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W-hairs of the black holes in three-dimensional spacetime”
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Abstract: In a previous publication, we claimed that a black hole can be considered as a topological insulator. A dir-

ect consequence of this claim is that their symmetries should be related. In this paper, we give a representation of the

near-horizon symmetry algebra of the BTZ black hole using the W,.,, symmetry algebra of the topological insulator

in three-dimensional spacetime. Based on the W, algebra, we count the number of the microstates of the BTZ black

holes and obtain the Bekenstein-Hawking entropy.
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1 Introduction

The information paradox [1] is still a challenging
problem in theoretical physics. It says that the evapora-
tion of the black hole breaks unitarity. There have been
many proposals for its resolution, see Refs. [2, 3] for
some reviews. In 2016, Hawking, Perry and Strominger
[4] suggested to use "soft hairs" to solve this paradox.
They proposed that the black hole microstates could be
related to the soft hairs, that is, the zero energy excita-
tions on the horizon. Since then, there have been a num-
ber of works along this direction, see Refs. [5, 6] and ref-
erences therein.

A related concept, named "horizon fluff", was presen-
ted in Refs. [7-9]. Based on a new near-horizon bound-
ary condition [10, 11], a novel near-horizon symmetry,
which is an infinite copy of the Heisenberg algebra, was
obtained. The horizon fluff forms a finite subset of the re-
lated "soft Heisenberg hairs". Using this algebra one can
generate descendants of the physical states which are in-
terpreted as black hole microstates in three-dimensional
spacetime. The number of these microstates determines
the entropy of the black holes.

In previous publications [12, 13], we claimed that the
black hole can be considered as a quantum spin Hall state
in three-dimensional spacetime. The quantum Hall states
have a dynamical infinite dimensional symmetry group —
the Wiio group , which is the quantum version of the
area-preserving diffeomorphism group. On the other
hand, for black holes, it also has an infinite dimensional
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symmetry group — the near-horizon symmetry group. In
this paper, we derive a representation of the latter group
from the former one. Based on the Wy, algebra, we give
the "W-hairs" [14] of the BTZ black hole. Actually, the
W+ algebra was used to retain the information in two-
dimensional stringy black holes [15—18]. This algebra
also appears in the spectrum of the Hawking radiation
[19-24].

The paper is organized as follows. In Section 2, the
representation of Wi, for black holes is outlined. The
embedding of the near-horizon symmetry algebra into the
W+« algebra is obtained. In Section 3, following the ho-
rizon fluff proposal, the W-hairs of the BTZ black hole
are proposed, and the Bekenstein-Hawking entropy is ob-
tained. Section 4 contains the conclusion.

2 Near-horizon symmetry algebra from W
symmetry algebra

The generators Vi of the W, algebra are character-
ized by a mode index n € Z and a conformal spin 2 =i+1,
and satisfy the algebra [25]

Vi Vibl =(in = im) Vi + g, jonam) Vi + -

n+m n+m
+ Cl(n)élj(strn,O, (l)

where ¢(i, j,n,m) are the pertinent polynomials, and c(n)
represents the relativistic quantum anomaly. The dots

stand for a series of terms involving the operators
yiti-1-%
n+m *

In the simplest case, the generators V0 and V! form a
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sub-algebra of the W, algebra:
[V V] =ncbusmo,
[V va] =-mVi,.
Vo] =i =m)Vi+ S0 (0? = 1) 0emo. @)

with the central charge ¢ = 1. It contains the abelian Kac-
Moody algebra and the ¢ = 1 Virasoro algebra.

All unitary, irreducible, highest-weight representa-
tions were found by Kac and Radul [26, 27]. This result
was applied to the incompressible quantum Hall fluid by
Cappelli et al. [28, 29]. These representations exist only
for positive integer central charges c=m=1,2,.--. If
c =1, the representations are equivalent to those of the
abelian Kac-Moody algebra U(1) of W, corresponding
to the edge excitations of the single abelian Chern-Si-
mons theory. For ¢ =m=2,3,---, there are two kinds of
representations, generic and degenerate, depending on the
weight. The generic representations are equivalent to the
corresponding re Lesentatlons of the multi-component
abelian algebra U (", which corresponds to the edge ex-
citations of the multiple abelian Chern-Simons theory. On
the other hand, t the degenerate representations are con-
tained in the U (1) representations.

Any unitary, irreducible representation contains a bot-
tom state — the highest-weight state, and an infinite tow
(descendants) above it. The highest-weight state |[Q) is
defined by the condition

ViQy=0, VYn>0,i>0. (3)

Using the polynomials of Vi(n < 0) in |Q) gives the other
excitations.

It was claimed that the black hole can be considered
as a quantum spin Hall state in three-dimensional space-
time [12, 13]. A quantum spin Hall state can be realized
as a bilayer integer quantum Hall system with opposite
T-symmetry. Hence, the symmetry algebra for a
quantum spin Hall state is Wy . ® Wi e, which has op-
posite chirality. For the integer quantum Hall fluid ¢ =1,
the representation is the same as of the U(1) algebra. For
black holes, the corresponding algebra is W = UMHeU(1)
, which has opposite chirality. This result can also be ob-
tained from the Chern-Simons theory [30].

We consider now the representation of the algebra
W=UMDeU(1) [31]. First, let us consider the chiral part
U (1) The generators «; satisfy

[a'n Ay ] = n6n+m,0- (4)
All Vi can be written as polynomials of the current modes
ay.
All unitary, irreducible representations can be built on
top of the highest-weight state |r),r; € R, which satisfies

aplr)=0 (n>0), aflr)=rilr). Q)

A general descendant can be written as

--2ng>0.
(6)
Note that the operator f commutes with all other gener-
ators, which means that the eigenvalues of o are the
same for all descendants in a given representation.
The Virasoro generator L;; can be obtained using the
Sugawara construction

1
Lh= 3 Z :a;’hla;’ , (7)

leZ

l{n1,na,--ng)y=a’, at, ---at, |r), ni>ny>

where :: means normal ordering. Acting on the highest-
weight state, this gives
2

r
Lir)y =0 (n>0), La|r1>=3‘|r1>. (8)

which satisfies the Virasoro algebra in (2) with ¢ = 1.
Second, we consider the anti-chiral part. The generat-
ors @, satisfy
[C_Z;,r»d':rn] = _n6n+m,0~ (9)
The highest-weight state |r,),, € R is defined by
arrn)=0 (n<0), &jlr)=rlrn). (10)

The generators L can also be obtained using the Sug-
awara construction (7), but unfortunately they do not sat-
isfy the standard Virasoro algebra (2). However, it is pos-
sible to define new operators

a,=a’,, L,=-LI, (11)
which indeed satisfy the standard algebras (2) and (7),
and conditions (5) and (8). -
Finally, we get two copies of the U(1) algebra,
[a'n ,Ckm] - n6n+m,07 (12)
which is the same as the algebra in Ref. [7] , except for
the irrelevant factor 1/2.

With these algebras, one can construct the near-hori-
zon symmetry algebra. Let us define

Y=L -L,. (13)
It is easy to show that these operators satisfy the near-ho-
rizon symmetry algebra [32]

(T, T,]1 =0,

(Y, Tn]l =—nTn,

[Yin, Yul =(m — 1) Y10, (14)
where T, generates a super-translation, and Y, generates a
super-rotation.

T,=a +a_

ns

3  W-hairs of the BTZ black holes

In this section we discuss the representations of the
algebra (12). According to the rules of the conformal
field theory [33], these representations should be closed
under the "fusion algebra For U(1), this just means ad-
dition of . For W=U (1)® U (1), the highest-weight states
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can be written as |r,7,),r1,72 € R. The operators (13) act-
ing on this state give
22

n-n
Yolri,m) = > [r1,72). (15)

Tolr,r2) = (r1 +r)lr,72),

A general descendant can be written as

iz =] [ty as lrm), nf>ng > >n%>0. (16)
nf

The operators acting on these states give
Tol{ni}) =(r1 + ro)l{n;}),

1\ _ rf—rg + - +
Yolin ) =| ==+ o = i |lmh. (A7)

The key problem is to choose which representations cor-
respond to the BTZ black hole microstates. The metric of
the BTZ black hole can be written as [34]

ds? = —=N*dv? + 2dvdr + r*(de + N¢dv)?, (18)
2 1 2712 4
where N%=-8GM + ;—2 + 6G2 J ,N¥ = —g. M,J are
s

the mass and the angular momentum of t}’;e BTZ black
hole, respectively.

Following the horizon fluff proposal, we make the
following assumption: the BTZ black hole microstates
correspond to the descendants of the absolute vacuum
state |(r; = 0,r, = 0)). Thus, the BTZ black hole micro-
states can be written as [7]

IBint)y = Ninf} | |@2,:a5,010,0), i 2 n5 > > 08>0,
n

(19)
where N{n;} is the normalization factor.

It is useful to compare the above results with the
quantum Hall fluid. For the quantum Hall fluid, T rep-
resents the electric charge and Y, the angular momentum
of the quasi-particles. For black holes, the meaning of T,
is unclear, but Y still represents the angular momentum.
Let us define another operator, H = L§ + L, which is the
dimensionless Hamiltonian. Then we can identify the
BTZ black hole microstates with parameters (M, J) with
the descendants |B{n;"}) , which satisfy

(B'{n;*)|Yo|Blnf})y =cJ6p 5,
(B'{n;*}|H|B{n}"}) =cMI6p (20)

where ¢ =31/2G 1is the central charge [9]. Substituting
(19) into (20) gives

Zn?—anch, an+2n;=ch. (1)

The solution is very simple,
MIl+J Ml—-J
+_ . - _

Zni—c 7 Zni—c 7 (22)
Different {n}} correspond to different microstates of the
BTZ black hole with the same (M, J). The total number of
microstates for the BTZ black hole with parameters (M, J)

is given by the famous Hardy-Ramanujan formula [35],

1 N
N exp [27r \/g] (23)

The entropy of the BTZ black hole is given by the logar-
ithm of the number of microstates |B{n}),

Ml+J Mil-J 2
S:lnp(c 5 )+]np(c 5 )+...= :é++...,(24)

which is just the Bekenstein-Hawking entropy with low
order corrections.

The next question is what do the other highest-weight
states |r1,rm),r1,r» € R mean. Let us turn back to the
quantum Hall fluid. In the quantum Hall fluid, there are
two kinds of excitations: the neutral excitations and the
charged excitations, which correspond to quasi-holes and
quasi-particles in the bulk of the fluid. For the integer
quantum Hall effect, the highest-weight state is the vacu-
um state |0). For the fractional quantum Hall effect, the
other highest-weight states |Q) appear, which have frac-
tional charges and statistics. In the corresponding case of
black holes, the pure black hole could be associated with
the absolute vacuum state |0), and the black holes inter-
acting with matter could correspond to the other highest-
weight states.

N) ~
P()4

4 Conclusion

In this paper, we considered the infinite dimensional
symmetry algebras in the quantum Hall fluid and in the
BTZ black holes. For the quantum Hall fluid, this is the
Wi+ algebra. Different quantum Hall fluids have differ-
ent central charges ¢ , which correspond to different rep-
resentations of this algebra [28, 29]. For the BTZ black
hole, which can be considered as a special quantum spin
Hall fluid with central charge ¢ = 1, the corresponding al-
gebra is W = lj(\l)® U(1). From this algebra, one can get
easily the near-horizon symmetry algebra (14). The expli-
cit form is given in (12). The near-horizon symmetry al-
gebra is a sub-algebra of the full algebra . Note that the
near-horizon symmetry algebra depends on the choice of
the boundary conditions, so that one could maybe find a
weak boundary condition to get the full algebra
W=0DeU).

The infinite set of W-charges provides an infinite set
of discrete gauge hairs (W-hairs) [14], which were used to
maintain the quantum coherence of the two-dimensional
stringy black hole. In this paper, we associated these W-
hairs with the microstates of black holes, following the
sprit of the horizon fluff proposal. The BTZ black hole
microstates can be considered as the descendants of the
absolute vacuum state, Eq. (19). For the BTZ black hole
with parameters (M,J) , we counted the number of these
microstates and obtained the Bekenstein-Hawking en-
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tropy. The essential difference with respect to the hori-
zon fluff proposal is that we used the W, algebra in-
stead of the Heisenberg algebra, even though their repres-
entations for black holes are very similar.

The near-horizon symmetry algebra is related to the
fluid symmetry algebra in Ref. [36]. In this paper, we
used an explicit fluid, the quantum Hall fluid. The micro-
scopic structure of this fluid is fairly well understood.

The relation between these two infinite dimensional al-
gebras also provides further evidence for our claim that
"a black hole can be considered as a kind of topological
insulator". This claim relates the black hole physics with
the condensed matter physics. It is also a starting point
for relating gravity with non-trivial condensed matter sys-
tems [37—40].
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