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Abstract: Solving field equations exactly in gravity is a challenging task. To do so, many authors have ad-
opted different methods such as assuming both the metric functions and an equation of state (EoS) and a metric func-
tion. However, such methods may not always lead to well-behaved solutions, and the solutions may even be rejected
after  complete  calculations.  Nevertheless,  very  recent  studies  on  embedding  class-one  methods  suggest  that  the
chances of arriving at a well-behaved solution are very high, which is inspiring. In the class-one approach, one of the
metric potentials is estimated and the other can be obtained using the Karmarkar condition. In this study, a new class-
one solution is proposed that is well-behaved from all physical points of view. The nature of the solution is analyzed
by tuning the coupling parameter , and it is found that the solution leads to a stiffer EoS for  than
that for . This is because for small values of , the velocity of sound is higher, leading to higher values of 
in the  curve and the EoS parameter . The solution satisfies the causality condition and energy conditions and
remains stable and static under radial perturbations (static stability criterion) and in equilibrium (modified TOV equa-
tion). The resulting  diagram is well-fitted with observed values from a few compact stars such as PSR J1614-
2230, Vela X-1, Cen X-3, and SAX J1808.4-3658. Therefore, for different values of , the corresponding radii and
their respective moments of inertia have been predicted from the  curve.
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1    Introduction

One of  the  greatest  challenges  in  modern cosmology
is  the  late-time  comportment  of  our  Universe.  We  use
several sets of high-precision observational data gathered
from various  cosmic  sources  such  as  the  Cosmic  Mi-
crowave  Background  (CMB)  [1-3],  SuperNova  type  Ia
(SNe Ia) [4-8], Large Scale Structure (LSS) [9-11], Weak
Lensing  (WL)  [12],  and  Baryon  Acoustic  Oscillations
(BAO)  [13]  as  standard  candles,  which  discovered  that
our  Universe  is  undergoing  accelerated  expansion.  The
fascinating  part  is  that  the  expansion  of  the  Universe  is
believed to be caused by an obscure energy termed dark

energy, which is equal to approximately two-thirds of the
complete  energy  budget  of  the  Universe.  Owing  to  the
puzzling nature of the dark sector (dark energy (DE) and
dark  matter  (DM);  DE yields  a  late-time  speeding  up  of
the  cosmological  foundation,  whereas  DM  carries  on  as
undetectable  residue  matter  supporting  the  procedure  of
gravitational clustering) and the fact that their existence is
construed only through their gravitational impact, it is es-
sential  to  verify  whether  there  is  a  need  to  contemplate
these elements, regardless of whether there is any deflec-
tion  from the  ordinary  general  relativity  (GR)  theory  on
enormous scales. Using Einstein's field equations (EFEs),
one can realize the existence of an accelerated expansion
portrayed  by  a  positive  constant,  which  is  extremely
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small, in the edge work of GR, referred to as the CDM
model  [14].  In  the  present  situation,  this  small  positive
constant is related to dark energy in the void space, which
is utilized  to  clarify  the  ongoing  coeval  accelerating  ex-
pansion  of  the  Universe  against  the  alluring  impacts  of
gravity. In general, there are two main methodologies that
could explain  the  theory  behind  the  accelerated  expan-
sion of  the Universe.  The first  methodology involves al-
tering the  matter  substance  of  the  Universe  by  introdu-
cing a DE area, beginning either with a phantom field, a
standard  scalar  field,  or  a  mixture  of  the  two  fields  in  a
unified model  and  then  progressing  toward  more  com-
plicated scenarios; see [15-17] and the references therein
for  more  subtleties  and  audits.  The  second  methodology
involves modifying the gravitational area itself (see, e.g.,
[18-21]), which can likewise be well-respected as one of
the significant  theories  for  clarifying  the  accelerated  ex-
pansion  of  the  Universe.  We are  prompted  by  this  basic
hypothesis that  at  significant  astrophysical  and cosmolo-
gical  scales,  the usual  GR may not  depict  the dynamical
evolution  of  the  Universe  effectively.  Several  endeavors
have  been  made  to  manage  this  problem,  among  which
gravity theories about broadening GR have aroused much
enthusiasm over the previous decades. With regard to the
modified gravity  theories,  DM  can  be  geometrically  de-
picted and the accelerated expansion at late times can be
explained. Thus, the cosmological constant issue may be
settled (for an exhaustive dynamical system investigation
of  some  cosmological  models  in  terms  of  alternative
gravitational  theories,  see  [22-32]).  Among  the  various
models of DE, the altered gravity models are very fascin-
ating, as they integrate some movements of the quantum
and  general  gravity  theories.  Different  techniques  have
been suggested until  now to modify the gravitational ac-
tion (see [33] for more details), leading to various classes
of  alternative  gravitational  theories.  In  this  regard,  some
leading models  incorporate  gravity [19, 21, 34-53],

 gravity [54-58],  gravity [59, 60],  gravity
[61-63],  gravity [64-80],  gravity [81-86],
and  gravity [87], where R, T, , and  are Ricci's
scalar,  trace  of  stress-energy  tensor,  torsion  scalar,  and
Gauss-Bonnet scalar, respectively. In  gravity theory,
the  general  expression  of  the  Ricci  scalar  is
utilized  to  a  greater  extent  instead  of R,  though 
gravity  is  a  general  type  of  teleparallel  gravity.  Spurred
by  the  achievement  of  the  cosmological  constant  as  a
straightforward and significant candidate for DE and DM,
a  few matter  fields  are  combined  with  the  expression  of
the Ricci  scalar R in  the action geometry sector  in  some
alternative  theories  of  gravitation  (e.g.,  theory,
where  is the matter Lagrangian density).

f (R,T )
In  the  interest  of  including  certain  components  of

matter into the geometry of action, the  theory was
suggested in [88], and it has generally been a fascinating

f (R,T )
f (R)
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framework for studying acceleration models. The 
gravity theory generalizes  gravity theories by intro-
ducing the  trace  of  the  stress-energy tensor  added to  the
Ricci  scalar.  The validation for  the  reliance on T origin-
ates from enlistments emerging from a few exotic fluid or
quantum impacts.  This enlistment perspective essentially
encompasses or  connects  to  the  recommendations  men-
tioned;  for  instance,  geometrical  curvature  prompting
matter,  geometrical  portrayal  of  physical  powers,  and  a
geometrical source  for  the  matter  substance  of  the  Uni-
verse.  In  Ref.  [91],  the  field  equations  of  a  few specific
models  are  introduced;  in  particular,  scalar  field  models

 are examined in detail  along with a concise ac-
count  of  their  cosmological  ramifications.  Similarly,  the
motion  equation  of  the  test  particle  and  the  Newtonian
boundary  of  this  equation  are  also  studied  in  Ref.  [88].
Until  now,  the  following  problems  have  been  explored
along  with  this  alternative  theory:  thermodynamics  [89-
91],  energy  conditions  [92],  anisotropic  cosmology  [93,
94],  cosmology  in  which  the  portrayal  uses  an  assistive
scalar  field  [95],  reconstruction  of  some  cosmological
models [96], wormhole solution [97, 98], scalar perturba-
tions [99], and some other relevant aspects [80, 100-102].
In  addition,  a  further  generalization  of  this  theory  has
been suggested recently in Refs. [103, 104].

f (R,T )

f (R,T )

f (R,T )

Consequently,  it  is  not  reasonable to  affirm or  refute
such  theories  depending  on  the  outcomes  of  cosmology
and contrast them with observed datum; for instance, the
challenge  of  the  viability  of  as  an  alternative
modification  of  gravity,  as  discussed  in  [105].  In  any
case, to set up an agreeable theory of gravitation, it is es-
sential to  consider  it  at  the  astrophysical  level,  for  in-
stance,  by  utilizing  relativistic  stellar  structures.  A  few
contentions for these modified theories originate from the
presumption  that  relativistic  stellar  structures  in  the
powerful  gravitational  sector  could  distinguish  common
gravity from its generalizations. In the scenario of 
gravity,  an  enormous  number  of  contributions  on  the
evolution  of  compact  stellar  structures  are  accessible  in
the literature.  In this context,  the hydrostatic equilibrium
structure of strange stars and neutron stars have been in-
vestigated  [73].  The  configuration  of  compact  stellar
structures  in  gravity  was  explored  recently  in
Refs. [67, 68, 71, 106-108], though gravastars (GRAvita-
tional  VAcuum STARS) resolution has been obtained in
[109-111].

The distribution of anisotropic fluids plays a signific-
ant role in the understanding of the internal geometry and
evolutionary  phases  of  relativistic  stellar  structures.  As
compact  stellar  systems  have  ultradense  cores  and  their
density  surpasses  nuclear  density,  the  pressure  inside
compact stellar systems ought to be anisotropic [112]. In
anisotropic  relativistic  astrophysical  systems,  it  is  seen
that the pressure is resolved into its radial and tangential
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components. Under this specific circumstance, numerous
researchers  have  explored  the  attributes  of  compact  and
dense stellar  systems  involving  anisotropic  fluid  struc-
ture. Ruderman [113] first proposed the concept of aniso-
tropy for static spherically symmetric structures and, sub-
sequently,  numerous  astrophysicists  have  included  this
parameter  while  modeling  compact  stellar  structures.  As
a compact stellar structure is shaped with very dense mat-
ter, a very high magnetic domain is related with it owing
to  the  principle  of  magnetic  flux  preservation.  The
enormous magnetic domain may produce pressure aniso-
tropy  inside  the  stellar  structure  [114].  Higher  densities
may similarly prompt anisotropy [115-119]. Thus, the an-
isotropy  aspect  is  another  factor  that  is  incorporated  in
EFEs,  leading  to  progressively  realistic  models  of  the
spherically  symmetric  compact  stellar  structures.  If  the
anisotropy  parameter  is  positive,  an  outward  repulsive
force will be applied on the stellar structure, making it in-
creasingly  compact  and steady.  The primary explanation
behind the emerging anisotropy in an  gravity the-
ory model could be the anisotropic nature of the two-flu-
id system without interaction. Further, it ought to be em-
phasized  that  from  a  quantum  point  of  view,  the de-
pendent Lagrangian  might  be  identified  with  the  forma-
tion  of  particles  that  normally  portray  the  presence  of
bulk viscosity  and other  flaws in  the  alluded fluid.  Con-
sequently,  we  suggest  models  in  which  the  transverse
pressure surpasses  the  radial  pressure.  To  determine  ac-
curate  solutions  of  EFEs,  two  dissimilar  methodologies
are frequently employed: it is possible that we determine
the  space--time  metric  elements  first  and  then  establish
the matter profile; alternatively, we may first  portray the
material  features  in  terms  of  certain  state  equations,  i.e.,
the relationship in the form , and subsequently in-
vestigate  the  metric  potentials.  While  searching  for  a
well-defined solution,  the  constants  arising  in  the  solu-
tion perform a significant role. A slight difference in the
values  of  the  constants  can  distance  the  stellar  structure
from its  position  of  equilibrium.  Therefore,  several  au-
thors  have  studied  compact  stellar  structure  models  by
employing the Karmarkar condition. At present, when the
Karmarkar  condition  [120]  is  being  attempted  on  the
gravitational  components  and , the  issue  of  estab-
lishing the spatiotemporal elements obtained make simple
to a great area, and the four-dimensional Riemannian spa-
tiotemporal  variety  can  be  described  graphically  in  the
five-dimensional pseudo-Euclidean  spatiotemporal  vari-
ety without any change in its intrinsic characteristics. The
solutions  fulfilling  the  Karmarkar  conditions  alongside
the  condition  suggested  by  Pandey  &  Sharma  [121]  are
well-known as  embedding  class-one  solutions.  It  is  in-
triguing to observe that Schwarzschild's internal solution
[122] is the only structure of bounded neutral matter with
a disappearing  anisotropy  parameter  fulfilling  the  Kar-

markar condition. For a further in-depth survey, one may
refer  to  the  literature  [123, 124-125],  where  the  authors
have  clearly  examined  the  impacts  of  the  procedure  of
embedding  four-dimensional  Riemannian  spatiotemporal
variety into  five-dimensional  pseudo-Euclidean  spati-
otemporal  variety  in  the  scenario  of  GR  and  alternative
gravity.

f (R,T )

Lm Lm = −P = (pr +2pt)/3

f (R,T ) = R+2χT χ

In  this  study,  we  examine  anisotropic  spherically
symmetric  solutions  in  the  domain  of  alternative  gravity
theories, particularly, the  theory of gravity. In this
respect,  we  consider  that  the  matter  Lagrangian  density

 (defined as ,  i.e.,  the isotropic
pressure) can be asserted as a linear function of the Ricci
scalar R and the trace of the energy--momentum tensor T,
i.e., ,  where  is a  dimensionless  coup-
ling  constant,  to  depict  the  global  set  of  modified  EFEs
for  anisotropic  matter  distribution.  We  also  consider  the
embedding  class  I  procedure  by  embedding  four-dimen-
sional  space--time into a  five-dimensional  flat  Euclidean
space  to  obtain  a  complete  space--time  representation  in
the  interior  of  the  relativistic  stellar  system.  Moreover,
for investigating the physical availability of the acquired
solutions, we have analyzed four different compact stars,
namely,  PSR J1614-2230, Vela X-1,  Cen X-3,  and SAX
J1808.4-3658 with linked  physical  parameters  analytic-
ally and graphically. Accordingly, the familiar Darmois--
Israel  [126, 127]  coordinating  conditions  can  be  used  to
calculate  all  the  physical  and  constant  ingredients  of  the
stellar system.

f (R,T )−

f (R,T )−

f (R,T )−

M−R I−M

This paper is organized as follows: Beginning with a
brief introduction in Section 1, we review the concept of

 gravity theory in Section 2. In Section 3, the ba-
sic  EFEs  for  anisotropic  matter  distributions  in

gravity are  described.  In  Section  4,  we  will  de-
scribe  the  Karmarkar  condition,  which  is  well  known as
an  embedding  class-one  solution.  Thereafter,  in  Section
5, we present the formulation of the complete stellar sys-
tem under the embedding class-one technique in the area
of gravity and its thermodynamic description. In
Section 6,  we analyze the new solutions through various
physical  tests  such  as  hydrostatic  equilibrium,  causality
condition,  stability  factor,  adiabatic  index  and  stability,
static stability  criterion,  and  energy  conditions.  In  Sec-
tion 7, we coordinate the acquired stellar system with the
external space--time described by the Schwarzschild met-
ric  to  obtain  the  constant  parameters.  Furthermore,  the
stiffness of the EoS and the  and  diagrams are
discussed in Section 8. Finally, we conclude our investig-
ation with a short discussion of the result in Section 9.

f (R,T )−2    Concepts of gravity

In the Einstein--Hilbert action, if the Ricci scalar R is
replaced by a function of R and the trace of the stress--en-
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f (R,T )−ergy  tensor T, the  modified  action  in gravity  is
expressed as

S =
1

16π

∫
f (R,T )

√−g d4x+
∫
Lm
√−g d4x, (1)

(gµν) = g
Lm

where  det . The  source  term  of  the  matter  Lag-
rangian density  defines a stress tensor as

Tµν = −
2
√−g

δ
(√−gLm

)
δgµν

. (2)

Following Harko et al.'s approach [88], Eq. (2) reduces to

Tµν = gµνLm−2
∂Lm

∂gµν
. (3)

gµνVariation  in  the  action  with  respect  to  yields  the
field equations(

Rµν−∇µ∇ν
)

fR(R,T )+gµν□ fR(R,T )− 1
2

f (R,T )gµν

= 8π Tµν− fT (R,T )
(
Tµν+Θµν

)
, (4)

fR(R,T ) = ∂ f (R,T )/∂R fT (R,T ) = ∂ f (R,
T )/∂T ∇µ

□

provided  and 
.  denotes  the  covariant  derivative,  whereas  the

box operator  is defined as

□ ≡ 1
√−g

∂

∂xµ

(√−g gµν
∂

∂xν

)
with

Θµν = gαβ
δTαβ
δgµν
.

The conservation equation [128] yields

∇µTµν =
fT (R,T )

8π− fT (R,T )

[
(Tµν+Θµν)∇µ ln fT (R,T )

+∇µΘµν−
1
2

gµν∇µT
]
. (5)

∇µTµν , 0
f (R,T )

Θµν

Therefore,  implies that  the  conservation equa-
tion no longer holds in  theory. Using Eq. (3), the
tensor  is found to be

Θµν = −2Tµν+gµνLm−2gαβ
∂2Lm

∂gµν ∂gαβ
. (6)

To complete the field equations, we assume an aniso-
tropic fluid source

Tµν = (ρ+ pr)uµuν− ptgµν+ (pr − pt)gvµvν , (7)

uν uµuµ = −1
uν∇µuµ = 0 ρ pr pt

−P =Lm = (pr +2pt)/3

where  is  the  four-velocity,  satisfying  and
,  is the matter density, and  and  are the

radial and transverse pressures, respectively. If we define
the isotropic pressure as  [88], then
Eq. (6) reduces to

Θµν = −2Tµν−Pgµν. (8)

f (R,T )
f (R,T ) = R+2χT χ

Further,  the  functional  is  chosen  to  be
 [88], where  is the coupling constant.

Now the field equations (5) take the form

Gµν = 8π Tµν+χT gµν+2χ(Tµν+Pgµν). (9)

χ = 0
f (R,T )

f (R,T ) = R+2χT

For ,  one  can  recover  the  general  relativistic  field
equations. The linear expression in  solves several
cosmological and astrophysical related problems. By sub-
stituting  and Eq. (8) in Eq. (5), we ob-
tain

∇µTµν = −
χ

2(4π+χ)

[
gµν∇µT +2∇µ(Pgµν

)]
. (10)

χ = 0
Thus, the conservation equation in Einstein's  gravity can
be recovered for .

f (R,T )−3    Field equations in gravity

To determine the field equations we assume an interi-
or space-time of the form

ds2
− = eνdt2− eλdr2− r2(dθ2+ sin2 θ dϕ2). (11)

For  the  space-time  expressed  in  Eq.  (11),  the  field
equation (9) becomes

8πρeff = e−λ
(
λ′

r
− 1

r2

)
+

1
r2 , (12)

8πpreff = e−λ
(
ν′

r
+

1
r2

)
− 1

r2 , (13)

8πpteff =
e−λ

4

(
2ν′′+ ν′2+

2(ν′−λ′)
r

− ν′λ′
)
, (14)

where

ρeff =ρ+
χ

24π

(
9ρ− pr −2pt

)
,

preff =pr −
χ

24π

(
3ρ−7pr −2pt

)
,

pteff =pt −
χ

24π

(
3ρ− pr −8pt

)
.

Now  the  decoupled  field  equations  (12)-(14)  are  as
follows:

ρ =
e−λ

48r2(χ+2π)(χ+4π)

[
rλ′

{
16(χ+3π)− rχν′

}
+16(χ+3π)(eλ−1)+ rχ

{
2rν′′+ ν′

(
rν′+4

)} ]
, (15)

pr =
e−λ

48r2(χ+2π)(χ+4π)

[
r
{
χλ′(rν′+8)−2rχν′′

+ ν′
(
20χ− rχν′+48π

) }−16(χ+3π)(eλ−1)
]
, (16)

pt =
e−λ

48r2(χ+2π)(χ+4π)

[
r
{
−λ′{r(5χ+12π)ν′

+4(χ+6π)
}
+2r(5χ+12π)ν′′+ r(5χ+12π)ν′ 2

+8(χ+3π)ν′
}
+8χ

(
eλ−1

) ]
. (17)

To solve the field equations, we have to assume some of
the physical  quantities  that  satisfy  strict  physical  con-
straints.
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4    Concepts of embedding class one

The  Kasner  coordinate  transformation  [129]  shows
that  the  exterior  Schwarzschild  vacuum  is  class-two
space--time. Using the following transformations,

X =
Rsin t

√
R2+16m2

, Y =
Rcos t

√
R2+16m2

,

Z =
∫ √

1+
256m4

(R2+16m2)3 dR,

R =
√

8m(r−2m) r2 = x2+ y2+ z2where  and ,  the  well-
known Schwarzschild vacuum reduces to

ds2 = −dx2−dy2−dz2+dX2+dY2−dZ2. (18)
This  means  that  the  Schwarzschild  exterior  space--time
can  be  embedded  into  a  six-dimensional  pseudo-Euc-
lidean manifold. This method was extended for the gener-
al  four-dimensional  space--time  of  the  form  (11)  by
Gupta & Goel  [130]. The chosen coordinate  transforma-
tions were

z1 =keν/2 cosh
( t
k

)
, z2 = keν/2 sinh

( t
k

)
, z3 = f (r),

z4 =r sinθcosϕ, z5 = r sinθ sinϕ, z6 = r cosθ,

which transform (11) into

ds2 = (dz1)2− (dz2)2∓ (dz3)2− (dz4)2− (dz5)2− (dz6)2, (19)
[ f ′(r)]2 = ∓[− (

eλ−1
)
+ k2eνν′2/4

]with .

(dz3)2 = [ f ′(r)]2 = 0

Equation (19)  also  implies  that  the  interior  line  ele-
ment  (11)  can  be  embedded  in  six-dimensional  pseudo-
Euclidean  space.  However,  if ,  it  can
be embedded in 5D Euclidean space, i.e.,

[ f ′(r)]2 = ∓
[
− (

eλ−1
)
+

k2eνν′2

4

]
= 0, (20)

which implies

eλ = 1+
k2

4
ν′2eν (21)

i.e., Eq. (19) reduces to

ds2 = (dz1)2− (dz2)2− (dz4)2− (dz5)2− (dz6)2, (22)
a class-one spacetime.

The  same  condition  (21)  was  originally  derived  by
Karmarkar  [120]  in  the  form  of  the  components  of  the
Riemann tensor as

RrtrtRθϕθϕ = RrθrθRϕtϕt +RrθθtRrϕϕt. (23)

Rθϕθϕ , 0

Pandey  & Sharma  [121]  pointed  out  that  the  Karmarkar
condition  is  only  a  necessary  condition  to  become  class
one; they discovered the sufficient condition as .
Hence,  the  necessary  and  sufficient  condition  to  be  a
class  one  is  to  satisfy  both  the  Karmarkar  and  Pandey-
Sharma  conditions.  In  terms  of  the  metric  components,

Eq. (23) can be written as
2ν′′

ν′
+ ν′ =

λ′eλ

eλ−1
, (24)

which, on integration, becomes the following:

eν =
(
A+B

∫ √
eλ−1 dr

)2

. (25)

f (R,T )−

f (R,T )−

f (R,T )−

where A and B are the constants of integration. In general
relativity,  there  is  no  class-one  exterior,  as  the  existing
Schwarzschild's  exterior  itself  is  a  class-two  space-time.
It has been shown that the two class-one isotropic-neutral
solutions in general relativity, i.e., the Schwarzschild uni-
form  density  model  and  Kohler-Chao  infinite  boundary
model  are  the  only  two  possible  solutions  [131].
However, Mustafa et al. [132] have also shown that these
two  isotropic-neutral  solutions  still  exist  in the-
ory  as  well,  although  the  constant  density  model  in  GR
can  have  decreasing  density  in gravity  and  the
infinite boundary Kohler-Chao solution can have a finite
boundary,  where  the  pressure  vanishes  owing  to  the

term.

eλ
Once one  of  the  metric  functions  is  determined,  say,

for ,  then the  EoS is  fixed.  Using Eqs.  (12),  (13),  and
(25), we obtain

8πpreff =−
1
r2 +

[c1

r
+

1
r2

∫ (
1−8πr2ρeff

)
dr

]
.[ 2B

√
eλ−1

r(A+B
∫ √

eλ−1 dr)
+

1
r2

]
. (26)

pr ρ

However,  because  of  the  highly  coupled  and  nonlinear
field equations (15)-(17), finding an exact expression for
the EoS in terms of  and  is very difficult; instead, one
can represent it graphically .

f (R,T )−5    Embedding class-one background in 
gravity

f (R,T )−Solving the field equations in gravity exactly
is a challenging task because of the highly coupled non-
linear differential equations. To simplify the problem, we
have adopted the embedding class-one approach, which is
an  application  of  four-dimensional  space-time.  Here,  we
propose a new metric function:

eλ = 1+ar2ebr2+cr4

. (27)

grr eλ(0) = 1

The physical motivation for using this ansatz is that it
not only is a new metric function but also satisfies the re-
quired criteria of , i.e., , and being an increas-
ing function of r. Satisfying these properties increases the
probability of obtaining well-behaved solutions.

Using Eq. (27) in Eq. (25), we get
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eν =
[
A+

B
√

2c

√
aebr2+cr4 F

(
2cr2+b

2
√

2c

)]2

, (28)

F(x)where  is Dawson's integral defined by

F(x) = e−x2

∫ x

0
eτ

2

dτ =
√
π

2
e−x2

erfi(x).

erfi(x)Here  is  the  usual  imaginary  error  function.  The
variations in the metric functions are presented in Fig. 1.

Plugging the metric functions into the field equations
(15)-(17), one can write

ρ =

√
aebr2+cr4

6(χ+2π)(χ+4π) f3(r)
(
ar2ebr2+cr4

+1
)2

[
(χ+3π)

× f2(r)F
(

2cr2+b

2
√

2c

)
+
√

c f1(r)
]
, (29)

pr =

√
aebr2+cr4

6(χ+2π)(χ+4π) f3(r)
(
ar2ebr2+cr4

+1
)2

[√
c f4(r)

+2
√

2aB f5(r)ebr2+cr4

F
(

2cr2+b

2
√

2c

) ]
, (30)

∆ =
r2
√

aebr2+cr4
(
aebr2+cr4 −b−2cr2

)
2(χ+4π) f3(r)

(
ar2ebr2+cr4

+1
)2

[
F

(
2cr2+b

2
√

2c

)

×
√

2aBebr2+cr4

+2
√

c
(
A

√
aebr2+cr4 −B

) ]
, (31)

pt = pr +∆. (32)

where

f1(r) =4A(χ+3π)
(
ar2ebr2+cr4

+2br2+4cr4+3
)

×
√

aebr2+cr4
+Bχ

(
2ar2ebr2+cr4

+br2+2cr4+3
)
,

f2(r) =2
√

2aBebr2+cr4
(
ar2ebr2+cr4

+2br2+4cr4+3
)
,

f3(r) =
√

2B
√

aebr2+cr4 F
(

2cr2+b

2
√

2c

)
+2A

√
c,

f4(r) =B
[
χ
(
10ar2ebr2+cr4 −br2−2cr4+9

)
+24π

(
ar2ebr2+cr4

+1
) ]
−4A

√
aebr2+cr4

[
3π

×
(
1+ar2ebr2+cr4

)
− r2χ

(
b−aebr2+cr4

+2cr2
) ]
,

f5(r) =r2χ
(
b−aebr2+cr4

+2cr2
)
−3π

(
ar2ebr2+cr4

+1
)
.

The variations in density, pressures, EoS, anisotropy,
and EoS parameter are displayed in Figs. 2, 3, 4, 5, and 6,
respectively. The nonpolytropic nature of the EoS can be
clearly seen in Fig. 4, i.e., the pressure vanishes when the
surface density is greater than zero.

 

M = 1.77±0.08 M⊙,

R = 9.56±0.08 km b = 0.0005/km2

c = 0.000015/km4

Fig.  1.     (color  online)  Variation  in  metric  functions  with
radial  coordinate  for  Vela  X-1  (

)  with  and
.

 

M=1.77±0.08 M⊙, R=9.56±0.08 km
b = 0.0005/km2 c = 0.000015/km4

Fig. 2.     (color  online)  Variation  in  density  with  radial  co-
ordinate  for  Vela  X-1  ( )
with  and .

 

M=1.77±0.08 M⊙, R=9.56±0.08 km
b = 0.0005/km2 c = 0.000015/km4

Fig. 3.     (color  online)  Variation in pressures with radial  co-
ordinate  for  Vela  X-1  ( )
with  and .
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6    Physical analysis of new solution

Any new solutions must be analyzed through various
physical tests. After satisfying all the physical constraints,
one can proceed further with modeling physical systems.

6.1    Hydrostatic equilibrium

All  the  physical  compact  stars  are  believed  to  be  in
equilibrium states.  Such  equilibrium states  can  be  tested
using the equation of hydrostatic equilibrium or the modi-
fied TOV equation, which is expressed as

− ν
′

2
(ρ+ pr)−

dpr

dr
+

2∆
r

+
χ

3(8π+2χ)
d
dr

(
3ρ− pr −2pt

)
= 0. (33)

Fg

Fh

Fa Fm

f (R,T )−

Fm

χ = −1

χ χ Fg, Fm Fh

Fa

Here, the first term is gravity ( ), second term is the
pressure  gradient  ( ),  third  term  is  anisotropic  force
( ),  and  last  term  is  the  additional  force  ( )  in

gravity.  The  fulfillment  of  the  modified  TOV
equation  is  presented  in Fig.  7.  It  shows  that  the  forces
owing  to  gravity,  pressure  gradient,  and  are  the
highest  in ;  however,  the  anisotropic  force  is  the
lowest. This enables it to hold more mass than others for
small  values  of .  As  increases, ,  and  de-
crease although  increases slightly; therefore, the max-
imum mass that can be held by the system also reduces.

6.2    Causality condition and stability factor

f (R,T )−We  are  aware  of gravity  as  an  extension  of
general  relativity,  which  provides  a  constraint  on  the
maximum speed limit. All the particles with nonzero rest
mass  travel  at  subluminal  speeds,  i.e.,  at  less  than  the
speed of light (causality condition). The velocity of sound

 

M = 1.77±0.08 M⊙, R = 9.56±0.08 km b = 0.0005/km2

c = 0.000015/km4

Fig.  4.     (color  online)  Equation  of  state  for  Vela  X-1
( )  with 
and .

 

M = 1.77±0.08 M⊙, R = 9.56±0.08 km
b = 0.0005/km2 c = 0.000015/km4

Fig. 5.    (color online) Variation in anisotropy with radial co-
ordinate for Vela X-1 ( )
with  and .

 

M = 1.77±
0.08 M⊙, R = 9.56±0.08 km b = 0.0005/km2

c = 0.000015/km4

Fig. 6.    (color online) Variation in equation of state paramet-
ers  with  radial  coordinate  for  Vela  X-1  (

)  with  and
.

 

M = 1.77±0.08 M⊙,

R = 9.56±0.08 km b = 0.0005/km2 c = 0.000015/km4

Fig.  7.     (color  online)  Variation  in  forces  in  TOV  equation
with  radial  coordinate  for  Vela  X-1  (

) with  and .
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pz = ρz

in a medium must also satisfy the causality condition, and
it  determines  the  stiffness  of  the  related  EoS.  Therefore,
one can determine the speed of sound in a stellar medium
to  relate  its  stiffness.  The  most  stiff  EoS  is  Zeldovich's
fluid ( ), in which sound travels exactly at the speed
of light. The speed of sound can be determined as

v2
r =

dpr

dρ
, v2

t =
dpt

dρ
. (34)

χ = −1
χ

χ

Fig. 8 presents a plot of the speed of sound with respect
to  the  radial  coordinate.  It  can  be  seen  that  the  speed  of
sound  is  maximum  for  and decreases  with  in-
crease in . This imply that the solution leads to a stiffer
EoS at small values of .

v2
t − v2

r vr > vt

−1 ⩽ v2
t − v2

r ⩽ 0

The speed of sound can also be related to the stability
of the configuration. As per Abreu et al. [133], the stabil-
ity  factor  can  be  defined  as .  So  long  as or

, the system is generally considered stable,
otherwise  it  is  considered  unstable.  The  variation  in  the
stability factor is displayed in Fig. 9, which clearly indic-
ates that the solution is stable.

6.3    Adiabatic index and stability

Another  parameter  that  determines  the  stability  and
stiffness  of  an  EoS  is  the  adiabatic  index,  which  is
defined as the ratio of specific heat at constant pressure to
that  at  constant  volume.  For  any  fluid  distribution,  the
adiabatic index can be determined as [134]

γ =
pr +ρ

pr
v2

r . (35)

pr = Kργ γ

In polytropic cases, the pressure and density are linked by
the  EoS ,  and  the  adiabatic  index  is  constant
throughout the stellar interior. It is well-known that white
dwarf stars are supported by degenerate electron pressure,
and the  adiabatic  indexes  for  nonrelativistic  and  ul-

γ > 4/3 γ ⩽ 1
γ < 1

γ

∆ > 0
γ > 4/3 ∆ < 0
γ < 4/3

χ

trarelativistic  electrons  are  5/3  and  4/3,  respectively.  As
per Bondi's perceptions, a polytropic stellar fluid distribu-
tion is  stable  if  in  the  Newtonian limit.  If ,
contraction is possible, and it is catastrophic if . This
was  extended  by  Chan  et  al.  [135]  to  anisotropic  fluids;
however,  it  is  no  longer  valid  for  anisotropic  fluids,  for
which the stable  limit  of  depends on the nature of  an-
isotropy and its initial configuration. If anisotropy ,
the  stable  limit  will  still  be ;  however,  if ,
stability is  still  possible even if .  Variation in the
adiabatic  index  is  presented  in Fig.  10. For  various  val-
ues  of ,  the  central  adiabatic  index  is  accumulated
around  2  and  increases  outward.  Unlike  the  polytropic
case, the adiabatic index is an increasing function of r and
its central values decide whether the stellar configuration
is stable or not.

 

M = 1.77±0.08 M⊙, R = 9.56±0.08 km
b = 0.0005/km2 c = 0.000015/km4

Fig. 10.    (color online) Variation in adiabatic index with radi-
al coordinate and variation in mass with central density for
Vela  X-1  ( )  with

 and .

 

M = 1.77±0.08 M⊙, R = 9.56±
0.08 km b = 0.0005/km2 c = 0.000015/km4

Fig. 8.    (color online) Variation in speed of sound with radi-
al  coordinate  for  Vela  X-1  (

) with  and .

 

M = 1.77±0.08 M⊙, R = 9.56±
0.08 km b = 0.0005/km2 c = 0.000015/km4

Fig. 9.    (color online) Variation in stability factor with radial
coordinate  for  Vela  X-1  (

) with  and .
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6.4    Static stability criterion

∂M/∂ρc

ρc

This  criterion,  originally  established  by  Chandra-
sekhar, is used to analyze the stability of stellar configur-
ations  under  radial  perturbations  [136].  Harrison et  al.
[137]  and  Zeldovich  &  Novikov  [138]  simplified  this
method  later.  The  static  stability  criterion  imposed  the
condition that  if  is  greater  than zero,  the system
is  stable;  otherwise,  it  is  unstable.  To  verify  it,  we  have
calculated the mass as a function of , expressed as

M (ρc) =
R
2

(
1− 1

1+aR2ebR2+cR4

)
. (36)

ρc

χ
χ = 1

χ = −1

χ

Here, a is  a  very  complicated  function  of  and, there-
fore, we avoid a definition. The variation of mass with re-
spect  to  the  central  density  is  presented in Fig.  11,  from
which  one  can  conclude  that  the  stability  is  enhanced
with increase in . This is because the range central dens-
ity  is  higher  for  saturating  the  mass  when  than
when . This  implies that  the stable range of  dens-
ity during radial oscillation is greater for higher values of

.  Thus,  it  can  be  concluded  that  this  solution  is  stable
under radial perturbations.
 

 

M = 1.77±0.08 M⊙, R = 9.56±0.08 km

b = 0.0005/km2 c = 0.000015/km4

Fig. 11.    (color online) Variation in mass with central dens-
ity for Vela X-1 ( ) with

 and .
 

6.5    Energy conditions

After  confirming  all  the  stability  tests,  the  nature  of
matter  content,  i.e.,  either  normal  (baryonic,  hadronic,
etc.)  or  exotic  (dark  matter,  dark  energy,  etc.),  can  be
identified using energy conditions. The satisfaction or vi-
olation of certain energy conditions will imply the nature
of matter. These energy conditions are expressed as follows:

Null : ρ+ pr ⩾ 0, ρ+ pt ⩾ 0,
Weak : ρ+ pr ⩾ 0, ρ+ pt ⩾ 0, ρ ⩾ 0,
Strong : ρ+ pr ⩾ 0, ρ+ pt ⩾ 0, ρ+ pr +2pt ⩾ 0,
Dominant : ρ ⩾ |pr |, ρ ⩾ |pt |.

Fig.  12 indicates that  all  the  energy conditions  are  satis-
fied  by  the  solution  and,  therefore,  the  matter  content  is
normal.

7    Boundary conditions

M−
M+

The boundary conditions ensure that the internal 
and  external  space--time  geometry  match  in  a
smooth manner.  The  matching  condition  procedure  per-
mits the  determination  of  the  total  set  of  constant  para-
meters that depict the stellar model and the macrophysic-
al  observables  i.e.,  the  total  mass M and  the  radius R of
the anisotropic relativistic fluid sphere. To so do, we use
the well-known Israel-Darmois junction conditions [126,
127].  As  usual,  we  assume  that  the  exterior  space--time
geometry in  the  form  of  Schwarzschild's  vacuum  is  ex-
pressed as

ds2
+ =

(
1− 2m

r

)
dt2−

(
1− 2m

r

)−1

dr2

− r2(dθ2+ sin2 θ dϕ2). (37)

r > 2m
Σ ≡ r = R

M−
M+

Σ

gµ,ν
Σ

ds2|Σ = 0 M−
M+ Σ

Kµ,ν µ ν

(x1, x2, x3) = (r, θ,ϕ) Kr,r

However, we must keep in mind that to avoid singularity,
one  must  satisfy  the  condition .  Therefore,  at  the
surface of the stellar object , the Israel-Darmois
matching conditions lead to, first, the interior  and ex-
terior  manifolds  expressed  by  Eqs.  (27)-(28)  and
(37),  respectively,  induced  on as  an  intrinsic  curvature
described by the metric tensor . The continuity of the
metric  tensor  components  across  the  boundary  estab-
lishes  the  first  fundamental  form,  which  implies  that

.  Second,  the  conditions  also  induce  and
 on  as an extrinsic geometry represented by the ex-

trinsic  curvature  tensor ,  where  and  run  over
. The continuity of the component 

of  the  extrinsic  curvature  tensor  across  the  boundary  of

 

M = 1.77±0.08 M⊙, R = 9.56±
0.08 km b = 0.0005/km2 c = 0.000015/km4

Fig.  12.     (color  online)  Variation  in  energy  conditions  with
radial coordinate for Vela X-1 (

) with  and .
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Σ

pr(r)|Σ = 0 Kθ,θ
Kϕ,ϕ

m(R) = M

ρ [0,R]

gµ,ν Σ

Kµ,ν

0 ⩽ r ⩽ R
Σ ≡ r = R
ds2
−|r=R = ds2

+|r=R

the  stellar  object  infers  the  second  fundamental  form,
which  peruses ,  and  the  continuity  of  the 
and  components  prompt  the  determination  of  the
complete mass interior to the sphere . In this re-
spect,  the  following  remarks  are  appropriate.  In  the  first
situation,  to  acquire  the  complete  mass  governed  by  the
anisotropic relativistic fluid sphere, at least three equival-
ent  methods can be used: the first  method is  to integrate
the  energy  density  over  the  range ,  the  second
method is to impose the continuity of the radial compon-
ents of the metric tensor  across , and the third meth-
od is  based on the continuity of  the angular  components
of the extrinsic curvature tensor . In the second situ-
ation,  a  vanishing  radial  pressure  at  the  boundary  of  the
stellar  structure  determines  the  radius R, i.e.,  the  size  of
the stellar  object;  further,  it  avoids  an  indeterminate  ex-
pansion of the stellar model surrounding the matter field
within  the  region .  Therefore,  at  the  surface

,  we  obtain  the  first  fundamental  form
, which explicitly reads

e−λ(R) = 1− 2M
R
= eν(R). (38)

Using Eq. (38), we obtain

a =
2Me−R2(b+cR2)

R2(R−2M)
, (39)

A =

√
1− 2M

R
− B
√

2c

√
aebR2+cR4 F

(
2cR2+b

2
√

2c

)
.

(40)

pr(R) = 0

Generally, when  modeling  compact  stars,  the  pres-
sure at  the surface should vanish,  i.e.,  the second funda-
mental  form . This  condition  allows  us  to  de-
termine one more constant as follows:

B =4
√

c

√
1− 2M

R

√
aR2ebR2+cR4

[
R2χ

(
2cR2−aebR2+cR4

+b
)
−3π

(
aR2ebR2+cR4

+1
) ][√

cR
{
χ
(
bR2+2cR4

−9−10aR2ebR2+cR4
)
−24π

(
aR2ebR2+cR4

+1
)}

+2
√

2aRebR2+cR4

F
(

2cR2+b

2
√

2c

) {
3π

(
aR2ebR2+cR4

+1
)

−R2χ
(
b−aebR2+cR4

+2cR2
) }
− 2aR

√
2

e−(bR2+cR4)

F
(

2cR2+b

2
√

2c

){
3π

(
aR2e−(bR2+cR4)+1

)
−R2χ

(
b−ae−(bR2+cR4)+2cR2

)}]−1
.

(41)

The parameters b and c are treated as free, whereas M and
R are obtained from observed evidence.

8    Stiffness of EoS and M-R and I-M curves

M−R M− I
M− I

χ = −1
χ

χ

M−R
M− I

There are several ways of determining the stiffness of
an  EoS,  e.g.,  by  determining  the  adiabatic  index,  sound
speed,  etc.  However,  the  sensitivity  to  stiffness  is  found
to  be  very  sharp  in  and  graphs.  In  fact,  the

 graph is the most effective and sensitive to the stiff-
ness  of  an  EoS. Fig.  14 displays  the  variation  in  mass
with  respect  to  the  radius.  In  the  preceding  sections,  we
have already noted that the EoS is the stiffest for ,
and  as  increases,  the  stiffness  reduces.  Therefore,  the
mass that can be held by the corresponding EoS will also
reduce  as  increases.  The  same  observations  can  be
made from the  curve in Fig. 14. To compare it with
the  curve, one must establish how to determine the
moment  of  inertia  (I).  Adopting  the  Bejger  &  Haensel
[139]  formula,  one  can  determine  the  value  of I corres-
ponding to a static solution. It is expressed as

 

M = 1.77±0.08 M⊙, R = 9.56±0.08 km
b = 0.0005/km2 c = 0.000015/km4

Fig. 13.     (color  online)  Variation  in  redshift  with  radial  co-
ordinate for Vela X-1 ( )
with  and .

PSR J1614-2230

Vela X-1

CEN X-3

SAX J1808.4-3658

 

M−RFig. 14.    (color online)  curve of solution.
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I =
2
5

(
1+

(M/R) ·km
M⊙

)
MR2. (42)

χ M− I
M−R

The change in I with respect to mass is presented in Fig.
15.  Again,  we  can  verify  that  the  EoS  is  most  stiff  for
small values of . The transition at the peak of the 
curve  is  sharper  than  that  of  the  curve, which  in-
dicates its sensitivity to the stiffness of the EoS.
 

PSR J1614-2230

Vela X-1

CEN X-3

SAX J1808.4-3658

 
Fig. 15.    (color online) Variation of total mass with moment

of inertia.
 

M−R

M−R

M− I

Further, the generated  curve is also fit with ob-
served results for a few well-known compact stars. As ex-
amples,  we  have  matched  the  results  obtained  for  PSR
J1614-2230, Vela X-1, Cen X-3, and SAX J1808.4-3658.
From  the  curve  fits  for  these  compact  stars,  it  is
possible to predict the probable range of I for the above-
mentioned objects from the  curve.

9    Discussion and conclusion

f (R,T )−

f (R,T )−

χ −1
ω

M−R M− I
Mmax Imax

χ

In  this  study,  we  have  successfully  embedded  the
class-one  technique  in  the  area  of gravity.  This
procedure not only simplifies the exploration of new ex-
act  solutions  within  the theory but  also  facilit-
ates the investigation of the theory of compact stars in the
same  realm.  The  solution  was  analyzed  through  various
physically stringent conditions such as the causality con-
dition,  energy  conditions,  satisfaction  of  TOV  equation,
stability  criteria  through  Bondi's  condition,  Abreu  et  al.
condition, and static stability criterion. As we increase the
coupling constant  from  to 1, the density, pressures,

, speed of sound, and interior redshift increase. This in-
crease  in  energy  density  may  lead  to  the  generation  of
exotic particles such as quarks, hyperons [140, 141], and
kaon  condensation  [142], which  soften  the  EoS.  There-
fore,  in  the  and  curves,  one  can  see  that

 and  increase  with  a  decrease  in  the  coupling
constant,  which is  a  direct  consequence of  the  stiffening
of  the  EoS  at  low .  This  outcome  can  also  be  cross-

vr/t(χ = −1)
vr/t(χ = 1)

checked with the internal velocity of sound. From Fig. 8,
we  can  see  that  is  always  greater  than

, i.e., the EoS is stiffer for the former condition
as compared to the latter.

Γc(χ = 1) = 1.977
Γc(χ = −1) = 1.848 χ = −1

Γc(χ = −1) = 1.848
Γ = 1.333 χ = −1

χ = −1 χ = 1

χ = 1 χ = −1

zs = 3.842

Although the stiffness of the EoS is enhanced by the
low  coupling  constant,  the  stability  is  compromised.  In
Fig. 10, the central value  is greater than
that  at .  For ,  the  value

 is  comparatively  closer  to  the  Bondi
limit,  i.e., .  Therefore,  is  more sensitive
towards  radial  oscillations  and,  hence,  the  stability.  On
the other hand, the range of central density is smaller for

 than for . This means that during radial per-
turbations,  the  range  of  stable  density  perturbation  is
more for  than for , thereby enhancing its sta-
bility. Further,  the  solution  fulfills  all  the  energy  condi-
tions.  The  anisotropy  decreases  with  decrease  in  the
coupling parameter. This leads to the conclusion that the
anisotropy in  pressure  reduces  with  increase  in  the  stiff-
ness of the EoS. The surface redshifts predicted form the
solution in far within Ivanov's limit, i.e.,  [143].

f (R,T )−
χ

−1 ⩽ χ ⩽ 1

In Table  1,  we  have  presented  some  of  the  physical
parameters of  four  compact  stars.  We  have  also  presen-
ted  how the  radius,  central  and  surface  densities,  central
pressure,  and  moment  of  inertia  vary  with  the

coupling constant. As the stiffness increases with
decrease  in ,  the  central  and  surface  densities,  central
pressure, and  radius  increase  while  the  stability  is  com-
promised.  For ,  we have predicted the radii  of
the  compact  stars.  All  these  results  are  accurate  and  in
agreement  with  the  observed  values  of  the  masses  and
radii. Thus,  one can undoubtedly conclude that  the solu-
tion might have astrophysical significance.

eλ eλ = 1+ar2ebr2+cr4

eν

χ− f (R,T )

For the graphical test and investigation of the physic-
al  reasonable  grounds of  the accomplished solutions,  we
have  selected  the  physical  profiles  of  four  well-known
compact  stellar  systems,  namely,  PSR J1614-2230,  Vela
X-1, Cen X-3, and SAX J1808.4-3658. In this regard, we
have  assumed  the  radius--radius  element  of  the  metric
function ( ) to be in the new form  and
provided  the  time--time  element  of  the  metric  function
( ) as  expressed  explicitly  in  Eq.  (28).  Further,  we  ex-
hibit the anisotropic impacts on the physical systems im-
posed  by  the coupling  constant  of  the  gravity
theory. Thus, we have established the most significant sa-
lient features that describe the stellar system, fulfilling all
the general  necessities  to  guarantee  a  respectful  frame-
work.

eν eλ

M = 1.77±0.08 M⊙, R = 9.56±0.08 km

The  comportment  of  physical  amounts  of  time--time
and  radius--radius  components,  namely,  and , re-
spectively, with respect to the radial coordinate r for Vela
X-1  ( ) is  represen-
ted  in Fig.  1.  This  figure  illustrates  that  both  the  metric
functions are limited at the origin and monotonically ex-
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eλ(r = 0) = 1 eν(r = 0) , 0

ρ pr

pt

∆ pt > pr ∆ > 0

χ−
f (R,T )−

∆

panding towards the point of confinement at the surface.
Moreover,  it  may  very  well  be  seen  from  Eqs.  (27)  and
(28) that  and , which shows that
this stellar system is realistic and agreeable. Hence, Figs.
2 and 3 clearly display  that  all  the  thermodynamic  ob-
servables,  i.e.,  energy  density ,  radial  pressure ,  and
transverse pressure , are well-defined within the stellar
structure.  In  this  context,  it  is  worth  mentioning  that  all
the  quantities  mentioned  have  their  maximum  values  at
the core  of  the  stellar  structure  and  monotonically  de-
creasing comportment with increasing radius towards the
surface.  At  this  stage,  it  merits  mentioning  that  the
present  stellar  model  shows  a  positive  anisotropy  factor

;  from Fig.  3,  it  can  be  seen  that  when , .
Thus, the stellar structure is found to be a repulsive force
that neutralizes  the  gravitational  slant.  This  reality  per-
mits the building of a progressively compact stellar con-
figuration. From Figs. 1, 2, and 3, we can confirm that the
stellar system is absolutely devoid of physical or geomet-
rical singularities for all chosen values of the coupling
constant of the gravity theory. Fig. 5 exhibits the
variation  in  the  anisotropy  parameter  with  the  radial
coordinate  for  Vela  X-1.  The  anisotropy  vanishes  at  the
center, and,  consequently,  it  is  defined  as  a  positive,  in-
creasing function towards the surface of the stellar struc-

ωr = pr/ρ ωt = pt/ρ

f (R,T )−

ture.  In  addition, Fig.  6 indicates  that  the  values  of  the
EoS  parameters  and  are  under  1,
demonstrating  that  Zeldovich's  condition  is  fulfilled
everywhere  within  the  stellar  structure  in  the  context  of
the gravity theory.

f (R,T )−

Fg

Fh Fa Fm

f (R,T )−

χ = −1

χ χ Fg Fm Fh

Fa

Further,  the  equilibrium  study  of  the  model  for  the
stellar  system  is  established  using  the  generalized  TOV
equation that originates from the modified type of energy
conservation  equation  for  the  energy-momentum  tensor
in the area of the gravity theory, as expressed in
Eq. (10). In this regard, it  is easy to see from Fig. 7 that
the  modified  TOV  equation  permits  exploration  under
various forces that perform on the stellar structure. In this
event, the stellar structure is under the effect of four dif-
ferent  forces,  namely,  gravity  ( ),  pressure  gradient
( ), anisotropic force ( ), and the additional force ( )
in gravity.  The  forces  caused  by  gravity  and
pressure gradient and the additional force are the highest
for ;  however,  the  anisotropic  force  is  the  lowest.
This  enables  it  to  hold  more  mass  than  the  others  for
small  values  of .  As  increases, , ,  and  de-
crease  although  increases slightly.  Thus,  the  maxim-
um mass that can be held by the system also reduces. On
the  other  hand,  we  investigated  the  stability  of  realistic
and compact  stellar  structure  solutions  using  the  causal-

Table 1.    Prediction of radius for few well-known compact stars and their corresponding central densities and pressures for various values of χ.

Objects χ M⊙M( ) Predicted radius/km ρ0 MeV/fm3( ) ρs MeV/fm3( ) p0 MeV/fm3( ) I×1044 g cm2( )

PSR J1614-2230

−1.0

±1.97  0.04

10.13 621.11 376.32 72.57 18.51

−0.5 9.89 581.58 353.52 63.20 17.52

0 9.66 549.65 330.71 56.10 16.77

0.5 9.47 519.24 313.98 50.28 16.04

1.0 9.28 491.87 295.74 45.44 15.59

VELA X-1

−1.0

±1.77  0.08

9.76 551.66 362.96 56.48 15.29

−0.5 9.55 518.29 339.95 49.12 14.62

0 9.34 488.38 319.24 43.36 13.94

0.5 9.15 461.91 303.13 38.76 13.56

1.0 8.99 437.75 285.87 34.85 13.01

SAX J1808.4-3658

−1.0

±0.9  0.3

7.91 431.10 339.05 20.76 4.74

−0.5 7.69 403.98 317.68 18.14 4.51

0 7.54 380.96 298.78 16.12 4.34

0.5 7.42 359.60 282.34 14.50 4.17

1.0 7.26 340.69 266.73 13.19 4.00

CEN X-3

−1.0

±1.49  0.08

9.29 502.10 352.97 41.72 11.24

−0.5 9.03 471.03 330.02 36.47 10.85

0 8.85 443.42 311.65 31.83 10.42

0.5 8.66 418.10 294.44 28.60 10.11

1.0 8.53 397.39 278.37 25.98 9.72
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χ− f (R,T )−
vr

vt

[0,1]

χ = −1
χ

χ−

v2
t − v2

r
−1 0 χ−

4/3 ∆ > 0

χ

χ = 1 χ = −1

χ

ity condition  and  stability  factor,  i.e.,  the  stability  cri-
terion  through  Bondi's  condition  and  the  Harrison-Zel-
dovich-Novikov static stability criterion corresponding to
the coupling  constant  of gravity. Fig.  8 dis-
plays  the  performances  of  the  radial  ( )  and  transverse
( ) speeds of sound with respect to the radial coordinate
r, according to these criteria, for the compact stellar con-
figuration; it is clear that they remain within their prede-
termined  range  throughout  the  stellar  framework,
which  affirms  the  causality  condition  and,  furthermore,
validates  the  acceptability  of  the  subsequent  anisotropic
solution  of  our  stellar  system.  Moreover,  it  can  be  seen
that  the  speed  of  sound  is  maximum for  and de-
creases  with  increase  in , which  implies  that  our  solu-
tion leads to a stiffer EoS at small values of the coup-
ling constant. The solution can also be obtained for static
and stable astrophysical structures, as the stability factor,
which can be defined as ,  lies between the bounds

 to  for various values of the coupling parameter,
displayed in Fig. 9. In addition, for a noncollapsing stel-
lar  fluid  distribution,  the  adiabatic  index  should  also  be
greater than  for  according to the stability criter-
ia via Bondi’s perceptions, which can be observed clearly
from Fig.  10;  therefore,  our  stellar  system  is  generally
stable.  In Fig.  11,  we present  the plot  of  the variation in
mass  with  respect  to  the  central  density,  which  satisfies
the Harrison-Zeldovich-Novikov static stability criterion.
From this figure, one can conclude that the stability is en-
hanced with increase in . This holds on the grounds that
the  range  of  central  density  is  greater  for  saturating  the
mass  when  than  when .  This  infers  that  the
stable  range  of  density  during  radial  oscillation  is  more
applicable for larger values of .  Thus, we can conclude
that our  solution  is  completely  stable  under  radial  per-
turbations.  Subsequently,  we  investigated  the  profile  of
the  thermodynamic  quantities  that  prompt  a  well-be-
haved  and  positively  defined  energy--momentum  tensor
throughout  the  interior  of  the  compact  stellar  structure,
which  is  satisfied  simultaneously  by  the  inequalities

named  ECs  that  govern  them.  Hence,  in Fig.  12,  we
present the plots of the left-hand sides of these inequalit-
ies, which verify that  all  the ECs are achieved at  the as-
trophysical  inside  and,  consequently,  corroborate  the
physical accessibility of the compact stellar internal solu-
tion. The fulfillment of the redshift with respect to the ra-
dial  coordinate r for  Vela  X-1  is  illustrated  in Fig.  13.
This  figure  demonstrates  surface  redshift  within  typical
values resulting from Ivanov’s effect, which strongly val-
idates our compact stellar system.

M−R
f (R,T )

M− I χ
M−R I−M

Further,  we  have  generated  curves  from  our
solutions in the area of  gravity theory and found a
perfect  fit  for  certain  compact  stellar  spherical  systems
such  as  PSR J1614-2230,  Vela  X-1,  Cen  X-3,  and  SAX
J1808.4-3658. Therefore,  we  have  predicted  the  corres-
ponding radii and their respective moment of inertia from
the  curve  by  varying the  coupling  constant  as  a
free  variable.  The  and  curves  are  presented
in Figs.  14 and 15. These  curves  indicate  that  our  solu-
tion predicted the radii in good agreement with the obser-
vational data.

f (R,T )

f (R,T )

Finally, we wish to remark that all anisotropic spher-
ically  symmetric  solutions  established  in  this  study,
which  satisfy  the  well-behaved  stellar  interiors  obtained
in the area of  gravity theory using the embedding
class-one procedure, fulfill and share all the physical and
mathematical  features  necessary in the study of  compact
stellar  spherical  systems,  leading  to  an  understanding  of
the evolution  of  realistic  compact  stellar  spherical  sys-
tems. In this regard, the  gravity theory is a prom-
ising principle  for  envisaging  the  existence  of  the  com-
pact stellar spherical systems characterized by anisotrop-
ic  matter  distributions,  which  meet  the  notable  and  tried
general  necessities  and  whose  effects  can  be  contrasted
with the well-described GR.
 

We  are  very  grateful  to  the  honorable  referees  and
the editor for their relevant suggestions that have consid-
erably improved  our  work  in  terms  of  the  quality  of  re-
search and presentation.
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