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Abstract: We explore the Kibble-Zurek scaling of conserved charge using stochastic diffusion dynamics. The char-

acteristic scales k7 and lxy are determined and used to properly rescale the traditional correlation function and cu-

mulant. We construct universal functions for the two-point correlation C(y; —y,;7) and the second-order cumulant

K(Ay,7) of the conserved charge in the critical regime, both of which are, near the critical point, insensitive to both

the initial temperature and a parameter in the mapping between the 3D Ising model and the hot QCD system.
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1 Introduction

The Beam Energy Scan (BES) program [1-5] at the
Relativistic Heavy Ion Collider (RHIC) has as its goal,
among others, to probe the phase structure of Quantum
Chromodynamic (QCD) matter and find its critical point
[6—15], which is represented by the endpoint of the first
order phase transition boundary of the QCD phase dia-
gram [7-9,16-22]. At the critical point, the thermal medi-
um is strongly correlated with divergent fluctuations of
various variables [6—9]. The skewness S and kurtosis x of
the net protons diverge with the correlation length by &3
and ¢&’, respectively [23]. In the BES experiment, event-
by-event multiplicity fluctuations of net protons and net
charges were systematically measured at different colli-
sion energies [24— 28]. The kurtosis x of net protons
presents a non-monotonic behavior and largely deviates
from the Poisson baseline at lower collision energies, in-
dicating the discovery potential of the critical point [28,
29].

Recently, non-equilibrium effects were found to be
significant for an expanding medium near the critical
point [30—46]. In particular, the critical slow-down ef-
fects largely influence the non-equilibrium fluctuations,
which can even reverse the signs of skewness S and kur-
tosis x compared with the equilibrium values [37,38]. The
soft mode of the critical point was argued to be a diffus-
ive mode, which is a combination of the order parameter
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field and the conserved quantities [32]. Recently, diffu-
sion dynamics near the critical point were calculated
[42,45], which showed that the second order cumulant of
the conserved charge exhibits non-monotonic behavior
with the change of the rapidity window [42].

For the dynamical model calculations near the critic-
al point, the non-equilibrium fluctuations are non-univer-
sal and depend on various free parameters, such as the re-
laxation time, mapping from the 3D Ising model to the
hot QCD medium, etc. In contrast, within the framework
of Kibble-Zurek Mechanism (KZM), some universal vari-
ables can be constructed near the critical point that are in-
sensitive to some non-universal factors [41,46—51]. The
key point behind the KZM is that, due to the critical
slow-down effects, the systems inevitably fall out of equi-
librium near the critical point, after which these “frozen”
systems have correlated regions with characteristic scales,
leading to various universal variables. The KZM was first
introduced by Kibble in cosmology [52] and then exten-
ded by Zurek to condensed matter physics [53]. In re-
lativistic heavy ion collisions, the KZM was first studied
in Ref. [41], which constructed universal functions of the
order parameter field that are insensitive to the relaxation
time and the evolving trajectory of the system. In Ref.
[51], we investigated the Kibble-Zurek scaling for both
the order parameter field and the multiplicity fluctuations
of net protons, using the Langevin dynamics of model A.
We found that, compared with the original fluctuations of
net protons, the oscillating behavior of the constructed
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approximately universal functions are strongly sup-
pressed.

In this study, we investigate the critical universal scal-
ing of the conserved charge within the framework of
model B. As mentioned above, the soft mode near the
QCD critical point is a diffusive mode, which is a linear
combination of the order parameter field and the con-
served quantities. Moreover, the conserved quantities are
directly related to the possible experimental observable.
In comparison with our early work [51], which only con-
siders the non-conserved order parameter field, this study
explores the possible universal scaling for fluctuations of
conserved charge using the stochastic diffusion equation
(SDE). We demonstrate that the constructed universal
functions for the two-point correlation function and the
second-order cumulant of the conserved charge are in-
sensitive to the non-universal factors of two cases 1) the
evolving hot medium with different strength of critical
component c., a parameter in the mapping from 3D Ising
to QCD critical point; 2) the evolving system with differ-
ent initial temperature Ty. We restrict our attention to the
possibility of constructing the universal functions for dif-
fusion dynamics near the critical point, as we only focus
on the 1+1-dimensional system with the Bjorken approx-
imation. For realistic universal observables that might be
associated with experimental measurements, at least a nu-
merical simulation of the 3+1 dimensional diffusion dy-
namics and consideration of the higher-order cumulants
of fluctuations is necessary. This requires high statistical
runs and a large amount of computing resources, which
we leave to a future study.

The paper is organized as follows: Section 2 briefly
reviews the dynamics of conserved charge near the critic-
al point based on the stochastic diffusion equation. In
Section 3, we construct the universal functions for two-
point correlation function and the second-order cumulant.
Section 4 presents and discusses the main results of the
constructed universal functions. Section 5 summarizes
and concludes this paper.

2 Dynamics of conserved charge
2.1 Stochastic diffusion equation

For a dynamical model near the critical point, the
slow modes are the relevant and essential modes that
largely influence the critical behavior of the evolving sys-
tem. According to the classification in Ref. [54], the crit-
ical dynamics of the non-conserved and conserved order
parameter field belong to models A and B, respectively.
Meanwhile, model H describes a system with a con-
served order parameter field, conserved transverse mo-
mentum density, and nonzero Poisson bracket between
the two. In general, it is believed that the dynamical sys-
tem near QCD critical point lies in model H [32,55-57].

However, the related analysis or numerical implementa-
tion of model H is complicated, and it has not been fully
developed. For simplicity, our previous work [51] only
focused on the dynamics and universal scaling of the non-
conserved order parameter field within the framework of
model A. Recently, the stochastic diffusion dynamics of
the conserved charge for model B has been developed by
Ref. [42], which demonstrated that the two-point correla-
tion function and cumulant behave non-monotonically
with the change of the rapidity interval and window, re-
spectively. In this study, we explore the universal behavi-
or of the conserved charge based on the stochastic diffu-
sion equation described in Ref. [42].

For simplicity, we focus on the 1+1-dimensional
evolution of the conserved charge density n(y, ) with the
proper time 7= VZ—z> and the spacetime rapidity
y =tanh™!(z/1) for a boost-invariant Bjorken system. The
related stochastic diffusion equation is [42]:

0 0 0
57000 = Dy(r)aTyén(y,TH 307 (D

Here 6n(y,7) =n(y,7)—(n(y,7)), and {(---) denotes the
event average. The diffusion coefficient D,(7) is related to
the Cartesian one D¢ (1) with Dy(1) = Dc¢(1)t72. The noise
£(y,7) satisfies the fluctuation-dissipation theorem:

€@,1)) =0,

1,132, 72)) = 2X (D) Dy(1)6(y1 = y2)8(t1 = 12),  (2)
where y,(7) is the susceptibility of the conserved charge
per unit rapidity, related to the Cartesian one yc(7) with
xy(7)/T = xc(7). For notational convenience, these sub-
scripts of the diffusion coefficient and susceptibility are
omitted in the following part of this paper, such that
D(1) = Dy(7) and x(1) = x,(1), respectively.

After solving the SDE (1), the correlation function is
obtained as follows:

C(y1,y2;7) =(0n(y1,7)0n(y2,7))
=x(1)6(y1 —y2)
- [[arvaicm -y @)

where y/(t) =dyx(r)/dr. Here, the normalized Gaussian
distribution 1is:

1 2 n
5. —_ = YV
G(H:d) = worel 4)
and
7 1/2
d(ThTZ)E[Z f dT'D(T’)} , (%)

represents the diffusion “length” in rapidity space from 1,
to T, with 71 < 7.

The amount of the charge deposed within a finite
rapidity window Ay at mid-rapidity and at a proper time 7
can be calculated as:
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Ay/2
Ony(7) = f dyn(y,7). ©)

—Ay/2

Correspondingly, the second-order cumulant of Qay(1)
takes the following form:

K(Ay,7) = (6Qa)(1)*) /Ay
Ay/2
= A dydyz{(on(y,7)on(y2,7))
Y J-Ay/2
o= [(wver(mis) o
where
X z =
F(X) = \/_ dz(l—)—()e . @®)

The detailed derivation is given in Appendix A.

Note that Eq. (1) only considers the two-point interac-
tion. The higher order terms and the kinetic term §*6n/dy*
are neglected, and their contributions are considered to be
included in the renormalized coefficients D(r) and x(r)
(See Sec. 2.2) [42]. The advantage of this treatment is
that Eq. (1) can be analytically solved, as shown in Egs.
(3) and (7). To obtain proper results, we implement this
simplified model slightly off the critical point in the fol-
lowing calculation and consider it as our first attempt to
study the Kibble-Zurek scaling for the two-point correla-
tions in the diffusion dynamics.

2.2 Parametrizing the susceptibility y(7) and diffusion
coefficient D(7)

Both the correlation function (3) and the cumulant (7)
depend on the susceptibility y(r) and diffusion coeffi-
cient D(t), which requires additional parametrizations. In
general, the susceptibility y and diffusion coefficient D
include both the singular parts y*, DY and the regular
parts x™8, D%, respectively [42]. As the system evolves
near the crltlcal point, the singular contributions become
dominant. We thus neglect the regular parts to simplify
the following study of the Kibble-Zurek scaling. The sus-
ceptibility y(r) and diffusion coefficient D(r) with only
the singular parts are then written as:

X(T) =x" (D), ©

D(T) = DZ /7> (10)

Here, we construct the singular part y* and Dg
through a mapping between the hot QCD matter and the
3D Ising model. The mapping is non-universal, which has
some other strategies for the mapping relation. For illus-
tration purposes, we use the linear parametric model

[58,59], in which the magnetization of 3D Ising systems
is parameterized with two variables R and 6:

M(R,6) = moR"8, (11)

where the reduced temperature » and the dimensionless
magnetic field H are expressed as:

r(R,0) = R(1 — 6%), (12)

H(R,0) = hoR>30(3 —26%), (13)
where we have adopted the values of the Ising critical ex-
ponents [60], and the normalization constants mg and A
are fixed by the conditions M(r=-1,H=0")=1 and
M(r=0,H=1)=1. From Eq. (11), the susceptibility of
the 3D Ising model can be calculated:

OM(r,H)| mg 1

H) = L
(i) = =50 " ho RBG+26%)

(14)
The susceptibility yy(r, H) of the 3D Ising system is
translated into y (7, u) on the temperature 7 and chemic-
al potential u plane (7,u) with the linear mapping as in
Refs. [37,42], where T linearly relates to H: (T -T.)/
AT = H/AH, and r is treated as a free parameter to simu-
late the change of x [42]. The critical temperature is set to
T. =160 MeV, and the width of the critical region is set
to AT/AH =10 MeV. As in Ref. [61], we assume the crit-
ical component of the conserved charge for the hot QCD
systems y'(T,u) is directly proportional to the Ising com-
ponent y,(T,u) and satisfies similar critical behavior .
XTI, mo 1
H “ho R¥3(3+262)
where the dimensionless factor c, is treated as a free para-
meter. y is the susceptibility in the hadronic medium,
which can be absorbed by the definitions C’(y; —y,;7) =
C(yi —y2;1)/x™ and K’ (Ay,7) = K(Ay,7)/x". In the follow-
ing calculations, we omit the prime to simplify the nota-
tion.

Considering that the evolving hot QCD system be-
longs to model H in the classification of Ref. [54], we
scale the diffusion coefficient DZ with the correlation
length ¢ as: D ~ £ with the exponents y;, = 0.04
and y,=~0.916 [54]. The correlation length ¢ in 7—y
frame is connected to the susceptibility y*" as:

cr 1/(2—)(”)
£=é ("—H) : (16)
X

where we set & = 0.1. Correspondingly, the parameter-
ized D is:

=coxm(T, 1) =c (15)

r(r H (=2+x,+x0/(2—x,)
D°g<r,H)=dc[X )((FH )] .1

where the constant d. = 1 fm, as used in Ref. [42].

We only focus on an evolving system in 1+1-dimen-
sion with Bjorken expansion. We assume that the heat
bath is evolving along a trajectory with fixed 7, and the

1) Note that the mapping is not uniquely determined and under debate. There is another arguement that the susceptibility of QCD system corresponds to the specific
heat of the Ising model [46]. Here, we adopt the parametrization in Refs. [37,42] and study the Kibble-Zurek scaling in this particular parameterization scheme.
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temperature 7'dropping down with the proper time ras [37]:

T(r)= To(’?‘))cf, (18)

where the speed of sound is taken as ¢ = 0.15. The initial
time 19 and the corresponding temperature 7, are de-
scribed in Sec. 4.

3 Kibble-Zurek scaling

The correlation (3) and cumulant (7) obtained from
solving SDE (1) are non-universal and sensitive to some
inputs in the parametrization of y(r) and D(r), such as the
strength of the critical component ¢, initial temperature
Ty, etc. In Refs. [41] and [51], the universal functions
were constructed within the framework of the Kibble-
Zurek mechanism for model A, which involves with the
evolving non-conserving order parameter field near the
critical point. In this section, we study the possible uni-
versal behavior of the correlation function (3) and cumu-
lant (7) for the evolving conserved charge of model B.

For a dynamical system near the critical point, there
are two competitive time scales, namely the relaxation
time 7, that describes the time for the system to equilib-
rate, and the quench time 7quench that characterizes the al-
teration rate of the external potential.

The Bjorken expansion of the hot medium Eq. (18)
introduces the variation of the susceptibility y(r) and dif-
fusion coefficient D(r), with which the quench time can
be calculated as:

0 | (19)
0:&(1)

For a diffusion system near the critical point, the re-
laxation time of the two-point correlation function takes
the form 7,¢ = [2D(1)g*]~" for a particular mode g. For the
slow modes with ¢ < ¢!, the relaxation time is large
compared t0 Tquench, Which leads to these modes moving
out of equilibrium as the system evolves near the critical
point. For the fast modes with ¢ > ¢!, the relaxation
times are small, which corresponds to sufficiently fast
equilibration even near the critical point. In this work, we
focus on the mode with ¢¢ = 1, and the relaxation time is
given by:

Tquench =

2
Trel = F(T)
The relaxation time 7 is strongly enhanced as the
system cools down to the critical point and the quench
time Tquench continuously decreases. Consequentially,
there exists a point v*, where the relaxation time equals to
quench time, after which the system goes out of equilibri-
um with the formation of correlated patches. According
to the Kibble-Zurek Mechanism, the characteristic time
scale 1xz and scale in the longitudinal direction lxz are
determined by v* with [41]:

(20)

lkz =&@").  (21)

In Fig. 1, we plot the relaxation time 7, and quench
time Tquench as functions of 7—7., where 7. is the time
when the temperature of the system hits the critical tem-
perature T,.. It shows that the relaxation time 7. in-
creases and the quench time Tguench decreases as the sys-
tem approaches to the critical point, and the proper time
7* can be determined by Eq. (21).

1

Kz = Trel(T*) = Tquench(T*)a

0.8 1
0.6 1
0.4
0.2 f

0 ‘ ‘

-0.6 -0.4 -0.2 0
T — 7, (fm)

Fig. 1. (color online) Temporal evolution of quench time rquench

and relaxation time 7, with different c.. Location of the
proper time 7* is computed from 7, (7*) = Tquench (7).

After obtaining the characteristic scales 7gz, lxz in
Eq. (21), the universal function is constructed with the
following redefined variables:

t=(-1)/txz, F=V/lkz, E=Eé/lkz,
D=D/™, =x/lr. (22)

The rescaled correlation function C(§; —,,%) and the
rescaled function of cumulant K (Ay/Ixz,7) is constructed
as

Cly1 —y2.7) =l {)?(?)5@1 —J2)

L z R
_ f ¥ X(f)[zn f d%"D]
7 dT’ 7

S s 2
xexp| - I1=ID" }
2 [ d#"D
=l CG1 = 52,9), (23)
- T drE Ay/l
K(Ay,T):lzKZX”{/\?(‘T')— f a7 )SET,)F( ik )}
% T 2[2 f%, dz D)1/?
_ (A .
= OR( 7).
Kz (le T)

24

The rescaled functions C(3; —¥,,7) and K (Ay/lkz,T)
as functions of the redefined variables ¥;-3j,,7 and
Ay/lxz,T are universal and insensitive to some free para-
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meters, which is demonstrated in the following section.
The calculated correlation function C(y; —y,,7) and cu-
mulant K(Ay,t) evolves with respect to proper time 7z,
while the Kibble-Zurek scaling procedure is with respect
to the relative time 7— 7, as shown in Eq. (21). Therefore,
the above rescaling formulae (23) and (24) are valid near
the critical point, where the relative time 7 — 7. is small.

4 Results and discussions

In this section, we demonstrate that the constructed
universal functions Eq. (23) and Eq. (24) are insensitive
to the free inputs, the strength of critical component c,
and the initial temperature T.

First, we numerically calculate the correlation func-
tion (3) and cumulant (7) with the parameterizations of
susceptibility y(r) and diffusion coefficient D(r) along a
particular trajectory with the fixed chemical potential
r=0.1. The temperature drops according to Eq. (18) with
the initial temperature 7y = 190 MeV and the initial time
70 1S set at 7o = (19— 7.)/Tkz = —2.5.

The left panel of Fig. 2 presents the correlation func-
tion C(y; —y,,7) as a function of y; —y, with different
strengths of the critical component ¢, =1,2,3 at a fixed
rescaled time 7 =—0.5, where the corresponding temper-
ature T is larger than, yet close to T.. As shown in Ref.
[42], the correlation function as a function of y; —y, has a
local minimum at very small y, —y, due to the 6(y; —y,)
contribution in Eq. (3). As expected, the correlation func-
tion (3) is sensitive to the strength of the critical compon-
ent c.. In the right panel of Fig. 2, we investigate the uni-
versal behavior of the reconstructed correlation function
(23) within the framework of KZM. As shown in Fig. 1,
the relaxation time 7. is significantly increased as the
system approaches the critical point, whereas quench
time Tquench decreases, resulting in a point 7* where the re-

ot | 7=-05 _ _;
c. =2

/: —c. =3
S0y
|
E
O 2

-4 ‘ ‘

0 0.2 0.4 0.6
Y1 — Y2
Fig. 2.

laxation time equals to the quench time. With the ob-
tained characteristic scales lxz and Txz at v and the re-
defined variables (22), we construct the universal correla-
tion function according to Eq. (23). The right panel of
Fig. 2 plots the constructed universal correlation function
C(H1 —,,7) at = —0.5 with different c.. Compared with
the original correlation function C(y; — y,,7) that is sensit-
ive to critical component ¢, these constructed correlation
function C(¥, —¥,,7) perfectly converge into one univer-
sal curve.

In Fig. 3, we plot the correlation function C(y; —y»,7)
as a function of y; —y, at the rescaled time 7 = 0.5, where
the temperature 7 is below T.. In contrast to the local
minimum of C(y; —y,,7) as a function of y; —y, in Fig. 2,
which arises from the &(y; —y;) contribution, the local
minimum in the left panel of Fig. 3 is due to the chan-
ging sign of y’(v) in Eq. (3) when T < T, indicating that
the susceptibility y(7) has a maximum with respect to the
proper time 7. Meanwhile, C(y; —y;,7) at ¥=0.5 also ex-
hibits sensitivity to the strength of the critical component
c.. After the same scaling procedure as above, the con-
structed universal correlation function C(5; —,,7) con-
verges into a single curve.

In Fig. 4, we investigate the universal behavior of the
cumulant K(Ay,7) according to Eq. (24). The system
evolves with the same parameters as the two above cases,
where only the chemical potential is changed to »=0.3.
The left panel of Fig. 4 shows the temporal evolution of
K(Ay, ) with different strengths of the critical component
c., where Ay is fixed at Ay/lxz = 4. Similar to the two
above cases of correlation function, the temporal evolu-
tion of second-order cumulant K(Ay,t) strongly depends
on c.. After rescaling K(Ay,7) and 7—7, with IZKZ_X” and
Txz, the constructed universal cumulant K(Ay/lxz, ) is in-
dependent of the strength of the critical component c., as
expected in Eq. (24).

10| 7=-05 _zzé
e —c. =3
zg 0 o
|
=
S -10 |
-20

0 1 2 3 4 5
U1 — Y2

(color online) Left panel: Correlation function C(y; —y,,7) of conserved charge as a function of rapidity interval y; —y,, with

different strengths of critical component ¢.. The rescaled time is fixed at # = —0.5 (where the temperature T is close to, yet above T,).
Right panel: Corresponding universal correlation function (5, —,7) as a function of 7; —,.
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40
= 20
&
N
| 0+
&
SN~—
2
© .20
0 0.2 0.4 0.6 0 1 2 3 4 5
Y1 — Y2 Y1 — Y2
Fig. 3. (color online) Similar to Fig. 2, but with the rescaled time is set to 7 = 0.5 (where the temperature 7 is close but below T,).
5 : 150 : :
Ay/l, =4 —c, =1 Ay/ly: = 4 c.=1
4t Ce=2
—c.=3
“agl
>
<
N— 2 L
S
1t
0 L L O L L L L
3 4 5 6 7 0 5 10 15 20
T T
Fig. 4. (color online) Temporal evolution of second-order cumulants K(Ay,r) for conserved charge with different strengths of critical

component ¢, = 1,2,3. Right panel: corresponding universal function K(Ay/l ¢ 7.7) as a function of rescaled time

Furthermore, we show that the constructed universal
function K(Ay/lxz,7) is also not sensitive to the initial
temperature Ty. For this case, we evolve the systems with
different initial temperature Ty = 170, 180, 190 MeV at a
fixed initial rescaled time 7, =-2.5 along a trajectory
with fixed chemical potential r = 0.3. Once more, we as-
sume one-dimensional Bjorken expansion and the tem-
perature drops according to Eq. (18). The left panel of
Fig. 5 plots the temporal evolution of the second-order
cumulant K(Ay,7) with ¢, =3 and Ay/lxz = 4, which ex-
hibits a significant dependence on the initial temperature
To. After the same rescaling procedure as described
above, the universal cumulant K(Ay/Ixz,7) is constructed,
which is insensitive to the initial temperature T as shown
in right panel of Fig. 5

5 Summary and outlook

We explored the Kibble-Zurek scaling for the critical
fluctuation of the conserved charge within the frame-

work of stochastic diffusion dynamics. By analytically
solving the stochastic diffusion equation (1), the tempor-
al evolution of the two-point correlation function
C(y; —y2,7) and the second-order cumulant K(Ay,7) of
conserved charge are obtained, which are non-universal
in terms of some free inputs in the model calculations,
such as the initial temperature Ty and the strengths of the
critical components c. in the mapping between the QCD
medium and 3D-Ising model.

By determinating the time 7*, after which the system
falls out of equilibrium, we calculated the characteristic
scales 1xz and Ixz of the “frozen” system near the critical
point. Using these obtained scales and rescaling the tradi-
tional two-point correlation function C(y; —y,,7) and cu-
mulant K(Ay, ), we constructed the universal correlation
function C(§; —j,,7) and cumulant K(Ay/lxz,7) in terms
of the rescaled rapidity j and proper time 7, respectively.
These rescaled functions are universal in terms of differ-
ent free parameters. For instance, we have numerically
shown that the universal functions C(3;—¥,,7) and
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5 , , , , ,
Ay/l, =4
4t —Tp = 190MeV
TO = 180MeV
= 3| —Ty = 170MeV |
=
<
2]
1 L
0 L L L L L
2 4 6 8 10
T
Fig. 5.

K(Ay/Ixz,%) converge into a single curve, and they are in-
sensitive to the strength of critical component ¢, and ini-
tial temperature T, respectively.

At last we would like to point out that this work fo-
cuses on the universal scaling of the two-point correla-
tion function and second-order cumulant for the con-
served charge based on the stochastic diffusion equation
without the higher order coupling (1). At current stage,
our constructed universal functions cannot be expected to
connect with experimental data, since we used the 1+1-
dimensional heat bath with the Bjorken approximation to
simplify the calculations. In contrast, there are many nat-
ural extensions to this current study. For example, with
the higher order contribution added to the stochastic dif-
fusion equation of the conserved charge, the universal
scaling of the two-point correlation function can be stud-

150 : :
Ay/l, =4

_TO = 190MeV

(= | Ty = 180MeV

§ 100 —Ty = 170MeV
=
by
4

0 5 10 15 20

(color online) Similar to Fig. 4, but evolving the system with different initial temperatures T = 170,180,190MeV.

ied, as well as the ones of multi-point correlation func-
tions and related higher-order cumulants. Besides, study-
ing the universal scaling with a more realistic evolving
medium are also important for a realistic predictions of
the possible observables that might be measured in exper-
iment. These work are complicated, but worthwhile to be
investigated in the near future.
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Chinese Academy of Science (SCCAS), Tianhe-14 from
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ing University.

Appendix A: Derivation for the temporal evolution of correlation function

In this appendix, we present the detailed derivation of the cor-
relation function (3) from the stochastic diffusion equation (1),
which is based on Ref. [42].

With the Fourier transform

ng.0) = [ eing. (A1)
SDE (1) in the Fourier space is written as:
a .
5701(¢,7) = =D(7)g*6n(q,7) +igL(q,7), (A2)

and the noise satisfies

Therefore, one could obtain the temporal evolution of the correla-

tion function in g space :

%«sn(ql .1on(g2,1) == D()(q; +43)0n(g1,7)6n(g2,7)
+4nq192x(T)D(1)6(q1 + q2),
based on which the relaxation time of the correlation function is
obtained as: 1o = [D(1)(g3 +¢)]~!. With the assumption of the loc-

ality in the initial fluctuations

(0n(q1,70)0n(q2,70)) = 278(q1 + g2)x(70), (A4)
(g, 1) =0, (A3)
g1, 11)8(q2,72)) = 4my (NDT)S(g1 +2)5(T1 = 72)- the solution of Eq. (A4) is calculated to be
(6n(q1,7)5n(q2, 7)) = 278(q1 + qz>(x<m>e"f?“’<fmz +247 f dr’x(r’)D(r’)e“ff“’“"”]z). (AS)
70

Then, the correlation function in y space is computed as

084103-7
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(6n(y1,1)6n(y2, 7)) =x(10)G(y1 —y2;2d(70,7)) + f dr'x (1)

=x(1)6(y1 —y2) - f Ao’y (TG (1 = y2;2d(7’, 7).
70

d
= G(y1 —y2;2d(7", 1))

dr’

70

(A6)

Meanwhile, the second order cumulant K(Ay,7) can be straightforwardly calculated, as shown in Eq. (7).
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