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Abstract: We  attempt  to  clarify  several  aspects  concerning  the  recently  presented  four-dimensional  Einstein-
Gauss-Bonnet gravity. We argue that the limiting procedure outlined in [Phys. Rev. Lett. 124, 081301 (2020)] gener-
ally  involves  ill-defined terms in  the  four  dimensional  field  equations.  Potential  ways  to  circumvent  this  issue  are
discussed, alongside remarks regarding specific solutions of the theory. We prove that, although linear perturbations
are  well  behaved  around  maximally  symmetric  backgrounds,  the  equations  for  second-order  perturbations  are  ill-
defined  even  around  a  Minkowskian  background.  Additionally,  we  perform  a  detailed  analysis  of  the  spherically
symmetric solutions and find that the central curvature singularity can be reached within a finite proper time.

Keywords: alternative theories of gravity, singularities, Einstein-Gauss-Bonnet

DOI: 10.1088/1674-1137/abc1d4

I.  INTRODUCTION

1/(D−4)

It has been recently claimed [1] that there exists a the-
ory of  gravitation in  four  spacetime dimensions that  ful-
fills all the assumptions of the Lovelock theorem [2] but
not its  conclusions.  This  was accomplished by formulat-
ing the Einstein-Gauss-Bonnet (EGB) theory in an arbit-
rary dimension D with a coupling constant for the Gauss-
Bonnet term re-scaled by a factor of , as defined
by the following action:

S =
∫

dDx
√
|g|

−Λ0+
M2

P

2
R+

α

D−4
G
 . (1)

Λ0
G

D = 4

(D−4)

Here  is  a  cosmological  constant  term, R is  the  Ricci
scalar,  and  is  the  Gauss-Bonnet  (GB)  term.  It  is  well
known that the GB term is a topological invariant only in

 and not in higher dimensions, and it thereby gener-
ally yields  a  non-trivial  contribution  to  the  field  equa-
tions in arbitrary D. In [1], it is claimed that the contribu-
tion  of  the  Gauss-Bonnet  (GB)  term  to  the  equations  of
motion  is  always  proportional  to  a  factor  of ,
which in principle, compensates for the divergence intro-

D→ 4

D = 4

duced  in  the  coupling  constant,  thus  allowing  for  a  well
defined  limit at the level of the field equations. It
is argued that a non-trivial correction to General Relativ-
ity due to the GB term in (1) remains even in .

D→ 4

Since the above action is one of the celebrated Love-
lock  actions  in  arbitrary D,  it  is  stated  in  [1]  that  all  the
assumptions of  the Lovelock theorem hold,  although the
resulting field equations do violate the conclusions of the
Lovelock theorem. This is accomplished by defining a 4-
dimensional  diffeomorphism-invariant  theory  satisfying
the  metricity  condition  and  having  second-order  field
equations  that  differ  from  those  of  General  Relativity
(GR).  The  authors  of  [1] then  proceed  to  show the  con-
sequences of these modifications to GR in scenarios with
a high degree of symmetry. Strong interest in this theory,
which  we  refer  to  as  Einstein-Gauss-Bonnet
(D4EGB,  for  short),  has  emerged  recently.  In  particular,
there has been an ongoing discussion [3-11] regarding the
nature and/or well-definiteness of D4EGB. In this paper,
we also elaborate in this direction.

We now highlight some subtleties in the definition of
D4EGB and  in  some  of  the  solutions  to  its  field  equa-
tions. It is claimed in [1] that the contribution of the GB
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1/(D−4)

(D−4)

(D−4)
D = 4

term (and not just its trace) to the field equations is pro-
portional to , and that this implies that the GB con-
tribution to the field equations vanishes in four spacetime
dimensions.  The  authors  of  [1]  then  consider  a  coupling
constant  with a factor of  that  would regularize
the otherwise  vanishing  GB  contribution,  thereby  yield-
ing a finite correction to the four dimensional field equa-
tions.  We show, in agreement with [12],  that  in addition
to a term proportional to , the GB term contributes
to  the  field  equations  via  an  additional  part  from  which
no power of  can be factorized but which nonethe-
less vanishes identically in .

α−

1/(D−4)
0/0 D→ 4

(D−4)

Regarding tensor perturbations in D4EGB, we repro-
duce  the  results  of  [1]  for  linear  perturbations  around  a
maximally symmetric  background.  This  allows us  to  de-
termine that  the theory only propagates a massless grav-
iton, and that the corrections to GR provided by the regu-
larized GB term only  enter  through  a  global depend-
ent factor multiplying the linear perturbation equations in
GR. Nonetheless, we see that the field equations describ-
ing  second-order  perturbations  contain  ill-defined  terms
proportional  to  that evaluate  to  an  undeter-
mined  in the  limit, even around a Minkowski-
an background. Indeed,  we argue that  unless one is  con-
sidering solutions with enough symmetry so as to force a
specific combination  of  Weyl  tensors  to  vanish  in  arbit-
rary dimensions a priori, the term that is not proportional
to  renders the  unperturbed  D4EGB  field  equa-
tions ill-defined.

D→ 4
D ⩾ 5

(D−4)

D = 4

Finally,  we  comment  on  the  geometries  presented  in
[1] as the  limit of the spherically symmetric solu-
tions for EGB theory in  found in [13]. We see that
the claim made in [1] that no particle can reach the cent-
ral  curvature  singularity  in  a  finite  proper  time  within
these geometries does not hold for freely-falling particles
with  vanishing  angular  momentum.  Furthermore,  we
show that the regularized D4EGB field equations are not
well  defined  in  spherically  symmetric  spacetimes  unless
the contribution that is not proportional to  is artifi-
cially stripped away from the field equations.  Moreover,
in the case in which this term is removed, we argue that
the spherically symmetric geometries presented in [1] are
not solutions to the remaining field equations in .

D→ 4II.  THE  PROCEDURE

D→ 4Let  us  first  comment  on  whether  the  limit
taken  in  [1]  corresponds  to  a  well-defined  continuous
process.  To  that  end,  consider  the k-th  order  Lovelock
term in an arbitrary dimension D:

S (k) =

∫
Ra1a2 ∧ ...∧Ra2k−1a2k ∧⋆(ea1

∧ ...∧ ea2k
)

=
(2k)!

2k

∫
Rν1ν2

µ1µ2 ...Rν2k−1ν2k

µ2k−1µ2kδ[ν1
µ1
...δν2k]
µ2k

√
|g|dDx , (2)

gab = ηab

k = 2

ea

where  the  Greek  indices  refer  to  a  coordinate  basis,  and
the  Latin  indices  refer  to  a  frame in  which  the  metric  is
the  Minkowski  metric  ( ).  As  noted  in  [12],  for
the  Gauss-Bonnet  term  ( ), if  we  analyze  the  prob-
lem in  differential  form  notation,  when  varying  the  ac-
tion with respect to the coframe , we find

⋆
δS (k)

δea = (D−2k)(D−2k−1)! J(k)
ac ec , (3)

J(k)
ac

2k (−1)!

D = 2k (D−2k)
D = 2k

2k 2k

where  is a regular tensor built  from combinations of
the  Riemann  tensor  that  differ  for  each k.  The  second
factor  comes  from  the  contraction  of  two  Levi-Civita
symbols. Therefore, it is of a combinatorial nature: it es-
sentially concerns the counting of the number of possible
antisymmetric  permutations  of  a  collection  of  indices.
Note that  the  counting  process  is  not  a  continuous  pro-
cess  in  which  the  number  of  indices  being  counted  (or
equivalently  the  dimension)  can  take  any  value;  rather,
the value must be an integer. Indeed, for (3) to be valid, D
must be greater than  because  cannot arise from
counting possible permutations. Since (3) is not valid for

,  it  cannot  be  stated  that  the  factor  is re-
sponsible  for  the  vanishing  of  (3)  in .  The  reason
that it vanishes can actually be traced back to the proper-
ties  of -forms  in  dimensions  [14]:  by  writing  the
Hodge star  operator  in  (2)  explicitly,  in  the  critical  di-
mension, we obtain

⋆(ea1
∧ ...∧ ea2k

)
(D=2k)
= Fϵa1...a2k

, (4)

ϵa1...a2k

D > 2k
ea1
∧ ...∧ ea2k

0

where  is  the  Levi-Civita  tensor  associated  to  the
Minkowski metric,  and F is a non-zero constant that  de-
pends  on k.  As  a  consequence  of  this  and  because  the
curvature  factors  in  the  action  do  not  contribute  (via  a
spin  connection)  to  the  dynamics  in  Lovelock  theories
[15], the vielbein equations of motion are identically sat-
isfied. Observe that this is no longer true if  since
in  that  case,  the  Hodge  dual  of  is  not  a -
form and makes a non-trivial contribution to the equation
of motion of the vielbein.

D ⩾ 2k
(D−4)

It is also illuminating to consider (3) as a metric vari-
ation, i.e.,  to  avoid  the  differential  form  notation  and
work directly with the metric components. Then, the vari-
ation  with  respect  to  the  metric  of  a  general k-th  order
Lovelock  term  in  an  arbitrary  dimension  is  not
proportional to  but rather has the form

1√
|g|
δS (k)

δgµν
= (D−2k)Aµν+Wµν, (5)

D−2k Wµνwhere no  factor can be extracted from . For in-
stance,  the  first-order  Lovelock  term  (the  Einstein-Hil-
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AEH
µν = 0 WEH

µν =Gµν
D = 2

bert action) leads to  and , which van-
ishes  in .  Analogously,  decomposing  the  Riemann
tensor  into  its  irreducible  pieces  (see, e.g.,  [16]),  the
second-order Lovelock term, i.e., the Gauss-Bonnet term,
leads to

AGB
µν =

D−3
(D−2)2

[ 2D
D−1

RµνR−
4(D−2)

D−3
RρλCµρνλ

−4RµρRνρ+2gµνRρλRρλ−
D+2

2(D−1)
gµνR2

]
, (6)

WGB
µν = 2

[
CµρλσCνρλσ−

1
4

gµνCτρλσCτρλσ
]
, (7)

Cµνρλ

k = 2

where  we  have  introduced  the  Weyl  tensor .  We
note that a similar decomposition for the variation of the
GB  term  (characterized  by ) has  also  been  per-
formed in [12]. The calculations have been checked with
xAct  [17]  and  we  leave  the  notebook  as  supplementary
material for anyone to check it.

Taking this into account, the field equations given by
(1) in arbitrary dimension are1)

Gµν+
1

M2
P

Λ0gµν+
2α
M2

P

AGB
µν +

WGB
µν

D−4

 = 0 . (8)

D = 4
AGB
µν

α/(D−4)
WGB
µν

WGB
µν (D−4)

WGB
µν D = 4

D = 4 WGB
µν

D = 2

Hence, with the regularization made in [1], i.e., by evalu-
ating  after  calculating  the  equations  of  motion  in
arbitrary D,  the  term  indeed  provides  a  finite  non-
trivial  correction  to  the  Einstein  field  equations  if  the
coupling constant of the GB term is . However,
in this case, the  term is ill-defined since in general,

 does  not  go  to  zero  as .  Indeed,  the  reason
 vanishes  in  is  that  the  Riemann  tensor  loses

independent  components  as  one  lowers  the  dimension,
and  in ,  this  loss  of  components  implies  that 
necessarily vanishes  for  algebraic  reasons,  which is  ana-
logous to what happens to the Einstein tensor in . In
other words, the reason these expressions are zero in cer-
tain  dimensions  is  that  they  are algebraic identities ful-
filled by  the  curvatures  of  all  metrics  in  the  critical  di-
mension, as opposed to functional identities at which one
could arrive by a continuous limiting process given a suit-
able topology. A somewhat simpler example illustrating a
variation  that  vanishes  for  algebraic  reasons  is  provided
by  Galileon  or  interacting  massive  vector  field  theories.
There, it can be seen that due to the Cayley-Hamilton the-
orem,  the  interaction  Lagrangian  of  a  given  order k
identically vanishes for dimensions higher than the critic-

al dimension associated to k [18].

D = 4

D→ 4

D→ 4

We also mention that  the authors  of  [1]  appeal  to  an
analogy between their method and the method of dimen-
sional  regularization  commonly  employed  in  quantum
field theory.  The  dimensional  regularization  method  al-
lows for  the  extraction  of  divergent  and  finite  contribu-
tions  from integrals  that  are  divergent  in  but  non-
divergent for higher D. The method considers the analyt-
ic continuation of such integrals to the complex plane as a
function of the complexified dimension D and then takes
the limit  in a manner that allows the divergent and
finite contributions of the integrals to be separated. A key
aspect  that  ensures  the  well-definiteness  of  dimensional
regularization as an analytic continuation is that the regu-
larized integrals are scalar functions2) that have no algeb-
raic structure sensitive to the number of dimensions of the
space they are  defined in.  However,  note  that  this  is  not
the  case  for  the  Gauss-Bonnet  term,  which  has  a  non-
trivial tensorial structure that is not well defined for non-
integer dimensions. Thus, although the process of dimen-
sional regularization can be defined by using the smooth

 limit  of  the  appropriate  analytic  continuation  of
the scalar  integrals,  this  fails  to  be a  continuous limiting
process  when  the  quantities  involved  have  a  non-trivial
algebraic structure, such as tensors or p-forms do.

Regarding this  issue,  it  would  be  interesting  to  at-
tempt to find a precise mathematical meaning of the limit-
ing procedure  in  the  presence  of  tensor  fields  that  only
satisfy  certain  algebraic  identities  in  a  particular  number
of dimensions. This could be done, for instance, by intro-
ducing  a  formal  limit  (see, e.g.,  [19])  and  studying  its
properties, which would, however, be a highly non-trivi-
al task that lies beyond the scope of this work.

III.  PERTURBATIONS AROUND MAXIMALLY
SYMMETRIC BACKGROUNDS

WGB
µν

D = 4
WGB
µν

D ⩾ 4
WGB
µν = 0 D ⩾ 4

D→ 4

Despite  the  above  considerations,  we  acknowledge
that  even  though  the regularization method  proposed  in
[1] does not work in general, it suffices for finding solu-
tions that satisfy enough symmetries so as to render 
identically zero in an arbitrary dimension. Thus, by sym-
metry-reducing  the  action  before  enforcing ,  we
eliminate  the  problematic  term  and  arrive  at  well-
defined equations  of  motion.  This  is  the  case,  for  in-
stance, of all conformally flat geometries, which have an
identically  vanishing  Weyl  tensor  in , thus  satisfy-
ing  the  desired  property  that  in ,  which
makes  the  limit of  the  (symmetry-reduced)
D4EGB field equations (8) well defined. Maximally sym-
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WGB
µν (D−4)1) Since the trace of  is proportional to , the divergence disappears from the trace of the equation of motion, although this factorization cannot be made

in the full equation.
2) Typically the tensorial structures within the integrals are extracted from them by employing Lorentz-covariance arguments, and therefore the integral to regularise

is always a scalar function.
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metric  geometries  or  FLRW spacetimes  are  conformally
flat, and therefore, the regularized D4EGB equations are
well defined  in  such  situations.  Let  us  analyze  the  max-
imally symmetric solutions of (8) studied in [1]. In these
geometries, the Riemann tensor is given by

Rµνρσ =
Λ

M2
P(D−1)

(
δ
ρ
µδ
σ
ν −δσµ δ

ρ
ν

)
, (9)

WGB
µν

(D−4)

and  vanishes in  an  arbitrary  dimension,  as  ex-
plained above. In this case, the variation of the GB term
is  indeed proportional  to ,  and therefore,  after  the
symmetry-reduction of the action (1),  the field equations
(8) read

Gµν+
1

M2
P

Λ0gµν+
2α
M2

P

AGB
µν = 0 , (10)

AGB
µν α−

WGB
µν

where  provides a regular dependent correction to
GR. Although  these  properties  are  shared  by  any  con-
formally flat solution, one should bear in mind that arbit-
rary perturbations  around  these  backgrounds  are  sensit-
ive  to  the  ill-defined  contributions  that  come  from  the

 dependence of the full D4EGB field equations (8).

αWGB
µν /(D−4)

WGB
µν

It is  worth  noticing,  though,  that  the  ill-defined  cor-
rections  that  enter  the  equations  of  motion  through  the

 term do not contribute to the linear order in
perturbation theory around a maximally symmetric back-
ground. Presumably,  this  is  the  reason  why  these  prob-
lematic  contributions  went  unnoticed  in  [1],  where  only
linear  perturbations  are  considered.  Nonetheless,  the  ill-
defined  terms  related  to  enter  the  perturbations  at
the second-order.

To  show  this,  let  us  consider  a  general  perturbation
around  a  maximally  symmetric  background  by  splitting
the full metric as

gµν = ḡµν+ ϵhµν, (11)

ḡµν

ϵ

where  is  a  maximally  symmetric  solution  of  (8).
Therefore,  the  left  hand  side  of  (8)  can  be  written  as  a
perturbative series in  of the form

E(0)
µν+ ϵE(1)

µν+ ϵ
2E(2)

µν . . . , (12)

E(0)
µν = 0

E(1)
µν = 0

where  are  the  background  field  equations,
 are  the  equations  for  linear  perturbations,  and

so on. Using the zeroth-order equation, the linear perturb-
ations  in D dimensions  around  a  maximally  symmetric
background are described by

0 =
1+ 4(D−3)

D−1
αΛ

M4
P


×

[
∇ρ∇µhνρ+∇ρ∇νhµρ−∇ρ∇ρhµν−∇µ∇νh

+δµν(∇σ∇σh−∇ρ∇σhρσ)− Λ
M2

P

(δµνh−2hµν)
]
, (13)

h ≡ hσσ ḡµν

∇ρ∇νhµρ

D = 4

α

Λ = 0
E(2)

µν = 0

where  and  the  indices  have  been  raised  by .
Note that, although (13) and the equations for linear per-
turbations  in  [1]  differ  by  the  ordering  of  the  covariant
derivatives of the  term and the sign in the mass
term, our equation (8) coincides with those in e.g. [16] for
linearized  perturbations  around  a  maximally  symmetric
background. By inspection of (13), we see that this equa-
tion is regular in . Furthermore, as noted in [1], the
equation governing  linear  perturbations  (13)  is  essen-
tially that of GR, although multiplied by an overall factor
that depends on . Let us now consider the quadratic or-
der in the perturbations. For our purpose, it is sufficient to
consider  quadratic  perturbations  around  a  Minkowskian
background. By using the zeroth- and first-order perturb-
ation  equations  and  enforcing  a  vanishing  background
curvature , we can write the second-order perturba-
tion equations  as (see supplementary material)

0 =[GR terms of O(h2)]µν+
α

M2
P(D−4)

×
{
−2∇γ∇αhνβ∇γ∇βhµα+2∇γ∇βhνα∇γ∇βhµα

+2∇γ∇βhνα∇µ∇αhβγ +2∇γ∇βhµα∇ν∇αhβγ
−2∇γ∇βhµα∇ν∇βhαγ −2∇γ∇βhνα∇µ∇βhαγ
−2∇µ∇γhαβ∇ν∇βhαγ +2∇µ∇γhαβ∇ν∇γhαβ
+gµν

(
2∇δ∇βhαγ∇δ∇γhαβ−∇δ∇γhαβ∇δ∇γhαβ

−∇β∇αhγδ∇δ∇γhαβ
)}
. (14)

1/(D−4)
WGB
µν

D = 4 0/0

Notice that given that the numerator of the  term
comes entirely from the  contribution in (5),  it  van-
ishes identically in , rendering an indeterminate 
in the second order perturbation equations after  the limit
outlined by Glavan and Lin in [1] is taken.

(D−4)n n ≥ 1

In essence, the problem with the limiting prescription
outlined in [1] is that it does not make sense for a general
tensor as a continuous function of the dimension D of the
space in which it  is  defined.  Evidently,  if  a  suitable pre-
scription for  treating  the  numerator  as  an  analytic  func-
tion of D was found and went as  with , then
the limit would be well-defined. However, this would re-
quire  a  precise  definition  for  the  limit  of  a  tensor  as  a
function of  the  spacetime dimension,  which is  not  given
in [1].

In other words, the pathological term in the full equa-
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D→ 4

tion  of  motion,  which  does  not  appear  at  linear  order
around Minkowski spacetime, enters at  the next order in
the  perturbative  expansion,  providing  a  clear  example
that suggests that the D4EGB field equations (8) are gen-
erally  ill-defined.  This  result  is  somewhat  along  the  line
of  that  found  in  [4], where  it  was  seen  that  the  amp-
litudes  of  the  GB term in  the  limit correspond  to
those of a scalar-tensor theory, in which the scalar is  in-
finitely strongly  coupled (which suggests  that  the  patho-
logical  term  in  the  second  order  perturbations  actually
blows up).  Hence, they concluded that this new patholo-
gical degree of freedom would only appear beyond linear
order perturbations.

Λ

1/(D−4)
hµν

O(Λ) h(∇2h) O(Λ2)
h2 Λ

Moreover, going beyond a Minkowskian background,
perturbations  around  arbitrary  maximally  symmetric
backgrounds (9) pick up additional -proportional terms
that  contain  a  factor  of  (see  the  supplementary
material). Concretely, up to the second order in , there
are  terms of the form  and  terms of the
form . Consequently, the -proportional terms provide
additional  undetermined  terms  that  make  (anti-)de  Sitter
backgrounds pathological.

IV.  AN ACTION FOR THE REGULARIZED
EQUATIONS?

WGB
µν

D ≥ 4

We  have  seen  that  unless  the  field  equations  (8)  are
stripped of the  term after taking the variation of the
D4EGB action (1), they are, in general, ill-defined. Let us
now comment  on  the  possibility  of  finding  a  diffeo-
morphism-invariant action whose field equations in 
are of the form (10)1).

WGB
µν

k = 2

AGB
µν

To find such an action starting from the EGB one, we
should be able to subtract a scalar from the EGB action so
that  the  contribution  of  disappears  after  taking  the
variation  with  respect  to  the  metric,  without  losing  the
diffeomorphism symmetry of the EGB action. In trying to
find such  a  term,  we immediately  arrive  at  an  inconsist-
ency, which we proceed to illustrate. Diffeomorphism in-
variance of the Gauss-Bonnet  action, i.e.,  (2)  with ,
implies that its variation with respect to the metric is di-
vergenceless.2) Thus, by using the A-W decomposition (5)
and substituting  with (6), the off-shell relation follows

∇µWGB
µν = −

4(D−4)
D−2

Cνρλµ∇µRρλ . (15)

Observe  that  the  right-hand  side  of  this  equation  is  not
identically zero in an arbitrary dimension, as can be seen
by considering  the  following  counterexample  in  five  di-
mensions:

ds2 = dt2− e2tdx2− e4t(dy2+dz2+dw2) , (16)

for which equation (15) reads

∇µWGB
µν = −4δtν , 0 . (17)

WGB
µν

WGB
µν

Together with the fact  that  the variation with respect
to  the  metric  of  any  diffeomorphism-invariant  action  is
identically  divergence-free,  the  above  result  implies  that
the  term does not come from an action that is a scal-
ar  under  diffeomorphisms.  Consequently,  there  does  not
exist any term that can be added to the action (1) to can-
cel  the  contribution  in  the  D4EGB  field  equations
(8)  without  losing  its  diffeomorphism-invariance.  Other
authors  have proposed alternative  ways  to  regularize  the
action  (1),  generally  leading  to  a  scalar-tensor  theory  of
the  Horndeski  family  [3-6],  thus  leaving  the  Lovelock
theorem intact.

D ≥ 4
We  thus  conclude  that  no  diffeomorphism-invariant

action can give the desired field equations (10) in .
Nevertheless,  nothing  precludes  the  existence  of  a  non-
diffeomorphism-invariant  action  having  (10)  as  its  field
equations.  Were  it  possible  to  find  such  an  action,
however,  the  absence  of  diffeomorphism  invariance
would  potentially  unleash  the  well-known  pathologies
that  occur  in  massive  gravity  (see, e.g.,  [20,21]),  thus
propagating a Boulware-Deser ghost [22].

V.  GEODESIC ANALYSIS OF THE SPHERIC-
ALLY SYMMETRIC SOLUTIONS

In  addition  to  maximally  symmetric  and  FLRW
spacetimes,  spherically  symmetric  solutions  of  D4EGB
are also considered in [1], where it is stated that they are
described by the 4-dimensional metric

ds2 = A±(r)dt2−A−1
± (r)dr2− r2dΩ2

2 , (18)

A±(r)where  has the form

A±(r) = 1+
r2

32παG

1±
√

1+
128παG2M

r3

 . (19)

D−First, we note that dimensional spherically symmetric
geometries described by metrics of the form [16],

ds2 = A(r)dt2−A−1(r)dr2− r2dΩ2
D−2 , (20)

Inconsistencies in four-dimensional Einstein-Gauss-Bonnet gravity Chin. Phys. C 45, 013107 (2021)

D→ 4
1/(D−4)

1) Even though the  process, if understood as a limit, will have the same conceptual problems described in section II, in this case they might be swept under
the rug since the  dependence actually disappears from the field equations.

2) This is due to the Bianchi identity under diffeomorphisms.
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WGB
µν = 0 D ⩾ 4

WGB
µν

do  not  in  general  satisfy  in  arbitrary .  To
see  this,  it  suffices  to  restrict  consideration  to  the  5-di-
mensional case, where the condition for  to vanish is

r2 d2A
dr2 −2r

dA
dr
+2A−2 = 0 . (21)

A = 1+C1r+
C2r2 Ci

D→ 4

α 1/(D−4)
D ⩾ 5

D→ 4 D→ 4

This  only  happens  for  the  particular  case 
 ,  where  are  integration  constants.  This  suggests

that (19) cannot be regarded as a solution of the D4EGB
field  equations,  given  that  (8)  is  not  well-defined  for D-
dimensional  spherically  symmetric  metrics  (20)  in  the

 limit.  Indeed, as the authors of [1] explain, the 4-
dimensional  spherically  symmetric  geometries  (19)  are
obtained by first  re-scaling  by a  factor  of  in
the solutions obtained in [13] for EGB in  and then
taking the  limit, instead of solving the  limit
of (8).

WGB
µν

α > 0

Nevertheless, it could be that the spherically symmet-
ric geometries of [1] are solutions of (10),  that  is,  of the
field equations (8) after being stripped of the pathologic-
al  term.  In  the  supplementary  material,  it  can  be
seen that (10) has four different branches of solutions for

.  Two  of  them  are  exactly  the  Schwarzschild  and
Schwarzschild-(anti-)de Sitter solutions:

A1 = 1− 2GM
r
,

A2 = 1+
r2

16πGα
− 2GM

r
, (22)

A � r−3−2
√

3+O(r0)

and  the  other  two  cannot  be  solved  analytically,  though
their  asymptotic  behavior  near  the  origin  can  be  seen  to
be .  Therefore,  these  solutions  cannot
be  the  ones  found  in  [1]  either,  although  they  approach
the  Schwarzschild  and  Schwarzschild-(anti-)de  Sitter
solutions at spatial infinity.

α < 0
r < (−128

παG2M)−1/3 α > 0

Let  us  now  turn  to  the  behavior  of  the  spherically
symmetric  geometries  presented  in  [1].  As  noted  in  [1],
the  branch of the above solution is not well defined
for  values  of  the  radial  coordinate  below 

,  so  their  analysis  focuses  on  the 
branches, showing  that  the  above  metric  describes  solu-
tions  that  behave  asymptotically  as  Schwarzschild  or
Schwarzschild-de  Sitter  solutions  by  choosing  negative
and positive signs, respectively.

M∗ =
√

16πα/G

gtt

Concerning  the  former  branch  of  solutions,  it  is
shown  in  [1] that  its  causal  structure  (namely,  the  pres-
ence  or  absence  of  event  horizons)  depends  on  the  ratio
between  the mass parameter M and  a  new  mass  scale

 , which characterizes the D4EGB correc-
tions to GR. From (18) and (19), it can be shown that the

 component of the metric vanishes at the spherical sur-

faces:

r± =GM

1±
√

1−
( M∗

M

)2
 . (23)

M < M∗
M > M∗ M = M∗

M∗

α

In view of this expression, it becomes clear that solutions
have no horizons if  , outer and inner horizons if

 , and one degenerate horizon if . Interest-
ingly, the mass scale  plays a role similar to that of the
electric  (and  magnetic)  charges  in  the  Reissner-
Nordström spacetime, with the exception that in this case,
the  origin  of  such  contributions  comes  exclusively  from
the  gravitational  field.  The  effect  of  the  Gauss-Bonnet
terms is  that  of  making  gravity  repulsive  at  short  dis-
tances, the magnitude of this repulsion being dictated by
the strength of the GB coupling .

Regarding the  presence  of  singularities  in  the  solu-
tions, we see that despite the metric components (19) be-
ing finite at the origin:

A(r) = 1−
√

2M
GM2

∗
r1/2+O(r3/2) , (24)

R ∝ r−3/2 RµνRµν ∼
RµναβRµναβ ∝ r−3

r = 0

the  curvature  invariants  diverge  as , 
.  In  [1],  it  is  argued  that  an  observer

could never reach this curvature singularity given the re-
pulsive  effect  of  gravity  at  short  distances.  This  would
imply that the spacetime described by (18) is complete in
the  sense  that  no  (classical)  physical  observer  ever
reaches the curvature singularity at  in a finite prop-
er  time.  Nonetheless,  there  is  no  explicit  proof  in  [1]
showing that this is  indeed the case.  We thus proceed to
answer  precisely  the  following  question:  does  any  (clas-
sical) physical observer reach the curvature singularity of
(18)  in  a  finite  proper  time?  To  answer  this  question,  it
suffices  to  study  the  sub-class  of  radial  freely-falling
(classical)  observers,  described  by  time-like  geodesics.
We also consider radial null geodesics for completeness.

θ = π/2
Consider  the  geodesic  equation  in  the  equatorial

plane1)  for the metric (18)(
dr
dτ

)2

= E2−Veff(r), (25)

with

Veff(r) = A(r)
(

L2

r2 − κ
)
, (26)

τ
r(τ)

where  is  the  proper  time  of  the  observer  that  moves
along  the  solution .  (See e.g.  [23]  for  details  on  the
derivation of the geodesic equation and [24] for the com-

Julio Arrechea, Adrià Delhom, Alejandro Jiménez-Cano Chin. Phys. C 45, 013107 (2021)

1) Since spacetime is spherically symmetric, geodesics will lie in a plane, which can be chosen as the equatorial one in suitable coordinates.
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κ {−1,1,0}

L = 0
A(r)

r = 0

r � rS

r = 0
dr/dτ|GR ∝ r−1/2+O(r0)

pleteness analysis.) Here,  takes the values  for
space-like,  time-like,  and  null  geodesics,  respectively. E
and L are constants of motion associated with time-trans-
lation  and  rotational  symmetries,  respectively.  For  our
purpose, it suffices to analyze radial geodesics, character-
ized by . First, note that since photon trajectories are
insensitive  to  the  value  of  in  a  spacetime described
by  any  metric  of  the  form  (18),  the  trajectories  stay  the
same  as  in  GR.  The  solution  to  (25)  for  time-like
geodesics  is  plotted  in Fig.  1 for  cases  with  different
causal  structures.  There,  it  can  be  seen  that  infalling
massive  particles  starting  in  a  region  well  beyond  the
Schwarzschild radius  (where  the  space-time  is  effect-
ively  the  same as  in  GR) reach the  curvature  singularity
at  in a finite proper time (no matter the initial velo-
city). Notice that, as can be seen in Fig. 2, the deviations
that  form  the  GR  trajectories  are  not  relevant  until  the
particle  is  at .  An  asymptotic  analysis  of  the
geodesic equation reveals that in GR, the curvature singu-
larity  at  is  reached  with  infinite  velocity

, while the geodesics described by
(18) reach it with finite velocity:

(
dr
dτ

)2

|D4EGB = E2−1+

√
2M
M2
∗

r1/2+O(r3/2) . (27)

E2 = 1

It  is  interesting to note that  if  the infalling particle starts
at rest,  no matter what its initial position is, it  will reach
the  singularity  with  zero  velocity  (characterized  by

):  attractive  and  repulsive  effects  compensate  for
each other along the trajectory of the particle. The above
proves  that  the  statement  made  in  [1] that  particles  can-
not  reach  the  central  singularity  in  spacetimes  described
by (18) is  not  correct,  as  the singularity is  reached in fi-
nite affine parameter. Therefore, the hope that these solu-
tions  avoid  the  singularity  problem  is  cast  into  serious
doubt. The authors of [1] also claim that under a realistic

stellar  collapse,  matter  would  stop  before  reaching  the
singularity. This must be verified by a self-consistent ana-
lysis of the dynamical collapsing geometry, as reported in
[25], revealing that the singularity indeed forms and gets
covered  by  a  horizon.  Furthermore,  the  authors  of  [25]
found that if the collapse is modelled à la Oppenheimer-
Snyder,  where the dust  is  initially at  rest,  matter  reaches
the singularity with zero velocity,  in agreement with our
results.

We also note that even if geodesic observers never ar-
rive  at  the  singularity,  the  usual  problems  regarding
curvature singularities  would  remain:  quantum  correc-
tions would be expected to become non-perturbative near
the  singularity,  and  the  background  could  not  be  treated
classically  anymore.  However,  the  solutions  would  be
classically singularity free in this case.

VI.  FINAL REMARKS

2k

We have  investigated  the  idea  of  providing  correc-
tions to four dimensional General Relativity by means of
the Gauss-Bonnet term analyzed and devised in [26] and
recently  revisited  in  [1].  We  have  shown  that  this  idea
cannot be implemented for the Gauss-Bonnet (k-th order
Lovelock)  term  in  four  ( )  spacetime  dimensions  by
means of the procedure considered in [1] without encoun-
tering inconsistencies.

WGB
µν

When  considering  solutions  with  a  high  degree  of
symmetry, such as maximally symmetric or general con-
formally flat solutions, this issue is concealed at the level
of the equations of motion because the problematic terms

 in (8)  vanish for  arbitrary D in these scenarios.  In-
deed, we  have  shown  that  when  considering  perturba-
tions around a Minkowskian (or any maximally symmet-
ric) background  beyond  linear  order,  such  inconsisten-
cies  are  immediately  unveiled.  This  also  aligns  with  the
conclusions  that  the  authors  of  [4] arrived  at  by  analys-

 

rS = 2M

M∗ =G = 1 r(0) = 100 rS E = 1

Fig.  1.    (color  online)  Plot  of  the  radial  ingoing trajectories
(in  units  of )  of  a  free-falling  massive  particle  in  the
spacetime (18)  (dashed lines)  and of  the Schwarzschild  solu-
tion (pastel colors) for different values of the parameter M. At
large  distances,  the  trajectories  are  indistinguishable.  We use

, , and  for visualization purposes.

 

rS = 2M

M = 0.5M∗

M∗ = G = 1

Fig. 2.    (color online) Figure showing how the trajectories of
a massive particle in the spacetime described by (18) (in units
of )  deviate  from those of  the  Schwarzschild  solution
from GR near the central curvature singularity. Here, only the
case   is shown, although all timelike geodesics ex-
hibit  the  same  behavior  near  the  singularity.  The  units  are

 .

Inconsistencies in four-dimensional Einstein-Gauss-Bonnet gravity Chin. Phys. C 45, 013107 (2021)
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ing the GB amplitudes.

WGB
µν

WGB
µν

Regarding  the  spherically  symmetric  geometries
presented in [1], we showed that they do not attain the re-
quired degree of symmetry as to make  vanish in ar-
bitrary dimension  and  thus  bypass  the  pathologies  en-
countered in the field equations (8). By artificially remov-
ing  from (8), we encountered four spherically sym-
metric  solutions,  none  of  which  coincides  with  those
presented  in  [1].  Moreover,  a  geodesic  analysis  of  the
geometries from [1] contradicts the observation about the
singularity  being  unreachable  by  any  observer  in  finite
proper time.

The  idea  of  extracting  non-trivial  corrections  to  the
dynamics of a theory from topological terms by consider-
ing a  divergent  coupling  constant  is  indeed  very  appeal-

FF̃

ing  since  its  range  of  applicability  extends  far  beyond
gravitational contexts.  For  instance,  it  might  serve to  in-
troduce  parity-violating  effects  in  Yang-Mills  theories
through the corresponding  terms that are topological
in  four  dimensions.  Indeed,  a  similar  idea has  been seen
to  lead  to  well-defined  theories  in  the  context  of  Weyl
geometry [27-29].  It  could thus be interesting to explore
various possibilities in this direction.
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