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Abstract: We study the spin precession frequency of a test gyroscope attached to a stationary observer in the five-di-

mensional rotating Kaluza-Klein black hole (RKKBH). We derive the conditions under which the test gyroscope

moves along a timelike trajectory in this geometry, and the regions where the spin precession frequency diverges. The

magnitude of the gyroscope precession frequency around the KK black hole diverges at two spatial locations outside

the event horizon. However, in the static case, the behavior of the Lense-Thirring frequency of a gyroscope around

the KK black hole is similar to the ordinary Schwarzschild black hole. Since a rotating Kaluza-Klein black hole is a

generalization of the Kerr-Newman black hole, we present two mass-independent schemes to distinguish these two

spacetimes.
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1 Introduction

A complete gravitational collapse of a massive or a
supermassive star leads to one of the following fates: a
neutron star, black hole or naked singularity, depending
on the initial mass of the star and on the various initial
conditions of its physical parameters [1]. From the math-
ematical and astrophysical perspectives, the task of dis-
tinguishing the scenarios of formation of a black hole and
naked singularities remains enigmatic. In this context we
should emphasize that the recent measurement of the
black hole shadow has ruled out the possibility that M87
is a naked singularity. Also, all LIGO measurements pre-
dict a black-hole-like nature of the compact objects.
However, from the theoretical point of view, the question
remains whether a given configuration of matter that col-
lapses leads to the formation of a horizon or not. In other
words, whether the horizons are formed prior to the
curvature singularity or later. Researchers also pondered
whether a black hole can convert into a naked singularity.
Numerous thought experiments involving the absorption
of spinning or charged particles in an extremal black hole
lead to the destruction of the horizon [2-6]. However,
considerations of back-reaction or self-conservative force

avoid such a conclusion [7].

Although there are numerous astrophysical candid-
ates for black holes, there are none for a naked singular-
ity. This still does not discard the possibility of existence
of visible singularities, since these are valid predictions of
the Einstein theory of General Relativity. In order to dis-
tinguish an astrophysical black hole from a naked singu-
larity, few important schemes are proposed: the phe-
nomenon of gravitational lensing and formation of shad-
ow images [8-12]; detection of hard X- and gamma-rays
from the inner regions of accretion disks surrounding
compact objects [13]; investigation of gravitational waves
emitted from compact objects [14]; and the spin preces-
sion frequency of a stationary test gyroscope which is
frame dragged in the ergo-region of the spinning black
hole [15-20]. However, from the theoretical perspective,
only a theory of quantum gravity can ultimately explain
the process of complete gravitational collapse. Observa-
tionally, the Gravity Probe B detected and measured the
geodetic precession frequency of a gyroscope relative to
Earth [21]. However, these results are not directly applic-
able to black holes. Also, the measurement of Gravity
Probe B is a weak field result, while we are interested in
the region near the ergo-sphere, where strong field ef-
fects are present. The relativistic gyro-frequency di-
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verges in the ergo-region of the black hole, while for a
naked singularity, it diverges near the singularity itself. In
recent years, the gyro-frequency has been calculated for
various spinning black holes and naked singularities with
interesting observable consequences.

The pioneering idea of Kaluza and Klein (KK) was an
attempt to unify the two fundamental forces, electromag-
netism and gravity, by introducing one extra spatial di-
mension to the four-dimensional spacetime structure. The
hypothesis of KK asserts that the extra dimension is com-
pactified throughout spacetime, so that the topology be-
comes R*x S, In this regard, a stationary KK solution is
said to be asymptotically flat if its spacetime metric ap-
proaches a Minkowskian spacetime metric (of the same
dimension) as the linear non-compactified spatial co-
ordinates tend to infinity.

Although the approach of KK was not successful, the
idea of higher dimensions has been taken over by the
modern string theory and M theory. In the past three dec-
ades, there have been numerous studies of the rotating
black holes with or without electric charge in the Kaluza-
Klein theory. Theoretical models of KK black holes in-
clude several fields, such as the Maxwell field, Chern-Si-
mons field and the dilaton field. Besides, there are very
few known black hole solutions in five dimensions,
which include the Myers-Perry black hole [22], Kaluza-
Klein black hole with squashed horizon [23], charged ro-
tating black hole in minimal supergravity [24, 25], and in
five-dimensional Einstein-Maxwell-Chern-Simons super-
gravity [26]. Besides, there are general higher dimension-
al black holes in various gravitational theories, such as
the f(R) and Gauss-Bonnet theory with or without auxili-
ary fields, including the electromagnetic, Yang-Mills or
scalar fields [27-32].

We consider a stationary gyroscope moving both un-
der the effect of the relativistic frame dragging of a spin-
ning black hole, and the effect of a constant angular speed
Q along the direction of the Killing vector dy. As the
spacetime is stationary, there exists another Killing vec-
tor 9;. Thus, one can define a general Killing vector as
K = K%0, = 9, +Q0d,, which is a linear combination of the
two Killing vectors d; and dy, provided Q is a constant,
that is, for d,+Qd, to be a Killing vector, Q must be a
constant. We consider the case where the actual velocity
u of the gyroscope is proportional to K, u =|K|/ VIK?|.
Note that g, =0 gives information about the stationary
limit surfaces or the ergo-regions in spacetime. In the
limit Q — 0, one recovers the expression for the Lense-
Thirring precession frequency. The geodetic precession
effect of a parallel transported spin vector along a circu-
lar geodesic in five-dimensional squashed Kaluza-Klein
black hole spacetime has already been investigated [33].
For numerous advances in the studies of gyroscopic pre-
cession frequency in various gravitational theories and

different geometric spacetimes, the interested reader is re-
ferred to [34-37].

The plan of the paper is as follows: in Sec. 2, we give
a brief review of the Kaluza-Klein theory. In Sec. 3, we
present a brief review of the rotating KKBHs including
new physical insights. We calculate the general spin pre-
cession frequency vector of the gyroscope around
RKKBH and discuss some physical consequences in Sec.
4. In Sec. 5, we develop the general formalism of gyro-
scope spin precession frequency for a rotating black hole
in five-dimensional Kaluza-Klein theory. In Sec. 6, we
discuss how to distinguish RKKBH from the ordinary
Kerr-Newman black hole (KNBH) using spin precession
analysis. Finally, we conclude in Sec 7. We have added
an Appendix where we discuss technical matters pertin-
ent to Sec. 4.

2 Brief review of the Kaluza-Klein theory

In this work, we adopt the following index conven-
tions, mostly for the KK theories: (@,8,y,6): 1 —5,
(v, 0,0): 1 > 4, (i, j,k,I,m,n): 1 = 3, and (a,b,c,d): 1, 2.
We work with the general metric ansatz for a five-dimen-
sional  spacetime:  x/(spatial dimensions), x* = £, X’ = ¢
(fifth or extra dimension).

Kaluza and Klein studied Einstein's theory of general
relativity in five dimensions in order to unify gravitation
with electromagnetism (see [38] for a review). They as-
sumed that the five-dimensional universe is empty and
satisfies the field equations:

Gop =0, Rop =0, (1)

which could be derived from the corresponding five-di-
mensional action

§=-

1 b aad
Note that the definitions of the Christoffel symbol, Ricci
scalar and Einstein tensor are identical to those in four di-
mensions. In order to incorporate electromagnetism A,
along with gravity g,,, Kaluza introduced one more scal-
ar ¢ and consequently proposed to decompose the five-di-
mensional metric in the form

~ _|g V+K2¢2A A, K(,DQA

os —( AN AL “) G
where «*> = 16nG. Substituting the metric Eq. (3) in Eq.
(1) yields the following field equations in four dimen-
sions:

2.2
K 1
Gyv =T¢T5VM - ;[V#VVQO _gva‘;O],
” Vg A
\Y F#V=—37Fm,, D(pzTFm,F , 4)

which is a set of fifteen equations with fifteen unknowns
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(i.e. 10, 4, 1 components of g,,, A, and ¢ , respectively).
It is interesting to note that the above set of field equa-
tions can also be derived by variation of the following
four-dimensional action

R 1 2 VieV,up
S = fd4x\/—_g¢(z+z<,02FﬂvF’”+37 402# NG
which is the action in the Jordan frame. In order to recast
this action in the Einstein frame, we employ a conformal
transformation gus — g/, = Q’gap - Replacing ¢* — ¢ and
~1/3in Eq. (5), we obtain

R 1 1 VipV,p
S'= | d*x-g'| =+ -@F,F*P+ ——F"). (6
f Vg (K2 TAG 6> ¢? ©

Q2—><,0

Moreover, if we substitute a dilaton field o = t Ing, we
obtain the canonical form of the four-dimensional action
in the Einstein frame as follows:

, R 1 & , 1
S :fd4X\l—g’(K—2+Ze\Eu-FﬂyFﬂ +§VHO'VIIO'). (7)

This action describes a dilaton scalar field coupled to
gravity and electromagnetism. If there is no electromag-
netism involved, then this action describes a scalar field
minimally coupled to gravity with no potential.

The Gibbons-Hawking-York (GHY) boundary term is
added only in case the manifold A7 has a boundary, which
is a 3-dimensional hypersurface denoted usually by oM.
The field equations are the same whether the manifold
has a boundary or not. If M exists, one sets 6gq3 =0 on
the boundary oM as a further constraint in order to ob-
tain the same field equations as with no boundary. In the
present case, there is no boundary involved and con-
sequently there is no need to account for the GHY bound-
ary term, as was done in [39].

3 Rotating Kaluza-Klein black hole

Static Kaluza-Klein black holes are derived by the
standard methods of solving the Einstein field equations
or Einstein-Yang-Mill equations with matter fields [40].
However, the rotating Kaluza-Klein black holes are in
general not derived by solving the field equations. In-
stead, one employs the product of the Kerr metric with a
line, boosts along the line and then compactifies the extra
dimension [41, 42], see also [39, 43] where the solution is
derived by solving the Einstein-Maxwell and scalar field
equations. The resulting solution is stationary, axis-sym-
metric and invariant under translation along the fifth di-
mension. Motivated by higher dimensional string and su-
pergravity theories, researchers have derived six- and
multi-dimensional rotating Kaluza-Klein black holes as
well [44].

The rotating black hole in the Kaluza-Klein theory
(RKKBH) is given in the form [45]:

H> H;
ds? =—=(dy +A)* - = (dr + B)*
A A
dr? A
+H1(£ +d92+—35in26’d¢72 : ®)
where
pp —2m)(q = 2m)

H, =r2+a2c0529+r(p—2m)+
2p+q)

P
- m \/(Qz - 4m2)(p2 - 4m2) acos 0,
q(p—2m)(g—2m)
2(p+q)

q
+ ———— \[(g* —4m?)(p? — 4m?) acos b,
stV i

H; =r* +a*cos*6— 2mr,

H, =’ +d’cos’ O+ r(q—2m)+

A=r*+a*-2mr,

including the one-forms

1 -2 3(p2 —4m?2
A=——[200+ 2= 1|2 (p” —4m )acose]dz
H, 2 4m2(p+q)
1 2 _4m?
- _[ZP(HQ +a?sin® 6)cosb + M
H> 4m*(p +q)°

X [(p +q)(pr—m(p—2m)) +q(p* — 4m*)]asin’ G]d¢>,

=A4dt + A3do,
(€)]
_(pg+4m>)r—m(p —2m)(q —2m) s
B= 2m(p+ Q) Hs \/pgasin” 6dg,
=B3d¢. (10)

The black hole metric given by Eq. (8) is a solution of the
field equations Eq. (4), which are derived from the action
Eq. (5). The four parameters m, a, p, ¢ appearing in the
solution are related to the physical mass M, angular mo-
mentum J, electric charge Q and magnetic charge p , as
follows:

_p+q ,_ NDP4(pg+4m?)
M= 4 = 4m(p +q)
o q(@*—=4m?) 5 p(p?—4m?)
&= 4p+q) P= 4p+q) (n

One may reverse these formulas to express m, a, p, ¢ in
terms of M, J, P, Q . However, the obtained expressions
are lengthy and we will not derive them; the detailed pro-
cedure for deriving them is described below, from Eq.
(18) to Eq. (24).

The corresponding four-dimensional metric in the co-
ordinates (,r,0,¢) in the Einstein frame is

H H, :
45" == =dr” -2 didg+ oar? + pde?
P o

—H?+p*Asin?0
+ (L d¢2’

12
2 (12)
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and its determinant is
g =p’sin®6.

Here, we have set p> = VH,H, and H,; = B3H; , where
Bj is defined in Eq. (10). Next, we introduce the dimen-
sionless parameters (b, ¢) such that p=bm and g =cm,
and thte dimensionless parameters defined by
€2 = Q*/M?, 1> = P>/M?, @ = a/M and x = r/M. From now
on, we take ( x, M, , b, ) as free independent parameters
in terms of which the relevant quantities take the follow-
ing form:

aM ,  de(cP-4)
m=—-, €= ——,
b+c (b+c)?
, 4b(? -4 _ Vbelbe+4)
=l 2 g T, (13)
(b+c) (b+c)?
Hi _8(b-2)c-2b 4b-2)x
M2 (b+c)? b+c
26\ (B2 —4)(2 - 4)
+x2_ b (b )(C )aCOSH+CYZC0829, (14)
(b+c)?
Hy _8(b-2)(c=2c  4(c-2)x
M2 (b+c¢) b+c
2e 2 -4)(2—4 0
124+ ( Ne” ~4) acos +a’cos?6, (15)
(b+c)?
Hy 5, 5 5 8x A 5, 5, 8
iz - F raeos 0_b+c’ w Y Ty (16)
Hy _ 2Vbcl(be+4)(b+c)x—4(b=2)(c = 2)]arsin’ 0 (17
M3 (b+c)3 '
The spacetime admits two horizons namely,

re =m+ Vm?—a?, obtained by solving A =0. This ex-
pression is very similar to the Kerr BH and it may seem
that the event horizon does not depend on the electric and
magnetic charges. However, this is not true. As we ex-
plained in the paragraph following Eq. (11), we can ex-
press the parameter m in terms of the physical mass M,
electric charge Q and magnetic charge p. This shows that
the event horizon, as well as the radii of the ergo-region,
depend on (M, Q, P) even for zero rotation. An expres-
sion for r,, denoted as r, in terms of (M, Q, P) is given in
the next subsection for the case where € <« 1 and 1? < 1
[see Eq. (25)].

This applies to all parameters given in Eq. (13) to Eq.
(17). That is, since b and ¢ can be expressed in terms of €
(electric charge) and u? (magnetic charge), by solving the
second and third expressions in Eq. (13) for » and ¢, the
parameters (m, A, Hy, Hy, H3, Hy, J) are all functions of
(M, Q, P).

Note that the metric Eq. (12) is similar to the rotating
Kaluza-Klein solution with dilaton field as discussed in
[41]. Thermodynamic investigations of charged RKKBH
reveal an interesting result: the temperature of the black

hole horizon increases to indefinitely large values as the
mass decreases, while the entropy of horizon increases
with mass.

3.1 Physical properties

In this study, we discuss some physical properties of
the projected four-dimensional metric Eq. (12) that were
not discussed in [45], where particular thermodynamic
quantities were evaluated. The aim of this subsection is to
identify those properties that will allow to compare Eq.
(12) to the well known four-dimensional solutions. One
obvious property is that the metric Eq. (12) reduces to the
Kerr metric in the case =2 and ¢=2 (p=2m and
g =2m) for which all charges vanish, €2 =0 and y?> =0,
and as a consequence, it reduces to the Schwarzschild
metric with =2, ¢=2 and @ =0. However, in the ab-
sence of magnetic charges (b = 2), the solution of Eq. (12)
never reduces to KNBH. From this point of view, the
metric Eq. (12) is a generalization of KNBH. The thermo-
dynamical properties of Eq. (12) were discussed in [45].

As mentioned above, the parameters » and ¢ may be
expressed in terms of €? and y? by solving the second and
third expressions in Eq. (13) for b and c¢. The resulting
formulas, expressing b and ¢ as functions of >+ yu” and
e*u?, are however lengthy. First, we set n=b+c and
k = be. On combining the second and third expressions in
Eq. (13) we obtain

2, 2
(b+c) =4 %‘ﬂbf“‘,
which results in
= % (18)
This implies that
€ +u’ <4, (19)

irrespective of the rotation parameter @ . For a physical
solution, the upper bounds should be € <1 and u? <1,
which shows that solutions with €2 > 1 and x> 1 might
exist in higher dimensional general relativity. Hence, we
set extended limits, €*<4 and u®><4 subject to
€% + 1 < 4. Next, the product of the second and third ex-
pressions in Eq. (13) yields the cubic equation in «

462/.12(4 + 3/<)3 =(4- € —,le)zK[(4 -& —;12)/<2
—8Q2+ €+ )k—16(e+1>)],  (20)

where we have used Eq. (18) to eliminate 7. Once « is
determined from Eq. (20), one can obtain the expression
for n from Eq. (18). Expressions for b an ¢ are derived
upon solving z> -5 z+k =0 , where z stands for b or c.

In the limit of €2 < 1 and p?> <1, one can provide
first order corrections to KNBH in ( €2, 4%). Relevant for
this work are the event horizon and the outer radius of the
ergo-region that are solutions of A =0 and Hz = 0:
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_ 4+ 16— (b+0)a? @

s

Xh

b+c
4+ 16— 202 cos2
Xerg = + \/ 6 (b+C) a“ COS 9 (22)
b+c
The extremal black hole corresponds to
— —a" =0. 23
breop ¢ (23)

In the limit of €2 <1 and u? < 1, it is much easier to
solve Eq. (13) for b and ¢ in terms of (€2, u?),

b2+ +3%%, c=2+2e* +3e . (24)
Finally, Egs. (21) and (23) take the form

1, Vi-a2+1
xp =1+ VI —a? = (——— )€ +1?)

2( V1=a2 )

+(2—3a'2+2(1—a’2)‘/1—(}’2](62+#2)2
8 V1 -a?(1-a?)
3(Vi-a2+1
__(—a al )ezuz, (25)
2 V1 -a2
3
1—0/2—62—,112+Z(62—/12)220. (26)

We can see from Eq. (26) that the first four terms corres-
pond to a doubly charged KNBH. The last term is a cor-
rection of the second order in (€, 4%). The r.h.s of Eq.
(25) reduces to the Kerr term if all charges are zero. We
see that in the limit of €2 < 1 and x? < 1, the first three
terms of the r.h.s of Eq. (25), which we rewrite as

xp=1++vV1l-a?-

1 1
———(E )~ 5 (E+p) + -,
2V1-a? 2

(27)
provide a correction of the first order in (€, 4?) to x, of

KNBH in the same limit. The correction is the extra term
—(€*+u?)/2.

4 General formalism of spin precession in five
dimensions

In five-dimensional Kaluza-Klein theories, the space-
time is equipped with a metric g,s independent of the ex-
tra spacelike dimension x° = ¢ [46]

ds? = gop(¥)dxda’, (28)

with a signature (+,+,+,—,+). The 4+1 decomposition of
the metric Eq. (28) leads in particular to the four-dimen-
sional metric g,, in the Einstein frame [46]

_ 8us8vs
8uv = V855 (gyv_ akad ),
855

(29)

lgl

where the expression in parentheses is the four-dimen-
sional metric in the Jordan frame. It is worth emphasiz-
ing that, as stated in the Introduction, our aim is to com-
pare the effects of the gyroscope motion in RKKBH and
KNBH, and it is thus imperative to refer to the same
frame. Since KNBH is expressed in the Einstein frame, it
is this frame that we use throughout this work.

The extra dimension x°, since it is compactified, is
unobservable. This implies that any rotation in the Klein
circle or any motion in the fifth dimension is also unob-
servable; the only observable rotation is in the spatial co-
ordinates x'. If the stationary metric in endowed with an
axial symmetry depending only on (x' =7, x> = 0) and in-
dependent of (x* = ¢, x* =1), the general Killing vector
K9, reduces to K =9, +Qd, , and its corresponding co-
vector (or 1-form) is given by

K = g44dt + g34d¢ + Q8341 + g33d9). (30)
Consider a test gyroscope attached to an observer mov-
ing with four-velocity u=K/+/[K?| along an integral
curve of the timelike Killing vector K in a stationary 5-di-
mensional spacetime. In general, this is not a geodesic
motion. In the special case where the motion is geodesic,
the precession of the gyroscope is called geodetic preces-
sion. The gyroscope is supported by an engine so that it
can perform a non-geodesic motion and, for any motion
of the gyroscope, Q has to be held constant for K to be a
Killing vector. The spin of the gyroscope can be repres-
ented by the vorticity field of the Killing congruence. As
shown in the Appendix, the general spin precession one-
form Q,, of the test gyroscope is given by [47]

«(R AdK), 31)

PT2K2
where = represents the Hodge star operator, and A is the
wedge product. Note that the quantity (K A dK) can be
regarded as a measure of the "absolute" rotation. The
gyroscope is moving in five dimensions and we are con-
sidering the projection of this motion onto the four-di-
mensional spacetime.

Using Eq. (31), we can first evaluate the one-form of
the precession frequency Q, and then its vector ﬁp,
which represens the overall rotation in the four-dimen-
sional spacetime, by

ﬁp _ *€ub
2 V13l(g4s + 293734 + Q2g33)
X [§44§34,a —834 8440t Q(§44§33,a — 833 g44,a)
+ Q2(?34 8330~ 834 §34,a)]3b, (32)

where ¢, is the totally antisymmetric symbol. The over-
all sign + is due to the Idifferent conventions in the defini-
tion of the Hodge star ) , and to the definitions ey123 = +1

1) A definition of the Hodge star is #(dx/1 A--- Adx'r) = Vi €, ...V”_pm...ﬂpg"‘lll gl dxt A A XY

(n=p)!
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and €234 = +1, as we are labeling the time coordinate by min(Q(r,0)) < Q < max(Q(r,6)). (36)
x* instead of x°. In the limit of Q = 0, one obtains the ex-
pression for the Lense-Thirring precession frequency in
five dimensions.

Thus, Q is any number smaller than the maximum value
of the function Q,(r,6) and bigger than the minimum
value of the function Q(r,0) , where

5 Spi i f a test i Q=B =B

1= [} 2 = .

pin precession of a test gyroscope in A VAsing—Hs 2 VAsing—H
We call these two functions, which are depicted in Fig. 1,

the limit frequencies for timelike motion. Since on the
horizon we have A =0, this results in Q; = Q, = —H3/H,

(37

We consider the following quantities:

Qg =844834.r — 834 a4 + Q(§44£’33,r — 83 §44,r) at x = xp.
+O? (334 T3 — B 234,r), (33) ) We investigate the behavior of the norm of the vector
Q,,
Q) =844834.0— 834 8adp + Q(£’44§33,9 —833 g44,9) ) \/m
08 8220 23 ). G4 RPN TErear

where ( is constant, bounded by the constraint that

st ) where the presence of the metric coefficients
K =9, +Q0, is timelike, that is,

5 (811 =p*/A, g =p?) takes into account the fact that
844 +20834 + Q7833 <0, (35)  (8,,dy) from Eq. (32) are not unit vectors. For the metric
which results in Eq. (12), (Q4, Q,) are given by

aVbe(4 + bc)Hgm sin”6
2(b+c¢)

1
i
+2H2(r—m)p* sin® 0 + H3[Ha (b — 2)m +2r) + H (=2 + ¢)m + 2r)]Asin® 0 + 4mH;p* Asin® 6 — 4rHzp* A sin? 9]

aVbc(4+bc)H3 Hymsin® 0
b+c

Q {2H3 Ha(r —m) - +Q4rH; H; - 4mH; H; -

_ _ Vbe(4 + be)Hy H2msin? 6
. Qz[H3H4p2(2(r_m)p2+[Hz((b 2)m+2r)+ Hy((c 2)m+2r)]A)Sin29_a c(4+bc)H3 Hymsin

P2 2(b+c¢)
abe(4 + be)mHsp* sin® 6 s 4 o
_ 1o +2H,(r—m)(H? - p*Asin 9)]}, (39)
1 a\/EH3m[ b—-2)(c—-2)m—(4+bc)r]cosfsind
.= { 3l X ) ( ) —2a2H§H4COSHSin0
Hip* b+c
2a VbcH2Hym[(b - 2)(c — 2)m — (4 + be)r] cos Osin 6
+Q[ sHaml( )(b+) ( )] —2a2H3Hfcos@sin@+4a2H3p4Acos05in39
C
aH%A[Hl[ Vb2 —4e Ve —dm+4a(b + c) cos 0] + Hy[—b (b2 — 4)(c2 — 4)m + 4a(b + ¢) cos H]] sin’ 6
% 20 +0)
aVbcHsH*m[(b - 2)(c - 2)m — (4 + bc)r] cosOsin @
+ H3p*Asin(20)] + Q7] 3H,ml(6—2)(c - 2m — (4 + boyr]
b+c
aNbcHym((b—2)(c —2)m — (4 + bc)r)p* cossin’
+ by - 2a2H4 cos@sin 0(Hi —p4A sin’ 0)+ 2H3H4p2A sind
C
. (p2 cosd— alH1(\/(b% = 4)(c? — 4)mc +4a(b + ) cos 0) + Ho(—b /(b2 — 4)(c2 — H)m + 4a(b + c) cos §)] sin’ 9)]} (40)

4(b+c)p?

while the expression in the denominator of Eq. (38), For constant Q, the zeros of Eq. (41) are denoted as x; and x;:

2 \/Ig?l |§44 +2Q834 + ng33|, simplifies to Xh < X1 < Xerg < X2 ?f Q # wp, (42)
Xh =X <Xerg < X2 if Q=wy,

2 2002 _ A2 .
2|H3 +2QH;5H, + Q7 (Hy —p”sin 9A)|S1n9. A1) where wj, = w(x = x;) and w(x) = —g34/233 is the ZAMO

|H3| angular velocity satisfying
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(color online) Plots of (Q, Q) from Eq. (37) in units of 1/M. Shown are the dimensionless quantities (MQ;, MQ,) versus

.Ql < .Qz
0.3

0.2

0.1

x=r/M , for §=n/2 and a = 1/5. In the left panel, b =2 & ¢ = 3 (analogous to KNBH with €? = 12/25 and x> =0) , and in the right pan-

el b=c=7 (e =pu* =45/98). The two curves meet at x = xj,.

H:H H H b+c)?
e N VP VLY broa L @)
H; —p*Asin“g Hy Hylx=x 2 /bel(be+4)(b + c)xy, — 4(b—2)(c - 2)]
A series expansion of |§3,,| foro® < 1, € < 1, y? < land 6 = 7r/2 yields
5 Q(r-3M) M2(3r2£22—1)(2M—r—r3£22)
€21 = 302 { 2 302
r=2M-r3Q rPBM-r2M-r+r3Q%)Q
M2 12M3Q%r + Q2 (PQ2 = 1)1 + M (2= Q2 + Q4 r— 2M2 (2- 22 Q% +94Q)|
+ (0%
rG3M —r)(2M —r +3Q2)?
MQ2M? -3Mr+13MQ*P -20%% ,
- +u)+r, Q#O, 44
2rGM=PEM—r+ P & ) } “9

Mo ‘{1+ M(6M —5r)
r2(r—2M) 2r(r—2M)

13, = (62+/12)+-“},Q=0.

(45)
These expressions were derived using Eq. (24). In the
case Q # 0, even if BH is not rotating (a = 0), there is a
nonvanishing contribution to Iﬁpl as can be seen from Eq.
(44), which for the Schwarzschild BH reduces to
Q(r-3M)
PGy V=T
In the Schwarzschild spacetime, it is known that if the
gyroscope moves along a circular geodesic then its angu-
lar velocity, or Kepler frequency Q = Qk.p, is related to
the radius of the circle by Q = Qg., = vVM/r?. Replacing
Q by vM/r? in Eq. (46), we obtain |fip| = Qxep = VM/13,
that is, the precession frequency is the same as the Kepler
frequency. If in the Schwarzschild spacetime the gyro-
scope, supported by an engine, rotates with an angular ve-
locity Q # Qg.p, then |ﬁp| # Q. Now, if the gyroscope has
no angular velocity in the stationary spacetime, Q=0
(K = 9;), although the main contribution to |ﬁp| comes
from rotation as can be seen from Eq. (45), there are con-
tributions from the electric (¢?) and magnetic (u?) charges
as well.
Let us go back to the general expression Eq. (38). For

By = \ , (46)

Q =0, there is nothing particular in this case as shown in
Fig. 2: the gyroscope remains on a timelike curve for all
X > Xerg. As the black hole becomes more charged, the
three-space outside the ergo-region extends. For Q # 0, as
shown in the right panel of Fig. 2 where Q=1/10, the
norm If).,,l diverges at the two zeros x; and x, of the de-
nominator of Eq. (38), given in Eq. (41), and for Q con-
stant, the gyroscope remains on a timelike curve only for
x between these zeros. As the black hole becomes more
charged, both zeros decrease and the three-space between
them extends.

Note the existence of a point x,;, where Iﬁp(xmin)l =0,
that is where Qg(xmin) =0 and Q,(xyin) = 0. Such a point
may offer a way for distinguishing between KNBH and
RKKBH. Another way to distinguish between these BHs
is to consider the minimum value of MQ; and the maxim-
um value of MQ, versus €2, as depicted in Fig. 1 and sub-
sequent figures.

6 Distinguishing between the Kerr-Newman
and rotating Kaluza-Klein black holes

6.1 18, (xXmin)| =0

The metric of KNBH may be brought to the form of
Eq. (12) with

065101-7



Chinese Physics C  Vol. 44, No. 6 (2020) 065101

9, (Q=0)

—

1.5 2 2.5 3

X

19,1 (2=1/10)
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0.4

0.1

X
2 4 6 8

Fig. 2. (color online) Plots of |ﬁp| from Eq. (38) in units of 1/M. Shown is the dimensionless quantity Mlﬁpl versus x = r/M for 0 =n/2
and a = 1/5. Blue lines correspond to b =c =7 (> = u® = 45/98), red lines to b = ¢ = 3 and (e = x> = 5/18), magenta lines to b=2& c =3
(analogous to KNBH with €? = 12/25 and y? = 0), and black lines to b= ¢ =2 corresponding to the Kerr black hole. In the left panel,
Q=0. The norm |ﬁp| diverges on the surface of the ergo-region x = x.r, and the gyroscope remains on a timelike curve for all x > xere.

As the black hole becomes more charged, the three-space outside the ergo-region extends. In the right panel, Q = 1/10. The norm |fip|

diverges at the two zeros x; and x, of the denominator of Eq. (38), given in Eq. (41), and the gyroscope remains on a timelike curve

only for x between these zeros. As the black hole becomes more charged, both zeros decrease and the three-space between them ex-

tends.
2
Pin =x* + a*cos? 6,
M2
AkN _ 2, 2
— =x"-2x+¢€ +a°, 47)
M2
H
3EN =x*>+a?cos’0—2x+ 62,
M2
Hyxny i
e =a(2x— €%)sin’ 6. (48)

We consider a KNBH and RKKBH with no magnetic
charge (u?> =0). In Fig. 3, we show the plot of xpi,(€?)
with |ﬁp(xmin)| = 0. The event horizon x, versus €2 is also
shown. We are interested in the region outside the event
horizon. For the numerical set used in Fig. 3, the values
of xmin range from 2 to 2.7. The range of electric charge
for xmin > xy 18, however, much larger for RKKBH.

We do not expect the charge of a black hole to ex-
ceed its mass, so we focus on the physical region corres-
ponding to € < 1. In this case, as seen from the right
panel of Fig. 3, a moving gyroscope following a timelike
path with an angular velocity Q # 0, may reveal the nature
of BH. To be more precise, we provide the calculations
for €2 = 1/100. This yields xpi, = 2.66275 for KNBH, and
Xmin = 2.65781 for RKKBH, which do not depend on the
mass of BH and correspond to Ax = 0.00493387. Introdu-
cing the relevant physical constants, we obtain

Ar = —— Ax, (49)

where G =6.673x 107! and ¢ =299792458 in SI units.
For a BH with the solar mass ( My = 1.9888 x 10% kg),
Ar=7.3 m, and for a BH with one million solar masses,
Ar=7.3x10° m. In terms of r, the gyroscope will not de-
tect a spin precession, corresponding to a vanishing value

of |ﬁp| at rmin = 3.93188x 10°m , if it is moving along a
timelike path in a KNBH. On the other hand, if |ﬁp| van-
ishes at some smaller value of r, such that Ar=7.3x10°
m, then this corresponds to a RKKBH with no magnetic
charge.

6.2 Mmin(Q(r,0)) and M max(Q,(r,6))

Another way to distinguish KNBH from RKKBH is
to compare the extrema of the dimensionless functions
(MQy, M) for both BHs. In Fig. 4, we show the max-
imum values of (M|Q|, MQ,) versus €= Q*/M>. For
€ =1/100, we have MQymay = 0.2094775 for KNBH ,
and MQ)(max) = 0.2094763 for RKKBH with u? =0. These
values, which are independent of the mass a7 , show that
for 0.2094763 < MQ < 0.2094775 a gyroscope in the geo-
metry of KNBH can still follow a prograde timelike path,
while this is not possible in the geometry of RKKBH. For
the same value of €2, we obtain MQminy = —0.1792895775 =~
—0.1792896 for KNBH , and MQin) = —0.1792890227 ~
—0.1792890 for RKKBH with p> = 0. This shows that for
—0.1792896 < MQ <—0.1792890 a gyroscope in the geo-
metry of KNBH can still follow a retrograde timelike
path while this is not possible in the geometry of
RKKBH.

We have chosen € = 1/100 relatively small because
we believe that most BHs are lightly charged. For this
value of € we see that M min(Q, (r,6)) and M max(Q,(r,6))
differ only in the seventh decimal. From an experimental
point of view, it may be difficult but not impossible to
perform such a measurement. However, as is clear from
Fig. 4, had we chosen a higher value of €2, M min(Q(r,6))
and M max(Q,(r,0)) would have differed in a even lower
decimal order.
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Fig. 3. (color online) Plots of xpy, with |ﬁp(xmm)| =0, the event horizon x; and the outer radius of the ergo-region, versus > for § = n/2,
a@=1/5 and Q= 1/10. Upper left panel: the black line represents xpi,(¢?) , and the blue line x,(e?) for KNBH. The blue line ends at
(0.96, 1) corresponding to the extremal KNBH. Upper right panel: the green line represents xpin(¢?) , and the blue line x,(e?) for
RKKBH with no magnetic charge (4> = 0). The blue line ends at (2.88, 0.2) corresponding to the extremal RKKBH. Lower left panel:
the black line represents xp;n(€) for KNBH, and the green line xpi,(e?) for RKKBH. The plots are the same as in the upper left and
upper right panels but without the horizon plots. In the upper left and upper right panels the curve xpi,(¢?) starts at 2.7 corresponding
to the Kerr BH. Lower right panel: the continuous line represents the outer radius of the ergo-region of KNBH, and the dashed line
the outer radius of the ergo-region of RKKBH. The plots are the same as in the upper left and upper right panels but without the

Xmin(€2) plots.

|21 (min)l (0=7/2, @=1/5)
0.22

0.2

0.18 €
0 0.5 0.96

Fig. 4.

-QZ (max) (9:7T/2’ a= 1/5)
0.29

0.25

0.21 €
0 0.5 0.96

(color online) Left panel: absolute value of the minimum of Q; from Eq. (37), in units of 1/M (plot of M|Q;min), Versus

€? = Q*/M? for 6 =r/2 and « = 1/5. The black line is for KNBH, and the green line for RKKBH. Right panel: maximum of Q, from
Eq. (37), in units of 1/M (plot of MQa(may)), versus € for §=r/2 and a = 1/5. The black line is for KNBH, and the green line for
RKKBH with 42 = 0. The green line extends to €? = 2.88, the value of €? for an extremal RKKBH (Fig. 3).

7 Discussion

In this study, we have extended the analysis of the
gyroscope precession frequency to five-dimensional
charged rotating black holes in Kaluza-Klein theory. This
phenomenon is related to a stationary gyroscope moving
along a timelike curve in a stationary black hole space-
time. We derived a formula for the general precession

frequency of the test gyroscope, valid for general five-di-
mensional rotating black holes, by dimensional reduction
to four dimensions. From the empirical perspective, we
studied the magnitude of the precession frequency vector
associated with the test gyroscope in the KK spacetime
|ﬁp|, and the limiting frequencies for timelike motion
(Q1, Q). We showed that |§,,| may vanish if Q #0 , and
that this fact can be used to distinguish between astro-
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physical black holes. We also showed how the extreme
values of (Q,, Q) may help to distinguish between astro-
physical black holes. Both schemes are mass independ-
ent.

There are few important points to note: |ﬁp| diverges
at two spatial locations outside the event horizon, enclos-
ing the outer radius of the ergo-region. However, if Q =0,
than the norm Iﬁpl diverges at a single location only,
which is the outer radius of the ergo-region. Moreover,
the angular speed () of the stationary gryoscopes takes
both positive and negative values, meaning that the gyro-
scopes move around the black hole in prograde and retro-
grade orbits, respectively. The maximum of Q, occurs
much closer to the horizon compared to the minimum of
Q. Ultimately, as the gyroscope approaches the horizon,
both Q; and Q, approach the ZAMO angular velocity.

The extra dimension is an important concept in mod-
ern gravity theory and there is no experiment to prove or
disprove this hypothesis. In our work, we found that a ro-

Appendix: Precession frequency

The four-velocity of an observer at rest along an integral curve
yof g is

u= X (A1)

<

1—-3) form an orthonormal tetrad:

Let es=u and ¢ (i
<ey, ey >=nu [(1,v): 1 - 4] where n,, =diag(-1,1,1,1) and <,> de-
notes the scalar product. As time evolves, we want the three ele-
ments of the triad ¢; to remain perpendicular to each other and to
u o K. The only transport along y that preserves orthogonality is the
Lie derivative. Thus, we choose the triad ¢; such that Lge; =0 .
Along with Lges o« LK =0, which is identically satisfied, we can
write
Lge, = 0. (A2)
This is the Copernican system [47]. In other words, the basis vec-
tors e; are tied to an inertial system far from the source (BH) and
fixed relative to distant stars [48].
The spin S of the gyroscope obeys the equation [47,48]
V.S =<8,V,u>uwith <S,u>=0, (A3)

where V,u is the acceleration of the gyroscope along an integral
curve y of k. This acceleration is generally nonzero. As < S,u >=0,
S is a purely spatial vector, S*=0 and S =S’¢. Evaluating
dSi/dr =V, <é',S > where e = e, (¢l = ¢;), results in
s’
dr
Here, we have dropped the term < ¢;,V,S > which is zero due to Eq.

=8/ <Vyeiej>=STw; with wij:=<V,e,e;>. (A4

(A3). Since <ej,ej>=n;j , wi; iS anti-symmetric: w;; = -wj;. Thus,
the right-hand side of Eq. (A4) can be written in the form &;3S/QF ,
where fi,, = QFe; is the spin angular velocity of precession in the
Copernican system defined above. It is related to w;; by

wij = g0k, (AS)

tating KK black hole is always different from a Kerr-
Newman black hole, which implies that the hypothesis of
extra dimension can be tested by an analysis of the gyro-
scope precession frequency. Recall that the hypothesis of
KK asserts that the extra dimension is compactified
throughout the whole spacetime and, consequently, the
4+1 decomposition remains valid for the whole range of
coordinates. The construction of KKBHs is entirely based
on this hypothesis. This implicitly assumes that the grav-
itational field, particularly near and outside the outer radi-
us of the ergo-region, is not strong enough to allow prob-
ing the extra dimension.

On the other hand, it is thought that the graviton can
play an important role in investigating extra dimensions,
and that gravitational perturbation could include critical
information about the properties of spacetime with extra
dimensions. We plan to study the gravitational perturba-
tion effect on the gyroscope precession in a subsequent
work.

where ¢;j is the totally anti-symmetric symbol. Using the property
Eiﬂé‘,‘jk = 2(52

ijl ijl ijl
elwi; gV <Vyeiei> &7 <Vgeje; >
Q= J_ ¢z _ iz (A6)

2 2 24IK2|

From the symmetry of the connection, Ty, =Ty, it follows that
Vkei—V,,K = [K,e]. For any vector field belonging to the class C*,
we have LyY = [X,Y], which results in Vge; -V, K =[K,e;] = Lge; =0
due to Eq. (A2), and thus Vge; = V,,K, so that Eq. (A6) transforms

to

<VeK.ej> , &< V,Ke;>
wj= ———, Q' =— (A7)
K| 2vIK?|
Since <K,e;>=0 , we have <V,K,e; >=-<K,V,e;>. Recalling
that w;; is anti-symmetric, Eq. (A7) results in
<K,Veei=Vee;> <Kleie;]> K([ei,e)])

wij = = = . (AB)
Y NI 2K 2IK7]

where g is the one-form of g. Using the result from differential
geometry:

dw(X,Y) =Xw(Y)-YouX)-w(X,Y]),
where x and y are vector fields and w is a one-form. Let w =K,
X=e; and Y =¢; , then we have K([e;,¢;]) = —dK(e;,e;) and the other
two terms vanish: K(e;) = [K,e;] = Lge; = 0. Finally

ij= ——— dK(e,e;). A

i 24IK?| (erep )
This equation was derived in [47] using a similar analysis to the
one presented here. It is straightforward to convert this equation to

the one-form Q, of G, = Q% = (6 w;;/2)e;, as shown in [47]
) T
8, = 5+ (R ndR), (A10)

which is equation Eq. (31).
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