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Abstract: Using partially restored isospin symmetry, we calculate the nuclear matrix elements for a special decay

mode of a two-neutrino double beta decay — the decay to the first 2" excited states. Employing the realistic CD-Bonn

nuclear force, we analyze the dependence of the nuclear matrix elements on the isovector and isoscalar parts of pro-

ton—neutron particle—particle interactions. The dependence on the different nuclear matrix elements is observed, and

the results are explained. We also provide the phase space factors using numerical electron wavefunctions and prop-

erly chosen excitation energies. Finally, we present our results for the half-lives of this decay mode for different nuc-

lei.
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1 Introduction

Double beta decay (hereafter 3B8-decay) is a rare de-
cay that occurs under nuclear circumstance. Its possible
mode, called as neutrinoless double beta decay (hereafter
0vBB), provides insights into the physics beyond the
standard model. Such a decay mode would provide clear
evidence of the lepton number violation. However, the
discovery itself is not enough to determine the exact
mechanism of this violation. Therefore, further investiga-
tions on the underlying physics are needed after the dis-
covery of this rare process. Different methods have been
proposed for probing the underlying new physics, such as
comparisons of the half-lives of various nuclei or of the
decays to ground and excited states [1]. Recent surveys
show that the decays among different nuclei may be cor-
related [2] for selected mechanisms, such as light and
heavy-mass mechanisms. Meanwhile, the relative decay
width to 2% states may be a better way to distinguish
between models in the presence of right-handed weak
currents [3, 4]. However, to describe such a process, one
needs reliable and capable modern nuclear many-body
methods. To test the reliability of these methods, we first
perform our many-body calculations on double beta de-
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cay with neutrinos to the first 2* excited states. These
results will also help in the search of such a mode by
various collaborations [5, 6].

The double beta decay named as two-neutrino double
beta decay (2v3B) transforms an even—even nucleus 4 Xy
to a neighboring even—even nucleus 4Yy_, with the emis-
sion of two electrons and two anti-electron-neutrinos.
Owing to angular momentum conservation, the change in
the angular momentum of the decaying nucleus is the
sum of the angular momenta of the four emitted leptons.
For the 2vBB-decay, the electrons and the neutrinos are
dominated by s-partial waves because they have relat-
ively long wavelengths compared to the nuclear radius,
owing to their small momenta. Therefore, for the leading
order contribution to the decay, the summed angular mo-
mentum of the outgoing leptons from the gB-decay can
have the values of 0, 1, and 2 only. If we search the nuc-
lear chart, we find that there are only a limited number of
excited states of the double beta decay daughter nuclei
within the Qgg-value windows. They have spin-parities
2* and 0* only. Thus, for many Sg-decay candidates with
large enough Qps values, there exist possibilities of de-
cays to the first 2* states (2]) of the daughter nuclei. All
these decays are suppressed by the large energy denomin-
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ator [3] compared to that of the 2v88 decay to the ground
states. Therefore, they have small branch ratios and low
detectability [5]. Thus, precise predictions are helpful to
experimentalists. Despite these, measurements of these
decays can help to improve nuclear theories and solve
problems in nuclear structure calculations, such as the
quenching of g4. There are already reports in the literat-
ure [7-13], using the Shell model and the quasi-particle
random phase approximation (QRPA), of investigations
of this issue. However, the deviations from model to
model are still large; usually, they differ by several or-
ders of magnitude. In this study, by isospin restoration
[14, 15], we systematically investigate this issue. By
studying the nuclear matrix element (NME) dependence
on the particle—particle (pp) interaction strength of both
isoscalar and isovector channels using an enlarged model
space, we try to understand the uncertainties in the QRPA
calculations. We also provide reliable estimations of half-
lives with the newly calculated phase space factors
(PSFs) from numerical electron wavefunctions [16].
These predicted half-lives are then compared to the cur-
rent experimental lower limits to explore the discovery
potential of different nuclei.

This article is organized as follows. In Sec. 2, we
provide a brief introduction of the QRPA method and the
details of the NMEs and the PSF calculations. In Sec. 3,
we present detailed results, followed by conclusions in
Sec. 4.

2 Formalism

The half-life of the BB-decay to the 2] states of the
daughter nuclei is expressed in a compact form as [3]
[71,(0" = 297! = G g4IM5; P, )

where G%V is the PSF for the emitted electrons and neutri-
nos, and M%V is the NME. Unlike normal conventions, we
take the axial coupling constant, g4, outside the PSF.

The PSF can be calculated by integrating over the
lepton momenta [3, 17] as follows:
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where €2y and wjp) are the energies of the outgoing
electrons and neutrinos, respectively. The energy conser-
vation requires that € + & +w; +wy = Q+2m, (We neg-

lect the nuclear recoil energy). Moreover, (Ey) is a suit-
ably chosen value for the average excitation energies of
the intermediate nucleus. The lepton kinematic factor,
woy, has the form,

(G cosfc)*
6414
and the closure energy, A, is introduced to separate the
nuclear and lepton parts [3] as follows:
M, m— M i M, m— M F
2 2
An empirical formula for A for the double beta decay to
the ground state can be found in [17]. Here, E, is the av-
erage mass differences between the intermediate and ini-

tial (final) nuclei.
The function of the electron radial wavefunctions
(ERWFs) is defined as
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Here, g_; and f; are the upper and lower components of
the s-wave Dirac electron wavefunctions as defined in
[3]. In this study, we follow the normalization in [16, 17]
for the ERWFs. We adopt the long wavelength approxim-
ation (or the so-called no finite de Broglie wavelength
correction in [3]) to separate the spatial and momenta in-
tegrations. It assumes a constant lepton wavefunction in-
side the nucleus, with the constants chosen to be the val-
ues of g_; and f] at the nuclear surface (r = R, with R is
the nuclear radius, R=1.2A'3 fm) for electrons.
Moreover, to derive this PSF, we use the long wavelength
approximation for neutrinos, i.e., only the neutrino s-
wave radial functions are nonzero (jo(kR) = 1).

The nuclear part of a decay, namely, the NME, de-
pends on the details of the nuclear structure. It is known
that the first 2+ states of even—even nuclei for spherical
nuclei are usually the collective states of harmonic vibra-
tions. The QRPA, which well describes the small-amp-
litude harmonic vibrations of spherical even—even nuclei,
can be a reasonable approach for describing such states.
In this study, the QRPA method is used to construct both
the 1* states of intermediate odd—odd nuclei (charge ex-
change version, named as pn-QRPA) and the 2* excited
states of the final even—even nuclei (charge conserving
(CC) version, namely CC-QRPA). The QRPA starts with
BCS or HFB vacua. Its basic components, quasi-particles,
are obtained by solving the BCS or HFB equations. The
constructed excited states have the general forms of

|J”,m>=Q§”7m|0) for intermediate nuclei and |97, m)=
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j” m|0> for the final nuclei. The creation operators,
Q).,,(Qy. ), are the superposition of two quasi-particle
excitations; they are defined as [18]

_(,ﬂm—Z(X
Z(X’ aba]

where 7 and 7/ have the same 7, and can indicate either
protons or neutrons, for Q. o' is the quasi-particle cre-
ation operator connected with the single-particle creation
and annihilation operators by the BCS transformation,
oz:f = uicj +v;¢i, where ¢; is the time-reversed counterpart
of the single-particle annihilation operator, c¢;. The for-
ward and backward amplitudes, X(X) and Y(Y), can be
obtained by solving the so-called QRPA equations (here
X and Y are the amplitudes for the intermediate states, and
X and Y are the amplitudes for the 2* states) as follows:

() s

where the interaction matrices, A and B, for CC-QRPA
and pn-QRPA with realistic forces are expressed in Ref.
[12]. One notices that for the particle —particle interac-
tions, we only have the isovector (7' = 1) channel for CC-
QRPA, but both the isovector and isoscalar channels are
for pn-QRPA. A strategy for the parametrization of the
renormalization strength in these channels will be dis-
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where X?" and Y?' are the forward and backward amp-
litudes of the first 2* states of the final nucleus.

The expressions of the Fermi and Gamow —Teller
(GT) NMEs for the2vBB-decay to ground states found in
the literature [15] are similar to Eq. (7). In this study, the
NME:s for the decays to the ground states are used to de-
termine the parameters of our method according to the
different sensitivities of different parts of the NMEs on
different channels of the pp residual interaction [14]: g/ >0
is determined by the experimental 2v58 GT NMEs and

}'l

o
g

(Van

cussed later.
With these calculated QRPA states, an NME for 2v88
to 2* has the form [3],

2oL, XL, M1, X1 o7
M3} = Z 3
\3 o (E,+(Ei +Ef)/[2)

>

where the terms in the energy denominator are defined as
Ei=wpn - a)ll +E?fp' and Ef=wpy, — a){1 +E?’fp‘, with
W'PT being the lowest QRPA eigenvalues for the 1* in-
termediate states excited from the initial and final nuclei.
E]™ is the experimental excitation energy of the first 1*
state for the intermediate nucleus.

The transition amplitudes from the initial states to the
intermediate ones in our case are

(mllor]|0]) = Z (Pllollmy(Xpttpvn + Y v plin). (7N

The overlap between the initial and final intermediate
states can be written approximately as

(myllm;) ~ Z( X = YY)

X(u up+v v;)(unu,, + vf) ®)

Here, we assume that the initial and final ground
states are the same: (BCS;|BCS s) = 1. For our BCS solu-
tion, the phase convention of positive u's and v's is used.

The transition strength from the intermediate to the fi-
nal 2* states is highly complex [8].
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g m,l by requiring a vanishing 2vS8 Fermi NME.

3 Results and discussions
3.1 Nuclear matrix elements

In this study, we perform calculations for 8 nuclei that
are supposed to be spherical and whose 2v38-decay half-
lives are experimentally determined [6]: “Ge, “Se, Zr,
100 116 128 130, 136

Mo, Cd, "Te, "Te,and ~ Xe. The NMEs obtained
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from the measured 2vBB half-lives are then used to de-
termine the parameters in our calculations.

The general parameterization of this study can be
summarized as follows. The single-particle energies are
obtained from the solutions of the Schrédinger equations
with Coulomb-corrected Woods—Saxon (WS) potentials,
and for the wavefunctions, we use the spherical harmon-
ic oscillator (HO) wavefunctions (The advantage of us-
ing HO wavefunctions is that many s.p. matrix elements
can be analytically derived; a comparison of the S3-de-
cay calculations using the WS and HO potentials was
done in [19]). For the model space, in this study, we ad-
opt two different sets for the sake of understanding the ef-
fect of model space truncations in our calculations. For
the smaller one, we choose all the single-particle levels
from N = 0 up to one shell above the Fermi energy. For
the larger ong, we add one more major shell. Therefore,
for °Ge and “’Se, we have 21 s. p. levels (N = 0-5) for the
small model space (SMSp) and 28 levels (N = 0-6) for
the large one (LMSp), whereas for the other 6 nuclei, the
SMSp consists of 28 s.p. levels and the LMSp 36 levels
(N=0-7).

For the pairing part, we adopt the Briickner G-matrix
(of the CD—Bonn force) multiplied by the renormalized
strength gP¥"'s to reproduce the experimental pairing gaps
obtained from the five-point formula. As for the QRPA,
we use the same residueal interactions, with separate
renormalized strengths for both the particle —hole (g,1)
and particle—particle (g,,) channels, respectively. For pn-
QRPA, g, is set as unity, whereas for CC-QRPA, g, is
fixed by reproducing the first 2* excitation energies of
the final nuclei [8]. We find that g,, in CC-QRPA devi-
ates from unity; this is due to the anharmonicity beyond
the QRPA [20]. As has been shown [14], for 2vBB-decay
to ground states, Mg} is sensitive to g/~ only, whereas
M2 is sensitive to the isovector part only. Therefore, the
parameters of g7 >0 and g7>! can be fitted by setting M,
as the experimental values and M%" as zero, respectively
[15], as we indicated above. Thus, for the 2vB3-decay to
the excited 2* states, only the undetermined g,, paramet-
er is the one for CC-QRPA in the isovector channel. For
consistency, it is natural to set it equal to that of pn-
QRPA in the isovector channel (a consistency check for
the isovector pp interactions in the QRPA and the pairing
parts was done in [15]). As a consequence, we now have
only two g,, parameters in our calculation, gpp1 (for CC-
and pn-QRPA) and g/~ (for pn-QRPA).

For the BB-decay to 27 states, only the GT compon-
ent is relevant; however, owing to the inclusion of the fi-
nal 27 states described by gpp1 -dependent CC-QRPA, the
GT NMEs now depend on both the isoscalar and isov-
ector pp interactions. Such a dependence is illustrated in
Fig. 1, and it helps us to understand the uncertainties in

our calculations. At the first glance of Fig. 1, we find that
for different nuclei, the difference in their NME values
could be of more than a factor of 10; this differs drastic-
ally from the decays to the ground states [6], where the
NMEs were basically within the same orders of mag-
nitude. This is partly due to the cubic dependence of the
energy denominator, which heavily suppresses the NMEs
with large intermediate energies; it also leads to the
smallness of the NMEs compared to the decay to the
ground states. On the other hand, the interplay between
the pn-QRPA and CC-QRPA phonons could also change
the NMEs by orders of magnitude.

The dependence of the NMEs for the decay to the ex-
cited states on the isoscalar pp channel (black curves in
Fig. 1, where we keep g/~ constant with the fitted value
mentioned above) is much more complex than that for the
decay to the ground states [15]. These curves suggest that
when gglfo approaches the values where the QRPA equa-
tions collapse, the corresponding NME will drop rapidly
to —oo; this is similar to the decay to the ground states
(see e.g., [15]). Besides, for Te and Xe we
find similar trends for the g ~0 dependence of the decays
to the excited and ground states this may suggest a com-
monality 1n the structures of their 2* states and ground
states. For ' '°Cd, a similar decreasing trend of the curve is
observed, except there is a deceleration in this decrease
after a specific point. The remaining nuclei show diversit-
ies for the gppo dependence. “Ge and “'Se experience a
smooth accelerating increase before a sudden decrease
near the QRPA collapse. Meanwhile, *7r undergoes a
mlld increase before a rapid drop in the NME. Moreover,

“Mo combines the behaviors of the above nuclei. On the
other hand, at gm, =0, some NMEs are positive and oth-
er negative. There is actually a phase uncertainty in the
NMESs because the measurements can determine only
their absolute values, and in this study, we use the phase
convention that forces the values of the NMEs near the
QRPA collapse to be —co to match the behavior of the de-
cays to the ground states for the sake of comparison.

Opposite to the case for isoscalar interactions, the
NMEs change almost monotonically when gglfl, and the
isovector pp interaction strength changes (red curves). Ef-
fectively, the study of the double beta decay is concerned
more about the absolute NME rather than the actual
NME, because the half-lives depend on the square of the
NME. With this respect, we find that some nuclei have a
reduced decay strength with increasing g , Whereas
others, such as "°Ge, achieve an enhanced strength As for
the magnitude of the changes by varying gpp , it 1S usu-
ally smaller than that of gpp , except for "**Xe. For the
isovector interaction, sharp drops in the NMEs are not

observed. This is because the collapse of the QRPA oc-
curs with g;;‘ much larger than the realistic values.
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(color online) Dependence of NMEs for 2vgg to first 2* excited states on the strength of the isovector (g7>!) and isoscalar

pp

(&5,") pp residual interactions. Here, the solid lines are for the larger model space, and dashed lines for the smaller one, as indicated
in the text. The red curves are for the isovector dependence, and black ones for the isoscalar. The upper x-axes of each panel are for

T=1

gy and lower ones for g;;(’; they have different scales. The vertical lines are for the fitted g,,'s with unquenched g4 with line styles

following those of the curves.

Figure 1 shows that the size of the model space does
not affect the evolving behavior of the NMEs, although it
does change their actual values for specific g,,'s. Typic-
ally, for a smaller model space, larger fitted g,, values
are expected. However, for most cases, the resulting
NMEs do not change significantly. This suggests that the
model space truncation affects the NMEs of the decays to
the ground states and excited states in the same way.
Thus, the results with the SMSp and the LMSp differ
only by several percent; however, for the nuclei whose
NMEs at realistic g,, values are near zero (136Xe), the
truncation of the model space may lead to large relative
changes in the NMEs.

Our results can be compared to the results obtained
from other QRPA calculations [9, 18], where g;;‘ and
gIT,;O have not been separated and smaller model spaces
are used. Because the evolving trend of g;;l is monoton-
ic, the combined evolving trends of g,, are more close to
that of ¢/>°. We find that we have similar trends as in
other calculations, but we have different NME values.
Meanwhile, the different calculations deviate from each
other, and a large discrepancy exists between them. If we

consider calculations from other approaches, the discrep-
ancies could be further magnified. These discrepancies
can only be solved by measurements. From Fig. 1, we
learn that the treatment of the isospin symmetry restora-
tion (g7 >0 # g7>!) can alter the final NMEs within sever-
al percent by most nuclei, except "Xe. Because the final
NMEs for **Xe cross zero in the relavant gpp region, the
old isospin violation treatment will provide a fairly large
NME.

To understand the behavior of the NME dependence
on g,,, one can examine the running sum, which shows
how the low- and high—lyin(g states contribute. We plot in
Fig. 2 two typical cases, "Ge and "Te, which we dis-
cussed above. At first, the running sum shows a more
complex structure than the BB-decay to the ground states
[21, 22]. According to [22], low-lying states contribute
mostly positively and contributions from high-lying states
may enhance or reduce the total NMEs according to the
values of g,,. However, in the calculations of the decay
to 27, this is quite different; the high-lying contributions
are largely suppressed, and the effect starts to appear only
near the collapse of the QRPA. In the realistic g,, region,
most of the contributions are from the low-lying trans-
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Fig. 2. (color online) Running sum of 2vgB to 27 for Ge and "’Te. Here, gy and g are the fitted gpp Vvalues for 7= 0 channel and

T =1 channel, respectively, with unquneched g4.

itions, and they may add or cancel each other from case
to case.

The isovector pp interactions do not change the basic
structure of the running sums; however, they slightly
change the magnitude of each transition; this can be seen
by comparing the solid and dashed curves. For each nuc-
lei, we can always find the corresponding transitions
between the cases with and without the isovector pp inter-
actions. These transitions are with similar energies but
differ by the absolute magnitude of the transition
strength. For both low- and high-lying strengths, we can also
find an increasing strength with the isovector strength.

The effect of the pp interactions in the isoscalar chan-
nel on the NMEs can be acquired by comparing the red
and black curves. When g7>° is zero, barely no high-ly-
ing state contributions are observed; with large g;;t)’ we
see moderate reductions from the high-lying states near
10 MeV (the proposed GT resonance (GTR) region) for
Ge. This reduction from the high-lying states becomes
drastic near the QRPA collapse in our calculation (for
130Te, this effect is not shown in the sum rule because the
fitted g£;0 is far away from the collapse, and near col-
lapse, we could observe a reduction around the GTR en-
ergies). This leads to the drastic decrease in the NMEs at
very large ngljo in Fig. 1. From Fig. 2, we can also under-
stand the different behaviors of the NME's g7>¢ depend-

. . 76
ence of various nuclei. For example, for "~ Ge, the low-ly-
ing strengths strongly cancel each other, whereas the pos-
itive strengths grow faster than the negative ones with in-
creasing gg;o, which causes the accelerated increase un-
til the reduction from the high-lying states mentioned
above dominates the NME. This contradicts the " Te
case where all the major strengths are negative and add
together, and so, no increase in the strength is observed;
the contribution from the high-lying states (not shown in
the graph) further reduces the results. In the low-lying en-
ergy region, the isoscalar pp interactions change not only

the strength of each state but also the structure of the run-
ning sum; this produces the complex evolution of the
NME.

3.2 Phase space factors and half-lives

PSFs of the decay to the 2 state have been ad-
dressed in several publications [3, 23, 24]. In this study,
we calculate the PSF with the numerical electron wave-
functions from the numerical package, RADIAL [16]; to
avoid complication, we assume the electron wavefunc-
tion is constant inside the nucleus. This allows a separa-
tion of the calculations of the NMEs and the PSFs, as dis-
cussed above. We use a uniformly distributed electric
charge in the nuclei to take into consideration the nuclear
finite size [17], and the charge radius is taken to be the
empirical nuclear radius, R = 1.2A4'? fm. We neglect the
screening effect of the atomic electrons. Their effects are
analyzed in studies such as [24]. To separate the nuclear
and lepton parts, one uses the average excitation energies,
A, in the phase space calculations (see Eq. (2)). There is
always an arbitrariness in the choice for A in such a form-
alism. To estimate the possible error due to this choice,
we plot the dependence of this PSF on A for "°Cd in Fig.
3, where the curve starts at the lowest possible average
energy (Assp) that is experimentally known. Here, SSD is
the abbreviation of “single-state dominance ”, and this
single state usually refers to the first 17 state of the inter-
mediate states. As one can see, the PSF reaches its largest
value at the point of Assp, then it rapidly drops to a
nearly constant value at the average energy of a}olgroxim—
ately 5 MeV, and after that it barely changes. Cd de-
cays to the excited state of "'°Sn. The value changes about
30%, which is close to the case of the decay to the ground
states [17].

For the PSF calculations, there are usually two kinds
of choices for A, SSD mentioned above and high-lying
state dominance (HSD). Here, a high-lying state usually
refers to the strong GTR, which is observed in charge-ex-
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116

(color online) Phase space factor for 2v38 to 2] of
Cd as a function of average excitation energy A, where
Assp corresponds to the single-state dominance case in
which the average excitation energy of the intermediate
nucleus is 0, and for Agrr, the average excitation energy of
the intermediate nucleus is taken to be the GTR energy
from [17].

change experiments and its position can be obtained from
systematics [17]. For the optimal choices of A, one could
resort to nuclear structure data. Our analysis above about
the running sum suggests that for the decays to 2%, the
low-energy states, especially the first states, make the
largest contribution to the NME; therefore we choose
Assp in this study. These calculated PSFs are tabulated in
Table 1. We have also tabulated the previous results from
Ref. [3], which uses the HSD ( A =10 MeV for all the
nuclei) for the estimation of the PSF, and we present also
our calculated PSFs from the HSD for the sake of com-
parison. By comparing our results with those in Ref. [3],
we find that the two sets of results are generally within
the same order of magnitude. The deviations between the
current calculations and the previous one are within a
factor of 2; our current calculations with numerical elec-
tron wavefunctions yield smaller PSFs, and the reduc-

Table 1.

tions vary from 10%—40%. The reason for such an over-
estimation from the previous study is that they use the
constant electron wavefunctions with the values at the
center of the nuclei, whereas we use the values at the sur-
face. Such a choice at the nuclear surface also comes
from the implications of nuclear structure calculations,
such as those for single- g8 decay in [25] and for BB-de-
cay in [26]. As shown in Fig. 3, the SSD PSFs corres-
pond to larger PSFs, and therefore, short half-lives. The
errors from the choice of A for the PSF depends on the O
values as well as the 17 intermediate states energies. The
reduction for the HSD to SSD can be as large as 60% for
certain nuclei; but it can also be small, such as for '*'Te
with a much smaller PSF.

The half-life of the decay to the first 2* can be ob-
tained by combining the calculated NME and PSF. Here,
for the 8 nuclei involved, the largest NME comes from
"'°Cd and the smallest comes from "“°Xe, and the differ-
ence is more than a factor of 10. The difference among
the PSFs is much larger. Three orders of magnitude devi-
ations are observed for most nuclei, mostly owing to their
dlfferent Q values, and an extremely small PSF is found
for Te which has a small Q value.

The half-lives of these nuclel cross a large region,
from ~ 10?2 to ~ 1032 years. '"'Mo has the shortest half-
life for both the 2vp5B-decay to the ground and 27 states,
and it also has a reasonably large decay branching ratio.
This suggests its fB-decay to the 27 states has the largest
potential to be detected. In comparison, **Te with a half-
life of 103 years seems impossible to be detected. The
same is the case for ‘Ge and "““Xe. These three nuclei
have extremely low branching ratios of the decay to the
2Jr to the overall 8- decagfs either owmg to the %glall PSF
( Te) or small NME ( Ge and ' Xe) Te, and

Mo are promlsmg candidates for future experlments
Especially for Mo, the current experimental limit is
close to the predicted half-life with less than one order of

Calculated phase space factors from [3] and this study, and the decay half-lives for the fB-decay to the first 2* states from this study, where

the queching factor, g4 = 0.75g40, is used. The experimental half-lives or half-life limits of 2v38 to the ground states and first 2" states are tabulated
as well. Here, Br(2*) is the branch ratio of the decay to 2" to the overall 2v38.

Gglx fyr 'MeV®)

mSPODAT[6]  OMeV MEMeV: R P [S]  Br2))
3] HSD SSD i
"Ge 1.65%0-14 x 102! 1480  8.620x1072%  7.599x10724  1.053x1073  6.08x10>  3.33x10% >1.6x1083  5.0x1077
“3e (92+0.7)x 101 2219  1.569x10721  1.354x1072!  3.408x10721  1.31x1072 1.96x10%* > 1.0x 10?2 4.7x107°
%7r  (23+02)x10° 557 - 1.407x10720  1.935x10720  1.16x1072  4.67x10%3 >79x10%  49x1075
Mo  (7.1x£0.4)x10'8 2495  1382x10720  1.127x1072  2.989x10720 -7.83x102  6.63x10?! >2.5x10%! 1.1x1073
"cd (2.87£0.13)x10"° .50 - 41201073 6.156x10723  —9.05x1072  2.41x10%* >23x 102! 1.2x1073
Te  (2.0+0.3)x 102 0423  2350x107%  1.779x107%  1.813x107® —572x1072  2.05x10°! - 9.8x107%
Te  (6.9+1.3)x10% 1.991  2.119x1072'  1.581x1072'  2713x1072!  -5.00x102  1.79x10% >2.8x 102! 3.9%1073
Xe  (219£0.06)x102" 1639  2.659%x10722  1.755x10722  5.179x10722  -3.04x1073  2.54x10% >46%x103  8.6x107°
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magnitude difference. With future improvements in the
experiments, it is perhaps possible to observe the special
27 mode of this nucleus, because it is also the first nucle-
us for which the decay to the first 0 excited was ob-
served. For the other nuclei, observations of the B3-de-
cay to 2] can be quite difficult owing to their long half-
lives and small branching ratios.

4 Conclusion and outlook

In this study, we calculated the NMEs and PSFs of

2vBB to the first 2* states for eight nuclei with partially
restored isospin symmetry. We studied the NME depend-
ence on the isovector and isoscalar pp residual interac-
tion strengths. Finally, we predicted the half-lives and
branching ratios of these decays to excited states.
However, further investigation on the effect of anharmon-
icity of the 2* phonon to the decay is needed.

We would like to thank Prof. F. Simkovic for useful
discussions and help on the code.
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