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Abstract: Thermodynamics plays an important role in gravitational theories. It is a principle that is independent of
gravitational dynamics, and there is still no rigorous proof to show that it is consistent with the dynamical principle.
We consider a self-gravitating perfect fluid system with the general diffeomorphism-covariant purely gravitational
theory. Based on the Noether charge method proposed by Iyer and Wald, considering static off/on-shell variational
configurations, which satisfy the gravitational constraint equation, we rigorously prove that the extrema of the total
entropy of a perfect fluid inside a compact region for a fixed total particle number demands that the static configura-
tion is an on-shell solution after we introduce some appropriate boundary conditions, i.e., it also satisfies the spatial
gravitational equations. This means that the entropy principle of the fluid stores the same information as the gravita-
tional equation in a static configuration. Our proof is universal and holds for any diffeomorphism-covariant purely
gravitational theories, such as Einstein gravity, f(R) gravity, Lovelock gravity, f{Gauss-Bonnet) gravity and Ein-
stein-Weyl gravity. Our result indicates the consistency between ordinary thermodynamics and gravitational dynam-
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I. INTRODUCTION

Black holes became important and fundamental ob-
jects in gravitational theories after the proposal of gener-
al relativity. In the past few decades, many studies on
general relativity have implied that black holes can be re-
garded as thermodynamical systems. The four laws of
black hole mechanics in general relativity have been con-
structed in Refs. [1-3]. The discovery of Hawking radi-
ation provided a natural interpretation of the laws of
black hole mechanics as ordinary laws of thermodynam-
ics [4-6]. Since then, black hole thermodynamics has at-
tracted considerable attention, and researchers believe
that they can provide us with a deeper understanding of
gravitational theories.

It is generally believed that the gravitational equation
is the basic equation of nature. Therefore, traditionally,
people always study how to construct the laws of thermo-
dynamics based on gravitational dynamics. For instance,
Wald generally derived the first law of black hole ther-
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modynamics for the general diffeomorphism-covariant
gravitational theory based on the Noether charge method
[7, 8], and Wall also discussed the second law for gener-
al higher curvature gravity [9]. However, some people
believe that the thermodynamical relations are the more
fundamental assumption, and that the gravitational equa-
tions should be derived from thermodynamics. From this
point of view, Jacobson considered that the gravitational
equations are the equations of state, and the Einstein
equation can be derived from the first thermodynamic
law on the local Rindler horizons [10]. This idea has been
accepted by an increasing number of people in the past
few years [11-13]. All these discussions show the consist-
ency between gravitational thermodynamics and gravita-
tional dynamics.

In spacetime without an event horizon, there also ex-
ists some matter field, such as a self-gravitating perfect
fluid, which satisfies the ordinary thermodynamical laws.
In contrast to black hole thermodynamics, the local ther-
modynamical quantities of this fluid, such as entropy
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density s, energy density p, and local temperature 7, are
well defined. From the viewpoint of gravitational dynam-
ics, the on-shell static distribution of these local quantit-
ies for perfect fluids can be determined by the gravita-
tional equations. Moreover, from the viewpoint of ther-
modynamics, as a static self-gravitating fluid can be re-
garded as a thermodynamical system, the on-shell distri-
bution can also be obtained with the extrema of the total
entropy of the perfect fluid in the off/on-shell static vari-
ation. In general, thermodynamics of a fluid in spacetime
and gravitational dynamics are two independent prin-
ciples. However, if we believe that both of them are reli-
able, they should give the same distribution of the fluid.
Therefore, Cocke proposed the entropy principle for a
self-gravitating fluid. It states that under a few natural
conditions, the extrema of total entropy of a perfect fluid
are equivalent to the Einstein equation of a static self-
gravitating fluid system [14]. For the spherical radiation
system, Sorkin, Wald, and Zhang have shown that the
Tolman-Oppenheimer-Volkoff equation can be derived
from the Einstein constraint equation (time-time compon-
ent of the gravitational equations) with the extrema of the
total entropy of a perfect fluid inside a compact region
[15]. Gao extended their work to an arbitrary perfect flu-
id in a static spherical geometry [16], for which they only
used some thermodynamical relations. After that, this
principle has been widely studied by researchers [17-22].
Their results show consistency between ordinary thermo-
dynamics of fluids and gravitational dynamics.

Most recently, the entropy principle was generally
proved in static spacetime without spherical symmetry for
Einstein-Maxwell gravity [23, 24], Lovelock gravity [25],
and f(R) gravity [26]. Although all of them showed the
validity of the entropy principle, there is still a lack of a
general proof to show that it is valid for all gravitational
theories. When string effects or quantum corrections are
taken into account, the effective gravitational action
should be corrected by the powers of the curvature tensor
and its derivatives, and the Einstein-Hilbert action is just
the first term of the effective action [27-32]. Moreover,
there are some studies in literature in which the Einstein
gravity was modified by introducing higher-curvature
corrections, such as the f(R) term and f(Gauss-Bonnet)
term, to deal with problems in cosmology and astrophys-
ics [33-35]. Thus, it is natural for us to ask whether the
entropy principle is satisfied in these modified gravita-
tional theories. We can see that all of these modified the-
ories can be described by a diffeomorphism-invariant ac-
tion. Therefore, in the following, we would like to prove
the equivalence of the extrema of the total entropy of a
perfect fluid inside a compact region in the off/on-shell
static configurations and the gravitational equations for a
general diffeomorphism-covariant purely gravitational
theory in which the Lagrangian is constructed by a met-
ric and its derivatives only. To prove equivalence, we

first present a theorem related to the entropy principle:

Theorem: Consider a variation related to a one-para-
meter family of the off/on-shell static configurations
which satisfy the gravitational constraint equation (the
off-shell configuration does not obey the spatial gravita-
tional equation) in n-dimensional spacetime for a general
diffeomorphism-covariant purely gravitational theory
coupled to a self-gravitating perfect fluid. Denote the
(n—1)-dimensional hypersurface £ to be a moment for
static observers. Choose C to be a compact region inside
the hypersurface ¥ with boundary dC. Assume that the
fluid velocity coincides with the static Killing vector and
that the local temperature 7" of the fluid obeys Tolman's
law. After introducing the appropriate boundary condi-
tions, which keep the quasi-local conserved charge of the
static Killing vector inside C fixed, the extrema of the
total entropy of the perfect fluid inside C for a fixed total
particle number in this off/on-shell variation demand that
the static configuration is an on-shell solution (i.e., it also
satisfies the spatial gravitational equations).

Our paper is organized as follows. In Sec. I, we dis-
cuss dynamical and thermodynamical features of the
off/on-shell static configuration for a general diffeo-
morphism-covariant gravitational theory. In Sec. III, we
prove the Theorem of the entropy principle based on the
Noether charge method proposed by Iyer and Wald [8].
Finally, the conclusions are presented in Sec. I'V.

II. STATIC CONFIGURATION OF A SELF-GRAV-
ITATING PERFECT FLUID

In this section, we start by discussing the properties of
the static configuration in a general n-dimensional diffeo-
morphism-covariant purely gravitational theory sourced
by a self-gravitating perfect fluid. As mentioned above,
we consider a static configuration in n-dimensional
spacetime. In this situation, there exists a static Killing
vector field &4 satisfying Lega» = V(uép) = 0. The integral
curves of & are the worldlines of static observers in
spacetime. The velocity vector field is given by
u® = y~'€%, in which y = V=&, is the red-shift factor for
the static observers and u* is also the normal vector to X.
The induced metric ~%® in X is given by

heb = gtb 4\ 2gagh (1)
The Lagrangian n-form in this theory is given by
L = Lgay + Liia 2
in which L, and Ly, are the gravitational part and flu-
id part of the Lagrangian, respectively. The gravitational

part of the Lagrangian is a function of the metric g4,
Riemann tensor Ry, and its higher-order derivative
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Vg, -+ Vo Rpeqe - Using the relationship

i=k
2V[avh]Tc.~-~ck = ZRabc,chl-"d-"q (3)

i=1

to exchange the indices of the derivative operators, it is
not hard to verify that the Lagrangian L canbe reex-
pressed as

Lgrav = 6-Egrav (8absRicdes " V(a, s 'Vuk)Rhcde’ ), (4)

This is exactly the expression of the Lagrangian con-
sidered in [8] for the general diffeomorphism-covariant
gravitational theory. In our discussion, we use boldface
symbols to denote the differential forms in spacetime.
The gravitational equations are given by variations of the
Lagrangian and we can express them by [§]

Eap =Hup—Tup (5)
with
1
Hyy = Agp + PacdeRdee - ZVCVdPacdb - Egab-ﬁgrav (6)
and the stress-energy tensor of the perfect fluid

Tap = pugity + p(gap + taltp) , (7

in which p and p are the energy density and pressure of
the fluid, respectively, and we have denoted

_ aLgrav

abcd _ 6—£grav
agab ’ -

Aap .
¢ 6Rabcd

@®)

The expression of the stress-energy tensor implies that
static observers are also comoving observers of the fluid.
The Theorem of the entropy principle shows that we
need to consider an off/on-shell static configuration
which satisfies the gravitational constraint equation
(time-time component of the equation of motion)
p=Hyu= abuaub . (9)
Therefore, “off-shell ” refers specifically to the off-

shell static configuration which does not obey the spatial
gravitational equations

Phap * Hab = hachdeCd- (10)

In the following, we consider the thermodynamics of

the self-gravitating perfect fluid which satisfies Tolman's
law Ty =T, in a static configuration, where Ty is a con-
stant and can be regarded as the red-shift temperature.
Without loss of generality, we shall set Ty = 1, such that

T=y"'. (11)

The entropy density s is a function of the energy
density p and the particle number density n, i.e.,
s = s(p,n). From the familiar first law for region C, one
can derive the local first law and the Gibbs-Duhem rela-
tion of the fluid [16],

do =Tds+udn,
p=Ts—p+un, (12)

where u is the chemical potential corresponding to the
particle number density n. From the local first law, we
can see that the entropy of a perfect fluid can be treated
as a function of the energy density p and particle number
density n, i.e., s = s(p,n). The conservation law V,7% =0
for a perfect fluid results in

dp+x~'(p+p)dy =0. (13)

Together with the local first law and the Gibbs-Duhem
relation in Eq. (12), we can further obtain the result that

My = constant. (14)

III. NOETHER CHARGE METHOD AND PROOF
OF THE ENTROPY PRINCIPLE

In this section, we would like to prove the entropy
principle based on the Neother charge method proposed
by Iyer and Wald [8]. We consider a one-family ¢(2) of
the off/on-shell static field configurations, as described in
the previous section, in which we denote ¢(1) to metric
gar(1) and the shelf-gravitating perfect fluid with
p(), p(1). That is to say, ¢(1) satisfies the thermodynam-
ical properties of the fluid, as described in the previous
section, as well as the gravitational constraint equation

Hy (D) = p(). (15)

For the off-shell configuration ¢(2), the spatial gravita-
tional equations are not satisfied, i.e.,

Hap(A) # p(Dhap(A). (16)

In the following, we will define the notations
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_ %

= Al (17)

x =x(0), ox

to denote the background quantity and its variation in the
family ¢(1). Considering the diffeomorphism covariance
of the theory, we can choose a gauge to fix the static
Killing vector £*(1) under the variation in the static con-
figuration ¢(2), i.e., 6¢*=0. For each static configura-
tion ¢(1), we have

g (1) = (V)2 + hP (). (18)
Then, we have
6g" = 23Sy E°EP + 5h (19)

In this family, the variation of the gravitational part of
the Lagrangian gives

6Lgrav = Eizavégab +dO= (g’ 68) > (20)

in which

1
SeHa, @n

B =
denotes the gravitational part of the equation of motion,
and @f*(g,0g) is the symplectic potential. After com-
pleting all indices, Eq. (21) is expressed as
(Eizav)arna,, = fal---a”Hab-

For any vector field ¢“, we can define the Noether

current (n— 1)-form as
J§rav — GgraV(g’ng) — g Lgrav . (22)
It has been shown in [8] that it can be expressed as

J?I‘a\/ — Cfrav +dQ§rav , (23)

in which C3"™" = £-C#*" with

grav _ b
Caaa,, = €ba,a, Ha (24)

is the constraint of the gravitational theory and Q" is a
Neother charge (n —2)-form of the vector field %,
Using the two expressions (22) and (23) of the Noeth-

er current, we have

SCE™ 1 £ EE™ 5g =d[ - 0% (,59) - 505 |
+ " (g,08,L8) (25)

where

W (g,018,028) = 610%™ (g,628) — 6,05 (g,612)
26)
is the symplectic current (n — 1)-form.
After replacing ¢* by ¢&* and noting that the configur-
ation is static, such that Lgg,, =0, we have

w(g,08,L:8) =0. Then, integration of Eq. (25) with re-
spect to C yields

Lécgrav+fC§_E§zaV6gab

- [ Je-0e(e.d0) a0z %)

For the first term in Eq. (27), using Egs. (24) and (15), we
have

[ = [[owett=- [ suen. @9
C C C

where we have denoted &) as the volume element of X
in the static configuration ¢(12). Substituting Eq. (19) into
the second term in Eq. (27), we have

v 1
fc §-Ey 08" = fc EHLuox + 5 fc XEHp0h "

1
= f EpSx + = f YE&H ., 6h . (29)
c 2Je

Combining the above results, we can further obtain

1 5 a 5
5 f X&H 5h — f X5(ép)
C C

= f |¢- 05 (g,59) - 6Q5™]. (30)
ac

For the off-shell configuration ¢ = ¢(0), the first term of
the left side in Eq. (30) is not equal to phy.

Next, we would like to evaluate the variation in the
total entropy of a perfect fluid inside C when the total
particle number is fixed. The total entropy of a perfect
fluid is given by

Szjéés(p,n). 31)

The variation of the total entropy yields

os = [
c

SOE + §6p+ a—Sén é|. (32)
dp on
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From the local first law ds = ydp — yudn, we have

Os Os
X T (33)
Then, Eq. (32) becomes
oS =f[s6€+/\/(6p—;16n)€]. (34)
c

From the assumption that the total number of particles
NQ) = f EDn(A) (35)
c

are fixed inside C, we have

fc noE = — fc &n. (36)

Together with the fact that uy = constant, Eq. (34) re-
duces to

oS = [(s + yun)o€é + E)((Sp]

[X(5 (&)= exphabéh“b ]

h%h

Xy phaoi® + [ (007" -0 (5.09)].
67)

In the second step, we used the Gibbs-Duhem relation in
Eq. (12) and 6& = —(1/2)&h,,6h . In the last step, we used
the variational identity in Eq. (30). The second part of the
righthand side of Eq. (37) is only a boundary quantity for
dC. Indeed, this boundary term corresponds to the vari-
ations in the quasi-local conserved charge corresponding
to the static Killing vector ¢ in the enclosed region C,
which is defined as

0©= [ [a0r" ¢ f QO (g, ()], (38)

with

AQE™ = Q™ (g()) - Q5™ (g(A0)). (39)

in which ¢(1g) of the one-parameter family ¢(1) is a va-
cuum solution in the diffeomorphism-covariant purely
gravitational theory [36]. Then, neglecting this term
amounts to the variations in the quasi-local conserved
charge vanishing, i.e.,

50 = [ 002" -0 gdw] 0. (40)

For the Einstein gravity in the static spherically symmet-
ric spacetime [16] with the line element

2m(r)\ !

ds? = g, dr* + (1 - ) dr? +r2dQ?. (41)

r

Let C be in the compact region r < R. With a straight-
forward calculation, §Q(¢) = 0 implies that the total mass
M = m(R) within R is fixed at the boundary r=R. The
boundary condition for fixing the quasi-local conserved
charge Q(¢) is dependent on the explicit theories con-
sidered. For instance, in Einstein gravity or Lovelock
gravity, the induced metric and its derivative at the
boundary dC need to be fixed [16, 25]; in f(R) gravity,
we need to fix the induced metric as well as the scalar
curvature R and its derivative at the boundary dC [26].

For a usual thermodynamic system, the entropy prin-
ciple is satisfied when the system is isolated. However,
for self-gravitating cases, the phrase “isolated system
becomes more ambiguous as the gravitational theory is
diffeomorphism invariant. For a quasi-local system, i.e.,
C is a finite compact region, and the boundary condition
of the isolated system should be quasi-locally imposed.
By analogy to the usual cases, we should impose a
boundary condition such that the variation inside the
compact region C does not affect the dynamics outside C,
i.e., the variation in spacetime will not affect the on-shell
solution without the fluid outside region C. That is to say,
for any element of the one-parameter, their geometries
outside C only differ by a diffeomorphism. Under the
above condition, using the on-shell variational identity
(25) outside C, it is easy to determine

506 = [ (505" ~¢- 0" .09

- [ oo -eomwsa]. @)

where “co” denotes a (n—2)-sphere at asymptotical infin-
ity. If the spacetime is asymptotically flat, Q(£) can be re-
garded as the mass M of spacetime. As we assume that
the variation inside the isolated region will not affect the
on-shell geometry outside, it is natural to impose a condi-
tion such that the total mass of the spacetime is fixed un-
der the variation, i.e., we have §Q(¢)=0. Then, the
second part of the righthand side of Eq. (37) vanishes and
we have

1 N
65 =3 f &x(Buy — phap)SH® 43)
C
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From the above result, we show that for the off-shell stat-
ic configuration H,;, # phyy, the variation in the total en-
tropy is nonvanishing. In other words, the extrema of the
total entropy of a perfect fluid inside an isolated region C
for a fixed total particle number demand that the static
configuration is an on-shell solution. This completes the
proof of the Theorem of the entropy principle.

IV. CONCLUSION

Our proof shows the equivalence of the extrema of
the total entropy of a perfect fluid in the off/on-shell stat-
ic configurations inside a compact region C and the dy-
namical equations of a static self-gravitating perfect fluid
for a general diffeomorphism-covariant gravitational the-
ory, although they are derived from two different and in-
dependent principles. The result is universal and suitable

for any diffeomorphism-covariant purely gravitational
theories only imposing the static condition of spacetime.
Our work provides strong evidence to show that as two
independent basic principles, ordinary thermodynamics
and dynamics in gravitational theories are consistent.

It is worth noting that our result is only valid for
purely gravitational theories minimally coupled to the
self-gravitating perfect fluid. Is it still possible to extend
the entropy principle to some more general diffeomorph-
ism-covariant theories, for example, when there are non-
minimal coupling interactions between matter and grav-
ity. For these cases, we first need to derive the concrete
expressions of the Neother charge O and constraint C;,
and discuss the interactions between the self-gravitating
fluid and these non-minimally coupling matters. This is
an interesting question and needs careful investigation in
the future.
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