Chinese Physics C  Vol. 45, No. 4 (2021) 043104

Bubble dynamics in a strong first-order quark-hadron transition®
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Abstract: We investigate the dynamics of a strong first-order quark-hadron transition driven by cubic interactions

via homogeneous bubble nucleation in the Friedberg-Lee model. The one-loop effective thermodynamic potential of

the model and the critical bubble profiles have been calculated at different temperatures and chemical potentials. By

taking the temperature and the chemical potential as variables, the evolutions of the surface tension, the typical radi-

us of the critical bubble, and the shift in the coarse-grained free energy in the presence of a nucleation bubble are ob-
tained, and the limit on the reliability of the thin-wall approximation is also addressed accordingly. Our results are
compared to those obtained for a weak first-order quark-hadron phase transition; in particular, the spinodal decom-

position is relevant.
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I. INTRODUCTION

At sufficiently high temperatures and densities, one
expects that normal nuclear matter undergoes a phase
transition to quark-gluon plasma (QGP), wherein quarks
and gluons become deconfined and essentially chiral.
This is a topic of great interest related to the physics of
heavy-ion collisions at ultrarelativistic energies as well as
to the astrophysics of neutron stars [1-3]. Quantum chro-
modynamics (QCD), as a theory of strong interactions, is
applicable for determining the properties of strongly in-
teracting matter at high temperatures and densities.
However, because of the phenomenon of asymptotic free-
dom, the nature of the quark-hadron phase transition re-
mains an open question, especially when quark chemical
potentials are involved in the practical calculations [2].
Therefore, we still lack the capabilities to describe the
low-energy nonperturbative phenomena in the frame-
work of QCD theory and have to resort to effective mod-
els to study the nontrivial structure of the QCD vacuum,
such as the Nambu-Jona-Lasinio (NJL) model [4-9], the
linear sigma model (LSM) [10], or their modernized ver-
sions, i.e., the Polyakov Nambu-Jona-Lasinio model (PN-
JL)[11]and the Polyakov Quark Meson Model (PQM)[12].

The nature of the QCD phase diagram in the temper-
ature and chemical potential plane was intensively stud-
ied in past decades. Most effective models usually pre-

dict a smooth crossover transition at low chemical poten-
tial and non-zero temperature, while at high density and
low temperature, there is a first-order phase transition for
QCD phase transitions. At the endpoint of the first-order
phase boundary, there should exist a so-called QCD crit-
ical endpoint (CEP) [13]. Finding and identifying the
CEP in experiments is the main goal of the beam energy
scan (BES) program at the Relativistic Heavy-lon Col-
lider (RHIC) [14] and Super-Proton Synchrotron (SPS)
facilities [15]. On the theoretical side, a recent study
based on chiral effective models showed that a vast part
of the QCD phase diagram is a crossover if the quark and
meson fluctuations are included via the functional renor-
malization group [16]. However, the possibility of a first-
order phase transition at large baryon chemical potentials
is not ruled out from both experimental and theoretical
points of view. In reality, most descriptions of the equa-
tion of state (EoS) of neutron stars with a quark core are
undertaken via a hybrid equation of state with a hadron
phase connected to a quark phase through a first-order
phase transition [17-19]. Moreover, the properties of hy-
brid stars with a strong first-order phase transition and
their relevance to gravitational wave observations will en-
able the probing of the EoS for matter under extreme cir-
cumstances [20, 21]. Besides the quark-hadron phase
transition, the first-order phase transition would also play
important roles in the evolution history of the early uni-
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verse, such as its possible roles in electroweak baryogen-
esis and dark matter [22, 23]. Recently, a strong first-or-
der phase transition was also considered as a potential
source of gravitational waves (GWs) that could be meas-
ured by future detectors [24, 25]. Specifically, the ap-
proved Laser Interferometer Space Antenna (LISA)
project assigns great importance to the direct detection of
the electroweak phase transition through the companion
GW signals [26].

In a first-order phase transition, the initial metastable
(or false) vacuum decays to the stable vacuum through
the nucleation of bubbles larger than a critical size. The
nucleation rate of critical bubbles can be calculated from
the microphysics using semiclassical methods in the Euc-
lidean thermal field theory [27-31]. Within this frame-
work, an effective thermodynamic potential in the form
of'a Landau function with cubic interaction is an import-
ant and useful theoretical tool [1]. According to the
mean-field theory of phase transitions, the free energy
density of the system can be expanded in terms of the
parameter near the critical point, and we can perform a
general analysis without going into much detail about the
underlying dynamics [32]. Therefore, at least in the
mean-field approximation, the thermodynamical poten-
tial of the effective models can be parameterized in the
form of a Landau expansion around the equilibrium phase
with all terms up to the quartic term in the region of the
first-order phase transition. This scenario was adopted to
describe the dynamical mechanism of bubble nucleation
in a strong first-order cosmological electroweak phase
transition [33] and in a weak first-order quark-hadron
phase transition [34, 35]. The benefit of this type of para-
meterization is that it simplifies the effective potential to
facilitate the solution of the equation of motion of the
critical bubble profile with both numerical and analytical
methods.

For a weak first-order quark-hadron phase transition,
when the temperature is slightly less than the critical tem-
perature T., the thermodynamic potential exhibits a local
minimum aside from the global minimum. As the temper-
ature decreases to some specific value T, the local min-
imum gradually disappears and ends at a point of inflec-
tion known as spinodal instability. Hence, the effective
potential has no potential barrier for 7' < T, and the shift
in the coarse-grained free energy due to the appearance of
the critical bubble monotonously decreases with the de-
crease of temperature and should eventually become zero
at some specific temperature, as shown in Refs. [34, 35].
The weak first-order quark-hadron phase transition was
intensively investigated in the framework of the linear
sigma model coupled to quarks [20, 34, 36, 37] and the
hybrid model, by combining the EoS obtained within lat-
tice QCD for the quark phase with that of gas correspond-
ing to resonances in the hadron phase [35]. Thus, in this
study, a strong first-order quark-hadron phase transition

induced by an effective potential with a zero-temperature
potential barrier was considered; the Friedberg-Lee (FL)
model [38-40] fulfils the requirement.

The FL model was originally developed to describe
the static properties of isolated hadrons and their behavi-
ors at low energy. By taking the hadrons as the baglike
soliton solutions in vacuum, the model provides a very
intuitive physical explanation of the confinement in QCD
theory. Recently, the model was also extended to finite
temperatures and densities to study the deconfinement
phase transition in Refs. [41-45]. Note that the FL model
and its descendant model with chiral symmetry [46] can
only predict a first-order phase transition in the phase dia-
gram. This evidently disagrees with most predictions
demonstrated in effective models and lattice QCD data
[1-3]. The solution to this problem is to introduce the
Polyakov loop in the models. The results in Ref. [47]
show that the PQM model indeed gives a prediction of a
crossover in the low-density region and a weakly first-or-
der phase transition in the high-density region. However,
most of these previous studies focused on the thermody-
namic effective potential, the properties of isolated had-
rons in thermal medium, and the phase diagram, while
our current study focused on the dynamics of a strong
first-order phase transition via bubble nucleation.
Nowadays, the strong first-order phase transition is in-
creasingly gaining attention both in the astrophysics of
neutron stars and the cosmological phase transitions in
the early universe, especially when GWs are relevant. Al-
though the quantitative results in this study are model-de-
pendent, the general and qualitative results presented can
also be applied to study the bubble dynamics of the first-
order phase transitions in various fields driven by cubic
interaction, especially beyond the limit on the thin-wall
approximation.

The paper is organized as follows. In the following
section we briefly describe the Friedberg-Lee model and
its effective potential at finite temperatures and densities.
In Sec. III, we comprehensively describe the homogen-
eous nucleation and methods used for both numerical and
analytic computations of the critical bubble profiles. Our
results and discussions are presented in Sec. IV, while in
the last section we conclude with a summary.

II. MODEL FORMULATION

We start with the Lagrangian of the Friedberg-Lee
model for a phenomenological scalar field o interacting

with spin- % quark fields y of the form [38-40],
L=y(id-go + %@,0‘6”0’ - U(o), (1)

where the potential, which exhibits a typically first-order
phase transition, is parameterized in the form of a Land-
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au expansion with all the terms up to the quartic term, ex-
pressed as

1, 1,41,
U(o) = an- + 51)0’ + ECO‘ . 2)
The model parameters a, b, and ¢ are chosen such that
b* > 3ac to ensure a local minimum of U(o) at o =0 and
a global minimum at a relatively larger value of the o
field

_ 3)p| 8ac |’
o=, 1+[1 - } 3)

Usually, the global minimum at o = ¢, is interpreted
as the physical or true vacuum, whereas the local minim-
um at o =0 represents a metastable vacuum where the
condensate vanishes and quarks have zero rest mass. The
difference in the potential values of the two vacuum
states is defined as the quantity &. For convenience, in the
following discussions, we assume U(0)=0. Therefore,
we have

b
e Nty “)

A wide range of model parameters a, b, ¢, and g were
adopted in Refs. [42, 43, 48] to confront the basic proper-
ties of nucleons in vacuum. However, for the problem
discussed here, different sets of values show similar phys-
ical results. Therefore, we consider one set of parameters,
a=1770fm™%, b=-14574fm™", ¢=20000, and
g =12.16, widely used in previous studies.

A convenient framework for studying phase trans-
itions is thermal field theory. Within this framework, the
finite temperature effective potential is an important and
useful theoretical tool. Keeping only contributions to one-
loop order, the effective potential of the Friedberg-Lee
model can be computed exactly in closed form following
the steps presented in Ref. [49]

Verr(os T, ) = U(0) + V(o T) + V(o T, ), Q)

where Vg(o;T) is the finite temperature contribution from
the boson loop, and Vg(o;T,u) is the finite temperature
and density contribution from the fermion loop [44, 49].
These terms in turn contribute the following terms in the
effective potential

Vg(o3T)=T f &7 In(1-e5/T) (6)
’ (2n)3 ’
d317 —(E,~p)/T
Vie(o;B,1) == 2NN, T [in(1+e"ET)

@)

+ ln(l +e’(E(/+")/T)], ™

in which N;=2 and N.=3. E,=+p*+m} and
E, = \/P?>+m} are energies for the o mesons and quarks

in which the constituent quark (antiquark) mass m, is
defined as m, = go, while the effective mass of scalar

. c
meson field is set by m2 =a+bo+~c?. To ensure that

mg 18 positive, in this study we fix it to the vacuum value.
The one-loop effective potential at different temperat-
ures in the absence of the chemical potential is plotted in
Fig. 1. The shape of the potential shows that a first-order
phase transition takes place as it exhibits two degenerate
minima at a certain temperature 7, ~ 119.8 MeV, which
is usually defined as the critical temperature. Normally,
apart from this critical temperature, there exists another
particular temperature that occurs when one of the min-
ima of the potential disappears as the temperature in-
creases. Between these two particular temperatures, meta-
stable states exist and lie close to o, and the system can
exhibit supercooling or superheating. With temperature
decreasing across the critical one, the metastable and
physical vacua will become flipped, and the metastable
states become centered around the origin o~ = 0. Then, the
difference between the effective potential at the meta-
stable vacuum state and the physical vacuum state is

&(T) = Ver(0:T) = Veri (03 T). (®)

It is easy to check that the quantity & will decrease with
the increase of temperature, and when 7 =T, the two
vacua are equal, and ¢ is zero.

When the temperature is fixed at 7 =50 MeV, the
resulting one-loop effective potential Vg as a function of
o at various chemical potentials u=0 MeV, u=150
MeV, and p =256.4 MeV is depicted in Fig. 2. Accord-
ing to this figure, the shapes of the potentials show simil-
ar behaviors as in Fig. 1. For u=256.4 MeV, the values

0.4

03r —T=0 MeV 1=0 MeV 1
- - --T=80 MeV /

0.2F ---- T=119.8 MeV/| i

Veff(fm-4)

0305 000 005 010 015 020 025
o(fm™)

Fig. 1.  (color online) One-loop effective potential Vs as a
function of o at T=0 MeV, T =80 MeV and T =119.8 MeV
when fixing the chemical potential x at 0 MeV. According to
our choice of parameters, the two minima appear as degener-
ate at T. ~ 119.8 MeV, which is usually defined as the critical
temperature.
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Fig. 2.  (color online) One-loop effective potential V.4 as a
function of o at u=0 MeV, u =150 MeV, and u =256.4 MeV
when fixing the temperature 7 at 50 MeV. According to our
choice of parameters, the critical chemical potential is set at
He = 256.4 MeV when the two minima are equal.

of the effective potentials at the two vacua are equal. At
this moment, the chemical potential is defined as the crit-
ical chemical potential u. =256.4 MeV. With the de-
crease of the chemical potential from g, the global min-
imum of the potential moves from the position at o =0 to
that at o,. The difference between the values of the ef-
fective potential at the false vacuum and at the physical
vacuum as usual is defined as

(T, 1) = Verr(0; T, 1) = Ver (o T, ). €]
This quantity will also decrease to zero as the chemical
potential increases up to its critical value.

III. HOMOGENEOUS THERMAL NUCLEATION

For the first-order phase transition, when the temper-
ature or chemical potential approximately reaches its crit-
ical value, the effective potential exhibits degenerate min-
ima that are separated by a barrier. As the temperature or
chemical potential is lowered, the local minimum at
o =0 becomes the false vacuum, while the global minim-
um of the effective potential at o~ o, is taken as the
stable or physical vacuum. The false vacuum would be
stable classically, but quantum mechanically it is only a
metastable state and can decay via the nucleation of
bubbles larger than a critical size. Technically, this decay
may be triggered by either quantum or thermal fluctu-
ations, depending on what type of physics we are inter-
ested in. In this study, we were mostly concerned with the
regime in which thermal fluctuations are much larger
than quantum fluctuations.

The dynamics of a first-order phase transition can be
described by the mechanism of bubble nucleation of the
stable vacuum inside the false vacuum, which is believed
to be a natural consequence of the thermal and quantum
fluctuations of any thermodynamic systems closely inter-

related with a first-order phase transition. For 7 < T, or
1 < p., bubbles of the stable vacua created by thermal
fluctuations may grow or shrink inside the false vacuum
depending on its energy budget with regard to a homo-
geneous false vacuum. Given that the bulk free energy
density of the false vacuum is higher than that of the
stable vacuum, the phase conversion from the false vacu-
um to the stable vacuum decreases the bulk free energy of
the whole system. However, the appearance of a spheric-
al bubble means there is an interface that is needed to
separate the stable vacuum from the exterior of the false
vacuum. The creation of such an interface represents an
energy cost. Therefore, the mechanism of phase conver-
sion from the metastable phase to the stable phase pro-
ceeds by a competition between the free energy gain from
the phase transition of the bulk and the energy cost from
the formation of an interface. Note that the free energy
shift due to the appearance of a spherical bubble of stable
vacuum is proportional to —R*, where R is the bubble ra-
dius, and the surface tension of the interface between two
phases is proportional to +R?. For the nucleation of small
bubbles, the energy cost is higher than the energy gain,
and small bubbles tend to shrink. By contrast, a bubble
with a sufficiently large radius represents a large bulk en-
ergy gain. The energy gain in the system exceeds the sur-
face energy cost of creating the bubble. Consequently,
these large bubbles tend to expand even further and to co-
alesce completely, completing the phase conversion.
Therefore, only bubbles of a very large radius play a de-
cisive role in the theory of dynamics of a first-order phase
transition.

In the theory of bubble nucleation, a scalar field o is
treated as the order parameter and a coarse-grained free
energy functional of the system is defined as

F(o) = f dr3[%(Va')2+Veff(a';T,,u) . (10)

The critical bubble configuration is an extremum of
the coarse-grained free energy functional F(o) with re-
spect to the scalar field o-; thus, the equation of motion to
be solved now becomes a nonlinear ordinary differential
equation,

d’o(r) 2do(r) OVeg(o;T,u)
- = 11
a2 7 ar oo ’ (i
with boundary conditions 11m o(r)=0 an @ =0.

The first boundary condltlon 1s because the bubbles are
embedded in the homogeneous false vacuum, outside the
bubble, and the o field should arrive at its false vacuum
at o ~0, while the second boundary condition is set by
the requirement of no singularity of the solution at the
origin. The solution for this equation of motion with the
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above proper boundary conditions is a saddle point solu-
tion op.

Once the solution o, is found, the shift in the coarse-
grained free energy due to the formation of a nucleation
bubble can be calculated as

1(dop\
AFb=47rfr2dr[ (%) +Ver(op; T, 1) |- (12)
r

2

Note that here, and subseqeuntyl, Veg(0;T,u) is well nor-
malized to be zero for simplicity. The nucleation rate per
unit volume is expressed as [30, 31]

r:pexp[—%], (13)

where the pre-exponential factor # corresponds to the
probability for a critical bubble-like field fluctuation o
to be generated and grow. Evaluation of the pre-exponen-
tial factor is a nontrivial matter. A rough estimate of their
ratio can be obtained by dimensional arguments and we
could approximate P by T* for simplicity [34]. The sur-
face tension of the nucleation bubble interface between
the false and stable vacua is then defined as

1 {dop )
Ezfdr =2 + Ve (op: T, 1)
2\ dr

For a generic effective potential Vg, the equation of
motion (11) with some certain boundary conditions usu-
ally cannot be solved analytically. However, when the
system is very close to the critical coexistence line, e.g.,
T ~T. or u~puc,the problem can be essentially simpli-
fied. In such a situation, the quantity & is much smaller
than the height of the barrier separating these two vacua
because of the competition between the free energy gain
and the surface energy cost. In addition, the typical radi-
us of the bubbles becomes much greater than the wall
thickness, and the second term in the equation of motion
(11) can be neglected. Then, the so-called thin-wall ap-
proximation is applicable and the equation of motion (11)
reduces to the equation for a typical one-dimensional
solution:

. (14)

do(r)  dVeg

dr2  do (15)
This static field equation implies that
o0 _, o, (16)

dr

Integrating Eq. (16) yields

» do
= . 17
g j: V2Vesr an

In the case of an arbitrary potential Vg with two or
more degenerate global minima as in the limit € — 0, the
profile of the critical bubble can be estimated as follows.
For a smoothly varying potential Vg, the integral on the
right-hand side diverges as o(r) approaches any of the
global minima. Hence, as » ranges from 0 to oo, o(r)
must vary monotonically from one global minimum of
Veg at o = o, to an adjacent global minimum at o =0. In
this case, the approximate solution for the bubble with the
critical size is given by

oy 0<r<R-AR,
o(r)=4 owai(r) R—AR<r<R+AR, (18)
0 r>R+AR,

which indicates that the stable vacuum inside the bubble
is separated from the metastable one outside by the
bubble wall oy (r), solved from Eq. (17). Moreover, in
the thin-wall approximation, given that there exists an en-
ergy competition between the free energy gain and the
surface energy cost, the free energy F(R), relative to the
false vacuum background, of a bubble with radius R
could be expressed as [31, 50]

4
F(R) = 4nR*T - §7rR3s. (19)

Here, the first term is the contribution from the bubble
wall with a surface tension X, while the second is from
the true vacuum interior. The typical radius R, of the
bubble is determined by minimization of the free energy
F(R) with respect to R, which in turn requires that

dF
0= =87RI - 4nR%e. (20)
This is solved by
2%
R.===. 1)
E

As described in previous discussion, only bubbles that
have a size equal to or larger than the typical radius R,
are energetically favorable and would play an important
role in the dynamical seed of the phase conversion.

Finally, note that, in the absence of the quantity &, the
one-dimensional energy or the surface tension of the
bubble is

00 1 d 2 0,
E,W=f dr[-(ﬂ) +Veﬁ]=f do2Ver.  (22)
0 2 dr 0
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From Egs. (17) and (22), a saddle point field configura-
tion o(r) and the surface tension can be directly obtained
by using the effective potential V.g without solving the
equation of motion in Eq. (11), which is usually difficult
to be solved analytically or even numerically. This is the
main advantage of the thin-wall approximation approach.
Given that the thin-wall approximation is so widely adop-
ted in previous studies [34-37, 51-54], we focused on the
exact numerical computations and established limits on
the reliability of the thin-wall approximation.

IV. RESULTS AND DISCUSSION

Next, we numerically solve the equation of motion in

Eq. (11) with some proper boundary conditions, o — 0 as

do(0 . .
r — oo and © = 0. The exact numerical solutions set-

ting T =0, 70,r109, 118, 119, and 119.8 MeV in the ab-
sence of chemical potential are plotted in the left panel of
Fig. 3. Note that, when the temperature decreases from
T =T., all curves approach zero when the radius r is
large, whereas o(r) at the center of the bubble changes
dramatically. When the temperature is sufficiently close
to the critical temperature at 7. = 119.8 MeV, the o field
at the center of the bubble only slightly deviates from its
stable vacuum value at o =o,. However, for T <109
MeV, the o field at the center of the bubble is visibly dif-
ferent from its stable vacuum value. Such a deviation can
be demonstrated by an "overshoot-undershoot" argument,
proposed by Coleman [27]. According to this idea, the
equation of motion (11) is reinterpreted as the equation
for a particle moving under an "upside-down" potential
energy — Ve, and the o”(r) term is interpreted as a damp-
ing force. The boundary conditions require that the
particle starts at rest at some initial point oy on the true
vacuum side of the potential well, and it rolls down to
rest at its false vacuum o(0). For —V.g(o) < —Ve(0), be-
cause of the damping term, the particle will never have
sufficient energy to reach o, and it undershoots. By con-
trast, if oo differs only infinitesimally from o, the
particle could have nonzero kinetic energy when it
reaches o, it will continue on and never return, and it

0.20
[——T=0 MeVv

1=0 MeV
bfommm N T=70 MeV
R - T=109 MeV
015 \ L [F---T=118MeV (|
\ T=119 MeV
E2 - T=119.8 MeV/|
E 4
= 010f\!
©
0.05F \:
0.00 TN PRI .
0 1 2 3 4 5 6

r(fm)

Fig. 3.

overshoots. The desired o that determines the bounce is
located among these two ranges. In our case, when the
temperature is very close to the critical temperature T,
the damping force will have almost died away, and the
potential has two degenerate vacua. Moreover, the field
o starts at the top of the effective potential —Vg around
o ~o,. However, when the temperature decreases, two
degenerate vacua become decoupled and the damping
force takes effect. Consequently, the field o will in-
creasingly deviate from its vacuum value. In other words,
the thin-wall approximation is expected to be invalid, and
any further extension of the thin-wall approximation to
lower temperature deviation from 7. should be checked
very carefully.

Similar discussion can be applied to the second case,
when the temperature is fixed. The critical bubble pro-
files at different chemical potentials are depicted in the
right panel of Fig. 3, where the chemical potentials are
u=0, 200, 230, 253, 254, and 256.4 MeV for a fixed
temperature 7 =50 MeV. The evolution of the o(r) for
different chemical potentials implies that the typical radi-
us of the critical bubble should increase when the chemic-
al potential increases, and the nontrivial behavior of the
o(r) in the center of the bubble can be interpreted as a
limit to the applicability of the thin-wall approximation.
From the right panel in Fig. 3, given that o(0) reaches its
maximum when u ~ 230 MeV, this specific value is con-
sidered as the lower limit that keeps the thin-wall approx-
imation valid.

Once the bubble profiles have been solved, the sur-
face tension of the nucleation bubble interface between
the false and the stable vacua as a function of the temper-
ature can be obtained, as shown in the left panel of Fig. 4
for zero chemical potential. An interesting behavior is
found: with the increase of the temperature, the surface
tension X(T') starts growing quickly from 7 =60 MeV,
and reaches a maximum X(7)=7.38 MeV/fm> at
T ~109 MeV. This nontrivial behavior of X(T) at
T ~109 MeV can be analyzed by the evolution of the
bubble profile with temperature. According to the left
panel in Fig. 3, as T decreases from its critical temperat-
ure 7., the o(r) field near the center of the bubble gradu-

0.20
[—— u=0 Mev

——————— =200 MeV
\ =230 MeV

0.15F % | L b---u=253Mev |
: : ! =254 MeV

- -u=256.4 MeV/|

T=50 MeV

0101\

o(r) (fm™)

0.05

0.00 L Sa S
0 1 2 3 4 5 6

r(fm)

(color online) (left panel) Critical bubble profiles for different temperatures and zero chemical potential. From left to right, the

curves correspond to 7 =0, 70, 109, 118, 119, and 119.8 MeV. (right panel) Critical bubble profiles for different chemical potentials
when fixing the temperature 7 at 50 MeV. From left to right, the curves correspond to x = 0, 200, 230, 253, 254, and 256.4 MeV.
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2(MeV/fm?)
o - N w £ (4] (] ~ o]

0 20 40 60 8 100 120
T(MeV)
Fig. 4.

£(MeV/fm?)
o =2 N W A OO N 0 ©

50 100 150 200 250 300
u(Mev)

o

(left) Surface tension as a function of temperature 7 for T < T at zero chemical potential. (right) Surface tension as a function

of chemical potential u for u <. when fixing the temperature at 50 MeV.

ally departures from its thin-wall approximate solution o,
in Eq. (18), and when T =109 MeV, the o(r) field
reaches its maximal value before it starts decreasing. This
implies that the turning point of the surface tension could
be treated as a landmark for the breakdown of the thin-
wall approximation. For the second case presented in the
right panel of Fig. 4, Z(u) shows a similar behavior. With
the increase of chemical potential, () increases accord-
ingly until reaching its maximum value, u ~230 MeV.
Then, it drops quickly to small values. The turning point
is also treated as a generous limit to the applicability of
the thin-wall approximation. Note that the non-monoton-
ic behavior of the surface tension in the present study was
also reported for a weak first-order phase transition [35],
in which the evolution of the surface tension first in-
creases to its maximum value and then decreases rapidly
to zero, rather than to a small value. This is the main dif-
ference between the strong first-order phase transition
and the weak ones. The reason is that, for a weak first-or-
der phase transition, as long as the temperature is under a
spinodal temperature Ty, a small barrier between the two
minima in the potential will disappear, and there is only
one minimum left in the effective potential. According to
a standard criterion to guarantee the existence of the
stable bounce, it is indispensable for the potential of the
order parameter fields, e.g., o field in this study, to ex-
hibit three distinct extrema [29, 47, 50, 55]. Con-
sequently, we can only have a trivial solution to the equa-
tion of motion (11) as o(r) =0 if T < T, and the surface
tension should approach zero when T — T.

The typical radius of the critical bubble as a function
of temperature and chemical potential is displayed in Fig.
5. As mentioned above, any bubble smaller than the crit-
ical bubble will shrink and rapidly disappear, and any lar-
ger bubble will grow and drive the phase conversion.
Therefore, bubbles with radii larger than R. will have a
decisive role and can be considered as the dynamical seed
of the first-order phase conversion.

According to Fig. 5, the critical bubble swells with
the increase of temperature and chemical potential. This
behavior is more evident for larger variables, and di-
verges at T =T, and u = .. The divergent behaviors of
R. at T =T, and yu =y, are in agreement with the defini-

tion of the typical radius in Eq. (21). Note also that £ —» 0
as T — T.. For futher numerical analysis, besides the
nontrivial numerical solutions presented in Fig. 3, the
equation of motion in Eq. (11) can always have two trivi-
al solutions: o(r) =0, and o(r) =0. The former trivial
solution is subject to the divergence of the R. when the
system is at its critical point.

The shift in the coarse-grained free energy due to the
activation of a nucleation bubble AF, can be calculated
directly from Eq. (12). In this study, we focused on the
relatively violent behavior of the exponential factor in Eq.
(13), which is an essential ingredient for the nucleation
rate per unit volume I', whereas the pre-exponential
factor P is approximately set to 7*. To show the shift in
the coarse-grained free energy due to the appearance of
the critical bubble and its crucial role in the nucleation
rate for the first-order phase transition, AF,/T is plotted
as a function of the temperature 7 and chemical potential
u in Fig. 6. In the absence of the chemical potential,
AF,/T decreases with the increase of the temperature,
reaching a minimum point. Then, it will grow very
quickly and diverge near the critical temperature 7.. For
T ~114.5 MeV, AF,/T ~ 1, and T will become strongly
suppressed by the exponential factor. Then, the system is
likely to stay in the metastable vacuum for a relatively
long time. By contrast, for 7 < 114.5 MeV, the unstable
vacuum tends to decay very quickly to the true vacuum.
The non-monotonic behavior of AF,/T as a function of
the temperature 7 was also reported in a recent study on
the bounce action for a strong cosmological first-order
phase transition [25]. When fixing the temperature at 50
MeV, the resulting plots of AF},/T as a function of chem-
ical potential u for u <y, are shown in the right panel in
Fig. 6. In this case, when u is approximately 231 MeV,
AFp/T ~ 1, and the system is likely to remain in the meta-
stable vacuum as long as the chemical potential is larger
than 231 MeV.

V. SUMMARY

In the present study, we investigated the dynamics of
a strong first-order phase transition via homogeneous
bubble nucleation within the Friedberg-Lee model at fi-
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(left) Bubble-activation free energy shift AF,/T as a function of temperature 7 for T < T, at zero chemical potential. (right)

Bubble activation free energy shift AF,/T as a function of chemical potential u for u < u. when fixing the temperature at 50 MeV.

nite temperatures and chemical potentials. After obtain-
ing the effective thermodynamical potential, a saddle
point solution of the equation of motion and the exact
bubble profiles were numerically calculated. For zero
chemical potential, the critical temperature 7. was ap-
proximately 119.8 MeV when the two minima of the ef-
fective potential were equal to each other. Alternatively,
when taking the chemical potential as a variable, a critic-
al chemical potential appeared at u ~256.4 MeV; then,
the temperature was fixed at 50 MeV.

The evolution of surface tension in a thermal medium
shows similar behaviors. It first increases to a maximum
value and then decreases with the decrease of temperat-
ure or chemical potential. The maximum value of the sur-
face tension can be considered as a limit on the reliability
of the thin-wall approximation, because the bubble pro-
file at this point represents a large distortion of that of the
thin-wall approximation. Moreover, given that two min-
ima of the classical potential in the Friedberg-Lee model
are separated by a barrier, no matter how small the barri-
er becomes, we can always have a nontrivial bounce solu-
tion for the equation of motion of the bubble profiles.
This implies that, as the temperature or the chemical po-
tential goes to zero, the surface tension X approaches a
small value rather than zero as long as the barrier exists
there. By contrast, for a weak first-order phase transition,
given that the local minimum of the effective potential
will gradually disappear when T = T, there only exits a
trivial bounce solution for the equation of motion, and the
surface tension ¥ should subsequently become zero at

this moment [35]. This is an apparent feature of the zero-
temperature effective potential with and without a barrier.
Furthermore, because of its important role in heavy-ion
collision and in astrophysics, the surface tension has at-
tracted much attention recently. Most effective models
predict £ <30 MeV/fm?, such as the MIT bag model
[56], the quark-meson model [36, 37, 54, 57], NJL mod-
el [58, 59], three-flavor PQM model [52], and the nucle-
on-meson model [53]. Our calculations result in rather
low values. For example, we obtained approximately 7.38
MeV/fm? for zero chemical potential and 7.73 MeV/fm?
when fixing the temperature at 7 =50 MeV for the sys-
tem at its critical point.

Unlike the surface tension, the typical radius of the
critical bubble exhibits a monotonic property with the in-
crease of temperature or chemical potential. In both
cases, R. starts from a small value and then increases
slightly with the increase of the variable. When the sys-
tem is close to its critical point, it sharply grows and dis-
appears. However, for a weak first-order quark-hadron
phase transition, R. — 0 as T — T, because there is only
a trivial bounce solution as 7 < Tp.

The shift in the coarse-grained free energy AF,/T
shows a very interesting behavior when the system
warms up. In particular, when the temperature increases,
AF,/T first decreases to a minimum value and then in-
creases rapidly. As the temperature is close to the critical
temperature 7., it will quickly go across unityl and be-
come divergent. In comparison with previous studies
based on a weak first-order quark-hadron phase trans-
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ition [34, 35], we found that AF},/T as a function of tem-
perature shows a similar behavior when the temperature
is close to the critical temperature 7.. However, when the
temperature departs from 7., our results present a non-
monotonic behavior with the decrease of the temperature,
whereas for a weak first-order phase transition with
spinodal instability, AF,/T will drop monotonically to
zero quickly as T — Tg,. This is another apparent feature

of the zero-temperature effective potential with and
without a barrier. In the end, AF,/T ~ 1 corresponds to
the moment at which the system is likely to stay in the
metastable vacuum for a relatively long time.
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