and particle
physics. In nuclear physics, there has been the mysteri-
ous∼20% quenching of gA in the shell-model calculations
of nuclear beta decay, giant Gamow-Teller resonances,
and double beta decay. In particle physics, there is the
issue of the partial restoration of the chiral symmetry,
which is an intrinsic property of the symmetry of quan-
tum chromodynamics (QCD). Finally, the surprising role
of the first-forbidden beta decay in nucleosynthesis can
be found in astrophysics. Some of these issues were com-
prehensively reviewed in [2].

In this Letter, we propose a simple resolution of the
gA problem based on the scale-invariant chiral effective
field theory combined with the/chiral filter” mechanism
anchored on the current-algebra soft-pion theorems1).
We will argue that the recent ab initio quantum Monte
Carlo calculation by Pastore et al. [3] goes a long way
in giving support to our simple solution.

2 Scale-chiral symmetry

Among the symmetries that are most relevant to

nuclear dynamics, QCD has chiral symmetry, which is
explicitly broken by the quark mass, and scale symme-
try, which is explicitly broken by the trace anomaly.

How chiral symmetry figures in the nuclear effec-
tive field theory is now well understood in the guise of
the chiral perturbation theory and has been fairly well-
established in the modern development of ab initio ap-
proaches since the paper by Weinberg [4]. Because the
quark masses involved in nuclear dynamics are tiny com-
pared with the chiral scale, ∼1 GeV, one can talk about
the /chiral limit,” where one approximates by setting
the quark mass equal to zero. In doing the calculations,
it makes sense to theoretically/turn off” the chiral sym-
metry explicit breaking. When the chiral symmetry is
spontaneously broken, Nambu-Goldstone bosons emerge,
which are the well-known pions π.

In contrast, while QCD has classical scale invariance
in the chiral limit, quantum mechanically, there is an
anomaly, called the trace anomaly, which posits a scale,
and hence the scale symmetry is explicitly broken. This
anomaly is renormalization-group invariant, and hence
cannot be /turned off” like the quark mass. Thus,
there does not seem to be any point in discussing scale-
invariance as is done with chiral symmetry. The explic-
itly broken scale symmetry can also be broken sponta-
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1) The soft-pion theorem that is exploited here is trivially encoded in the modern chiral perturbation theory, but seems to have a deep
theoretical connection with the infrared structure of gravity, as well as the gauge theories. This point will be briefly mentioned at the
end of this paper.
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neously, generating a Goldstone boson, which is intrinsi-
cally massive as a result of the trace anomaly. Thus, it is
a pseudo-Nambu-Goldstone boson, called a dilaton. The
scale symmetry spontaneous breaking has subtlety, be-
cause unlike chiral symmetry, scale symmetry cannot be
broken spontaneously but must be explicitly broken [5].
This raises a conundrum when introducing scale symme-
try, i.e., the scalar meson dilaton, in nuclear physics [6].

In nuclear physics, there is a dire need for a local
scalar field of mass for ∼600 MeV. Such a scalar plays an
important role for the nuclear forces, as well as Walecka-
type mean field approaches (i.e., an energy density func-
tional) to nuclear matter, which is popular in nuclear
physics. The particle data booklet includes a low-mass
scalar f0(500), and an attractive possibility is identifying
it as the dilaton. This is the proposal made by Crewther
and Tunstall (CT) [7]. A similar idea was proposed by
the authors of [8].

We will follow here the approach by CT. In CT, the
presence of an infrared fixed point in the QCD β(αs)
function is postulated, i.e., β(αIR)=0. The difficulty is
that it is not known whether such an IR fixed point is
present in the QCD in the vacuum. There is no indica-
tion either for or against such an IR fixed point when the
number of flavorsNf is less than ∼81). This issue cannot
be settled at the moment, as explained in detail in [6].
Here, we will bypass that conundrum by assuming that
although it may not make sense in the vacuum, one can
consider approaching the vicinity of an IR fixed point in
a medium and study the fluctuations around, but not on
top of, a potential IR fixed point. This is the standpoint
we take here. Based on this assumption, we will make
certain predictions to be confronted with nature.

There are two predictions in particular that are rel-
evant to nuclear physics. One is the prediction of the
properties of compact stars, which involves highly dense
matter. Reference [9] addresses this issue. We will not
go into this matter. The other is the gA problem that we
are interested in here.

As Yamawaki has argued [10], the scale symmetry
that we are considering is present – though /hidden” –
in a linear sigma model. Starting with a linear sigma
model – to which the standard Higgs model belongs,
changing a parameter in the model has shown that the
linear sigma model can be driven to the familiar non-
linear sigma model, on which the chiral perturbation
theory is built,

LNLσ=
f 2
π

4
Tr
(

∂µU∂µU †
)

+··· (1)

where fπ is the pion decay constant, or to a scale invari-
ant model with a dilaton coupled to a nonlinear sigma

field with a dilaton potential that breaks the scale sym-
metry. It is the latter form that is relevant to us, and
we suggest that it is the baryonic density that drives the
coupling. In the chiral limit, it has the form

LScaleσ = Lsinv−V (χ) (2)

with

Lsinv =
1

2
(∂µχ)

2+
f 2
π

4

(

χ

fσ

)2

·Tr
(

∂µU∂µU †
)

+··· . (3)

Here, fσ is the σ decay constant; U is the usual chiral
field, which is a scale singlet; and χ is the mass dimen-
sion 1/conformal compensator field” χ=fσe

σ/fσ , where
σ is the dilaton field, which is transformed into a singlet
under chiral transformation and scale dimension 1 under
scale transformation. The ellipsis stands for higher or-
der terms. As given, the Lagrangian (3) is scale invariant
and chiral invariant. Both the explicit and spontaneous
scale symmetry breaking are put in the dilaton potential
V (χ), which does not explicitly relate to the process with
which we are concerned.

There is another hidden symmetry in the chiral La-
grangian that plays a role that is just as important as
the scalar dilaton χ, and it involves the vector mesons
ρ and ω. Because the mass involved is comparable to
that of the scalar of ∼ 700 MeV, they need to be in-
corporated together. In fact the ω is essential in the
Walecka-type relativistic mean field approach, provid-
ing the necessary repulsion, while the ρ comes into the
nuclear tensor forces with a sign that is the opposite
to that of the pion tensor. The symmetry associated
with the vector mesons is the local gauge symmetry,
and hence what is involved is the hidden local symmetry
(HLS) [11]. This symmetry can be easily implemented to
the scale-symmetric Lagrangian by exploiting the redun-
dancy present in chiral field U to make the Lagrangian
(3) hidden local symmetric. The resulting Lagrangian is
scale-symmetric HLS [12], or sHLS for short.

Finally, it is necessary to consider how to set up the
power series of the scale symmetry in conjunction with
the chiral symmetry, the power counting of which is well
established. Following the idea of CT, we consider ex-
panding around the assumed IR fixed point at which the
beta function is zero, β(αIR)=0,

β(αs)=δ·β′+··· (4)

where

δ = (αs−αIR) (5)

β′ =
∂

∂αs

β(αs)
∣

∣

∣

αs=αIR

(6)

is the anomalous dimension of G2
µν , with Gµν being the

gluon energy momentum tensor. The power counting

1) There is lattice indication for the presence at A large Nf near what is called the /conformal window,” which has a connection
with Higgs physics.
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of the power expansion in the scale-chiral perturbation
theory is then

O(∂2)∼O(p2)∼O(m2
π
)∼O(δ). (7)

Here, π stands for the octet pseudo-scalar NG bosons
with momentum p. Note that β′ signaling explicit scale
symmetry breaking is O(1) in the scale-chiral counting,
in contrast to the chiral symmetry, where the chiral sym-
metry explicit breaking quark mass is counted as O(p2).

The above counting rule was recently implemented
in deriving a scale-chiral expansion that incorporated
both hidden symmetries, and the detailed discussions
are given in [12]. The formalism is applied in [13] to
derive Brown-Rho scaling in a medium, which is valid in
the density regime up to ∼2n0, where n0 is the normal
nuclear matter density1).

The expressions of the Lagrangian beyond the lead-
ing order, namely, O(p) in the baryon sector and O(p2)
in the meson sector, which were given in [12, 13], are very
complicated and involve a large number of unknown pa-
rameters. However, for the leading order (LO) in scale
symmetry, it is simple to reproduce what was given in
[12, 13]. Suppose one has a LagrangianL(m)(Φ) involving
Φ fields (baryons B, mesons ρ, ω, π) and the total scale
dimension in the Lagrangian density is m64. Then, one
makes the Lagrangian density have scale dimension 4, so
that the action is scale-invariant, by multiplying it by
the conformal compensator field χ as follows:

L̄=

(

χ

fσ

)4−m

L(m). (8)

Then, the CT procedure is to write

L̄→

(

κ+(1−κ)

(

χ

fσ

)β′
)

L̄, (9)

where κ is an unknown constant. Now, when the dilaton
field is turned off by setting σ = 0, the β′ dependence
disappears. This will give the usual chiral perturbation
theory, HLS, if vector fields are included. Then, there
will be no footprint of scale symmetry breaking in it.

There are two ways that the CT Lagrangian reduces
to the form of the hidden scale symmetric sHLS. One is
that β′≪1, that is, weak explicit scale symmetry break-
ing. This is somewhat similar to the situation of a kaon
mass with a dilaton mass of the same size. As there,
perturbation expansion in β′ could make sense. Another
possibility is that κ≈1. This seems to be more consistent
with the notion that the scale symmetry is hidden and
in fact is favored in the treatment of compact stars [9],
where scale invariance is considered to be /emergent”
or un-hidden at high density. When expanded to higher

orders in β′, the physics may be quite different, but at
this order, the resulting Lagrangian, with the explicit
scale symmetry breaking entirely in the dilaton poten-
tial, can have an analogy to the usual chiral Lagrangian,
where the explicit symmetry breaking is put entirely in
the quark mass term. We shall call this the leading order
scale symmetry (or LOSS) Lagrangian.

3 Nuclear axial currents

For our consideration of nuclear processes, we can re-
strict ourselves to chiral SU(2)×SU(2). Reducing from
the three flavors for which the scale-chiral EFT is formu-
lated [12, 13] to two flavors, one can extract the relevant
part of the Lagrangian, which is found to be extremely
simple:

L= iNγµ∂µN−
χ

fσ
mNNN+gANγµγ5τaNAa

µ+··· ,

(10)

where Aµ is the external axial field. Note that while the
kinetic energy term and particularly the nucleon cou-
pling to the axial field are scale-invariant by themselves,
and hence do not couple to the conformal compensator
field, the nucleon mass term is multiplied by it. Put in
the nuclear matter background, the bare parameters of
the Lagrangian will pick up the medium VeV. Thus, in
(10), the nucleon mass parameter will scale in density,
while, significantly, gA will remain unscaled:

m∗
N/mN = 〈χ〉∗/fσ≡Φ (11)

g∗
A/gA = 1 (12)

where fσ is the medium-free VeV 〈χ〉0 – sigma decay
constant– and ∗ represents the medium quantities. The
first is one of the scaling relations given in [14]. The dila-
ton condensate carries density dependence when the vac-
uum is warped by density. It is a part of the /induced
density dependence (IDD)” inherited from the QCD
valid at n ∼< 2n0 [9]. The second is new and says that
the Lorentz-invariant axial coupling constant does not
scale in density. This result was already indicated in
the Skyrme term of the Skyrme model [14], but what is
given here is more directly linked to the QCD symme-
tries. Combined with the /chiral filtering mechanism”
to be specified below, this is the most important point
in the present report.

The Lorentz invariance is spontaneously broken in
a medium, which means space component gs

A and time
component gt

A could be different. Indeed, writing out the
space and time components of the nuclear axial current

1) Beyond n1/2∼2n0, where the skyrmion-half-skyrmion topology change takes place, the intrinsic density dependence coming from
the matching of the correlators of the EFT and QCD at a matching scale, rather than the operative at density n

∼
<2n0, must be taken

into account.
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operators, one obtains the following:

~J±
A (~x) = gs

A

∑

i

τ±
i ~σiδ(~x−~xi), (13)

J0±
5 (~x) = −gt

A

∑

i

τ±
i ~σi·(~pi−~k/2)/mNδ(~x−~xi), (14)

where ~p is the initial momentum of the nucleon making
the transition, and ~k is the momentum carried by the
axial current. In writing (13) and (14), a nonrelativistic
approximation is made for the nucleon. This approxi-
mation is valid not only near n0 but also in the density
regime n∼>n1/2∼2n0. This is because the nucleon mass
never decreases much after the parity-doubling sets in at
n∼n1/2, at which m∗

N→m0≈(0.6−0.9)mN [9]. It will be
related to the pion decay constants, as shown below.

A simple calculation that takes into account (11) and
(12) gives

gs
A=gA, gt

A=gA/Φ (15)

with Φ given by (11).

4 Chiral filtering effect

To confront with nature, we need two ingredients:
(1) accurate nuclear wave functions and (2) reliable nu-
clear weak currents. In systematic EFT calculations, the
two are treated on the same footing. To proceed, let us
suppose that the wave functions are accurately calcu-
lable with an accurate potential. Regarding point (2),
the soft-pion theorems are crucial. In the scale-chiral
counting with the scheme espoused in this paper (which
is essentially equivalent to chiral counting [15]), taking
the axial current to be a /soft pion,” there is a soft-
pion exchange current that involves double soft-pions
coupling to the nucleon dictated by the current alge-
bras. This term was shown to be the most important ex-
change current contribution to axial current transitions
in nuclei. This was first shown in 1978 using soft-pion
theorems [16] and in 1991 using the chiral perturbation
theory [17]. The phenomenon was dubbed the /chiral
filter hypothesis” because at the time the high-powered
computational techniques that have since been developed
were not available to quantitatively check the arguments
believed to be reasonable. It was predicted that (a) soft
pions would cause a huge meson exchange correction to
the one-body charge operator (14) governing the first-
forbidden beta transitions, with the higher chiral correc-
tions strongly suppressed (by three chiral orders) and (b)
that Gamow-Teller transitions (in stark contrast, these

would be unprotected by chiral filtering with the soft pi-
ons suppressed) would predominantly be caused by the
leading order one-body operator (13), and the exchange
current corrections, coming at chiral orders of three and
higher, could not be reliably computed with only a few
terms aided by the chiral symmetry. It can involve mix-
ing to the states of high excitation energies, ∼300 MeV,
such as highly correlated nuclear states and ∆-hole states
strongly coupled by the nuclear tensor force.

The enhancement factor for the axial-charge oper-
ator is very simple to calculate. It involves the soft-
pion exchange. The ratio of the two-body over one-body
matrix elements R can be computed almost indepen-
dently of the nuclear model [18, 19]. It comes out to
be R=0.5±0.1 ranging from A=12 to A=208. An ex-
tremely simple calculation shows that with the two-body
effect taken into account, the effective axial-charge oper-
ator is obtained by making a substitution in (14) using
[20] gt

A → gt∗
A = ǫgA, with ǫ=Φ−1(1+R/Φ). The scaling

factor Φ is related to the pion decay constant in medium
f∗
π
as Φ≈f∗

π
/fπ [9]. At the nuclear matter density, one

gets Φ(n0) ≈ 0.8 from deeply bound pionic nuclei [21].
The enhancement factor at the nuclear matter density
is then ǫ(n0)≈ 2.0±0.2, within the range of theoretical
uncertainty in ratio R. This is confirmed by what was
found in Pb nuclei [22], ǫexp(n0)=2.01±0.05. The results
for A=12,16 [23] are compatible with the Pb result. It
is an understatement to say that this is a gigantic cor-
rection as an exchange current effect1).

Now we turn to the other aspect of the chiral fil-
ter mechanism, i.e., the Gamow-Teller coupling con-
stant. Here, the soft-pions are rendered powerless.
Hence, whatever corrections occur for the leading one-
body operator must be suppressed relative to the leading
O(1) operator, accounting for the/chiral filtering.” The
quantum Monte Carlo calculations for A=6−10 nuclei
made by Pastore et al. verified this feature at the N4LO.
At that order, the filter seems to work remarkably well,
say, at the level of ∼< 3%. It is even more striking that
with high-order correlations accounted for in the Monte
Carlo approach, there is no indication of gA quenching,
which means the high-order nuclear correlations in the
wavefunctions, rather than a basic modification of the
axial current, could have been responsible for the /gA
problem.” If that is the case, then this calculation pro-
vides support for the prediction that gA should not be
affected by a decrease in the chiral condensate with den-
sity, as given by the following: (15)2). This may appear
somewhat surprising because, as is generally accepted,

1) Needless to say, ab initio high-powered calculations on this matter for light nuclei would be highly desirable to further confirm
this prediction.

2) Without going into details that involve the behavior of the nuclear tensor force mediated by the ρ exchange in the sHLS Lagrangian
with baryons implemented [9], which the lack of space does not allow us to go into here, we should point out that nontrivial support for
the thesis developed here is provided by the highly successful explanation by Holt et al. [24] of the strongly suppressed Gamow-Teller
matrix element in the C14 dating process with the /Brown-Rho scaling” but with the exchange-current contributions totally ignored.
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the pion decay constant should follow in some way the
chiral condensate, which is considered to decrease with
an increase in the temperature or density, going to zero
at the chiral restoration, whereas the axial current that
crucially couples to the pions does not change with the
density. In the same vein, it has been considered plau-
sible that the axial coupling constant must approach 1
as chiral symmetry is realized in the Wigner-Weyl mode,
as is indicated at the dilaton-limit fixed point [9]. The
prediction made in this paper and the powerful ab initio

quantum Monte Carlo calculation indicate that this is
not the case.

5 Landau-fermi fixed point g
L

A

Given the above explanation of where the quenched
gA is located, the question that remains is why gA is
quenched /universally” by ∼ 20% in the nuclear shell
model calculations [1].

We offer an extremely simple answer in terms of the
Landau Fermi-liquid fixed point theory using the scale-
chiral EFT Lagrangian, sHLS. The key point is that the
mean-field approximation with the sHLS Lagrangian en-
dowed with the IDDs inherited from QCD corresponds
to the Landau-Fermi liquid fixed point theory, s̀imilar to
the Wilsonian renormalization group to many-fermion
systems with a Fermi surface [9, 25]. In the large N
limit, where N=kF/(Λ−kF) and Λ is the cutoff on top of
the Fermi surface, the Landau massmL and quasiparticle
interactions F are at the fixed point, with 1/N correc-
tions suppressed [26]. The relation between the Landau
mass mL and the effective gL

A, both taken at the fixed
point, is given by [14, 25]

mL

mN

=1+
1

F1

=

(

1−
F̃1

3

)−1

≈Φ

√

gL
A

gA
, (16)

where F̃1 is related to Landau parameter F1 by F̃1 =
(mN/mL)F1. Applying the mean field argument, this
relation gives

gL
A

gA
≈

(

1−
1

3
ΦF̃ π

1

)−2

, (17)

where F̃ π

1 is the pion Fock term contribution to the Lan-
dau parameter F̃1. The Fock term is a loop contribu-
tion, so naively O(1/N). However, because the pion is/soft,” it plays an indispensable role, just as it does for
the anomalous orbital gyromagnetic ratio δgp

l [25]. It is
noteworthy that both δgp

l and gL
A depend only on Φ and

F̃1

π

.
Let us consider the gL

A at the nuclear matter density.
With Φ(n0)≈0.8 inferred from deeply bound pionic sys-
tems [21] and 1

3
F̃ π

1 (n0)=−0.153, which is precisely given
by the pion exchange, we get, with a current value of

gA=1.27,

gL
A(n0)≈0.79gA≈1.0. (18)

This is the precise geff
A needed in the shell-model calcula-

tions [1] and in the giant Gamow-Teller resonances [27].
Note here the crucial role of the pionic contribution in-
terlocked with the dilaton condensate for the quenching.
It turns out that the density dependence of Φ (which
decreased with the density) nearly cancels the density
dependence of F̃ π

1 (which increases with the density).
Thus, the product ΦF̃ π

1 becomes more or less indepen-
dent of the density. The values of gL

A differ by less than
2% between densities of 1

2
n0 and n0. Thus, the Landau

gA (18), although evaluated for nuclear matter, is robust
and could be applied to nuclear matter as well as finite
nuclei, both light and heavy.

How does this gL
A correspond to geff

A in the shell-model
calculations?

To answer this question, recall that at the Fermi-
liquid fixed point in our formulation, the beta functions
for the quasiparticle interactions F , mass mL, Gamow-
Teller coupling gL

A, etc. at a given density should be
suppressed. This means in particular that the quasipar-
ticle loop corrections of the effective gA should be sup-
pressed. It is therefore the effective coupling constant,
duly implemented with density-dependent condensates
inherited from QCD and with high-order quasiparticle
correlations subsumed, that is applied to non-interacting
quasiparticles, that is, simple particle-hole configurations
in shell model calculations. This corresponds effectively
to what is captured microscopically in the ab initio quan-
tum Monte Carlo calculation of [3].

6 ///Soft-pion theorem triangle”

The prominent role played by soft pions in the pre-
viously addressed processes raises a potentially deep is-
sue in nuclear physics. According to the lore of effec-
tive quantum field theory, it makes good sense to inte-
grate out the pion for processes involving energy scales
much lower than the pion mass, leading to what is known
as pionless (6 π) EFT. It turns out that such a 6πEFT
works fairly well in numerous low-energy nuclear pro-
cesses. Now the question is how the soft-pion effect,
which is crucial in certain nuclear processes such as first-
forbidden beta transitions, can manifest when pion fields
do not figure explicitly? The interplay between the in-
medium vacuum condensate Φ and the pionic Landau
parameter F π

1 is mysterious. This intriguing question
may have an answer in the recent development involving
soft theorems in the web of triangles /echoed” in a va-
riety of infrared structures in the gauge – and gravity –
theories [28]. It may act as a sort of /memory effect”
in the triangle with the soft-pion theorem sitting on one
corner.
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