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Abstract: In this study, we investigate the collapsing scenario for the k-essence emergent Vaidya spacetime in the

context of massive gravity's rainbow. For this study, we consider that the background metric is Vaidya spacetime in

massive gravity's rainbow. We show that the k-essence emergent gravity metric closely resembles the new type of

generalized Vaidya massive gravity metric with the rainbow deformations for null fluid collapse, where we consider
the k-essence scalar field as a function solely of the advanced or the retarded time. The k-essence emergent Vaidya

massive gravity rainbow mass function is also different. This new type k-essence emergent Vaidya massive gravity

rainbow metric satisfies the required energy conditions. The existence of a locally naked central singularity and the

strength and strongness of the singularities for the rainbow deformations of the k-essence emergent Vaidya massive
gravity metric are the interesting outcomes of the present work.
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I. INTRODUCTION

Based on nonlinear or doubly special relativity (DSR)
[1-3], Magueijo et al. [4] were the first to develop rain-
bow gravity. Kimberly et al. [5] discussed the details of
this gravity, which is basically a deformed version of spe-
cial relativity (SR). One of the major characteristics of
this theory is that it was proposed to keep inertial frames
relative. Secondly, Planck energy can have an invariant
scale [4, 6, 7] in this theory. Subsequently, a dual to non-
linear realization of relativity in the momentum space
was proposed, resulting in a spacetime invariant, an en-
ergy-dependent metric. It is noteworthy that there exist a
variety of theories in literature in which the modification
of the standard energy-momentum dispersion relation is
valid in the limit of the Planck scale, such as string the-
ory [8], loop quantum gravity [9], and non-commutative
geometry [10]. However, assimilating the curvature of
rainbow gravity [4] generalizes the DSR by taking the en-
ergy-dependency of spacetime into consideration. This
type of consideration permits the quanta of different ener-

gies to observe different classical geometries. The argu-
ment for the allocation of same inertial frames is that we
want to conserve the equivalence principle in a modified
frame because all measurements of distance and time be-
come dependent on the energy of the quanta, which are to
be engaged for testing purposes.

The deformed dispersion relations in the Planck
length scale are E2f2(E)—(p)*g*(E) =m? [4]. However,
the standard linear Lorentz transformations do not ensure
the invariance of these relations. The invariance of these
have been proved under non-linear Lorentz transforma-
tions by Kimberly et al. [5]. It has already been acknow-
ledged that, in place of single spacetime, a dual to mo-
mentum space is actually the energy-dependent family of
the metric. A notable point is that £ in the metric g, (E)
has nothing to do with the energy of spacetime; instead, it
is the scale at which the geometry of spacetime is probed.
Magueijo et al. [4] argued that an observer seeing a
particle (or plane wave or wave-packet) with energy E
means that this particular particle experiences the metric
guw(E). Moreover, if this particle is seen with different
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E’'(# E) by a different observer, then a different metric
will be assigned to the particle, i.e. g, (E’). The require-
ment of covariance for a non-linear representation of the
Lorentz group in momentum space may demand seeing a
given particle being affected by different metrics by dif-
ferent observers, as well as assigning different metrics to
different particles moving in the same region at the same
time for the same observer.

The modification of the equivalence principle has also
been established by Magueijo et al. [4], which states that
spacetime is described by a one-parameter family of met-
rics given in terms of a one-parameter family of orthonor-
mal frame fields as g(E)=n"e,E)®e,(E), where the

frame fields depend on the energy as eo(E) = &9 and

1
) J(E)
ei(E) = —E)é,- in the Planck length scale. Here, the tilde
bearing terms refer to the energy-independent frame
fields that specify the geometry probed by the low en-
ergy quanta, the limit being Elp <<1 with g, =1,
where Ip is the Planck length.

However, an interesting point, which we would like
to mention here is that, if the energy E is just a non-dy-
namical parameter of the theory, rescaling can eliminate
it easily. Unfortunately, the dependence on the coordin-
ate is dynamical and actually breaks the diffeomorphism
symmetry of the whole metric. The local symmetry in
gravity’s rainbow is not Lorentz symmetry, because it de-
pends on the deformation of the usual energy-momentum
dispersion relation and consequently breaks the Lorentz
symmetry also in the UV limit [11]. We should also re-
member that the energy E is an implicit function of the
coordinates, whereas rainbow functions are explicit func-
tions of the energy &, which is defined as the ratio E/Ep,
Ep being the Planck energy. This immediately leads to
the conclusion that these are also dynamical functions of
the coordinates, restricting the ability to eliminate these.
The difficulty in finding such an explicit dependence of
rainbow functions on energy for different systems is also
in vain because these are implicit dynamical functions of
the coordinates, i.e., eliminating these does not work any-
way. Therefore, we can expect that these functions may
produce physically different results from general relativ-
ity [12].

Ali et al. [13] have shown that gravitational collapse
can be explained in the context of gravity's rainbow. Hey-
darzade et al. in [14, 15] discussed the energy dependent
deformation and time dependent geometry of massive
gravity with the help of massive gravity's rainbow form-
alism. Vainshtein and the dRGT mechanisms have been
used side by side for the energy dependent massive grav-
ity and additionally, their works include an analysis of the
ghost free theory of massive gravity's rainbow with the
help of the radiating Vaidya solution. Phenomenologic-
ally, massive gravity can also be derived from acceler-

ated cosmic expansion [16— 21]. The problems with
massive gravity can be resolved using the Vainshtein
mechanism [22, 23]. However, the Vainshtein mechan-
ism can raise the Boulware-Deser ghosts [24], which
again can be resolved by using the dRGT mechanism
[25-32].

Some related theories of rainbow gravity and their
subsequent use in charged dilatonic black holes, Gauss-
Bonnet gravity, Lovelock gravity, a combination of
Rastall and rainbow theories, AdS4 dyonic black holes,
the deformed Starobinsky model, thermodynamics of
black holes, Galileon gravity, the horizon effect, the viol-
ation of weak cosmic censorship and Branes are ad-
dressed in [11, 33-47].

Either a black hole or a naked singularity may be pro-
duced from gravitational collapse [48, 49]. Also, it may
provide a mechanism to communicate with far-away ob-
servers in the universe. The radiating Schwarzschild
spacetime, also known as the Vaidya spacetime [5S0] can
describe the geometry outside a radiating spherically
symmetric star. Particularly, the formation of naked sin-
gularities can be produced from the solution of the null
dust fluid with spherical symmetry during gravitational
collapse, as shown by Papapetrou [51]. Additionally, cos-
mic censorship conjecture (CCC) [52]can be en-
countered in a different way using this example. The
causal trajectories joining the singularities in the ongoing
Vaidya situation have been studied by the authors of [53,
54]. They also provide the whole story of the constraints
and the classification of non-spacelike geodesics that
make a connection with the past naked singularity. Then,
this naked singularity was shown to be a strong curvature
singularity in a more effective sense.

The solution of Vaidya spacetime [55—60] was gener-
alized including all possible solutions of Einstein's field
equations and combining Type-I and Type-II matter
fields in the works of Husain [61] and Wang and Wu
[59]. A generalization of the Vaidya solution in the con-
text of the cosmic censorship hypothesis, which is basic-
ally the study of gravitational collapse in generalized
Vaidya spacetime has been done in [62]. It was their find-
ings that resulted in bringing the termination of the col-
lapse of the classes of generalized Vaidya mass functions
into the picture with a locally naked central singularity. In
addition, they also calculated the strength of these singu-
larities. For a termination of the non-spacelike geodesics
directed towards the future at a singularity in the past,
they studied the conditions on the mass function, devel-
oping a general mathematical framework. The fact that
the final outcome of collapse can be determined in terms
of either a black hole or a naked singularity for a given
generalized Vaidya mass function was also established.
The gravitational collapse of higher dimensions in the
charged-Vaidya spacetime was studied by the authors in
[63]. Their works include that singularities arising in a
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charged null fluid in a higher dimensional spacetime are
always naked, violating the strong cosmic censorship hy-
pothesis (CCH). The holographic complexity and the
holographic entropy cone in AdS-Vaidya spacetime was
explored in [64, 65]. Sharma et al. [66] revisited the
Vaidya-Tikekar stellar model in the linear regime. Manna
et al. established a general connection between the k-es-
sence geometry and Vaidya spacetime in [67—69]. More
specifically, using a generalized Vaidya-type metric [59,
61], they have worked on the gravitational collapse in k-
essence emergent gravity in [69] in the context of the cos-
mic censorship hypothesis. In addition, the existence of
the locally naked central singularity, the strength, and the
strongness of the singularities for the k-essence emergent
Vaidya metric were established by them.

The k-essence model, particularly the scalar field
model reveals that the role of kinetic energy is much
more dominating than that of the potential energy of the
field. The kinetic energy term does not depend explicitly
on the field and therefore cannot be separated in the the-
oretical form of the Lagrangian from the non-canonical
kinetic terms in the theoretical form. Born and Infeld
[70-72] first proposed a theory with a non-canonical kin-
etic term, which was related to the infinite self-energy of
the electron.

The general form of the Lagrangian for the k-essence
model can be written as: L= -V(¢)F(X), where ¢ is the

1
k-essence scalar field, X = Eg”VVy(l’Vv(ﬁ and shows the

non-dependency on ¢ to start with [73—83]. The k-es-
sence theory with non-canonical kinetic terms and the re-
lativistic field theories with canonical kinetic terms differ
in the non-trivial dynamical solutions of the k-essence
equation of motion (EOM). The metric for the perturba-
tions around these solutions are changed by solutions of
the EOM breaking the Lorentz invariance spontaneously.
This allows the perturbations to propagate in the so-called
emergent or analogue curved spacetime [73—77] with the
metric, different from the gravitational one. The emer-
gent gravity metric G, is not conformally equivalent to
the gravitational metric g, .

Based on the following articles [14, 15, 69], our study
described in this paper includes the exploration of the col-
lapsing scenario for the k-essence emergent Vaidya
spacetime in the context of massive gravity's rainbow. To
do this, we started our study by considering the back-
ground metric as Vaidya spacetime in massive gravity's
rainbow [14]. Note that the quantization problem of grav-
ity is beyond the scope of the present study. Our consid-
eration for this study is that the background metric con-
sists of rainbow deformations of the massive gravity
Vaidya type; thus, we discuss the collapsing scenario on
the basis of k-essence geometry.

Let us now discuss the importance of the k-essence
theory as follows: The Coincidence problem has ques-

tioned most of the dark energy models (e.g., cosmologic-
al constant) in recent years by bringing some of the ob-
servational data (Large-Scale Structure, searches of type
Ia Supernovae and measurements of Cosmic Microwave
Background anisotropy [84]) into the picture. The prob-
lem is the fine tuning of the initial energy density, which
is of the order of 100 or more smaller than the initial mat-
ter-energy density. The solution of the abovementioned
problem lies in the k-essence theory, which is a nonlin-
ear kinetic energy of the scalar field [85]. An elaborate
discussion about the motivation of k-essence theory has
been given in Ref. [86]. Not only cosmology [87-91] but
also other fields of gravity have dealt with k-essence the-
ory [69, 92, 93]. All these aspects have motivated us to
consider these issues in the present work.

We structured this paper as follows: The k-essence
geometry based on the Dirac-Born-Infeld action, rain-
bow theory of gravity, and massive gravity are revisited
in Sec. II. In Sect. III, we concentrate on building the
rainbow deformations of the k-essence emergent Vaidya
massive gravity spacetime considering the background
metric as Vaidya massive gravity's rainbow. A scalar
field with the restriction of being an arbitrary function of
the advanced or retarded Eddington-Finkelstein time is
considered, where the scalar field is independent of the
other variables of four-dimensional spacetime. The Ricci
and Einstein tensors corresponding to our rainbow de-
formations of the k-essence emergent Vaidya massive
gravity metric are also constructed. This section also in-
cludes the computation of the components of the emer-
gent energy-momentum tensor by direct substitution into
an emergent Einstein equation. This emergent tensor
must obey the energy conditions of the emergent geo-
metry. In Sec. IV, we develop the collapsing scenario for
the k-essence emergent Vaidya spacetime in massive
gravity's rainbow. In this section, we analyze the struc-
ture of the central singularity to find the conditions on the
k-essence emergent Vaidya massive gravity's rainbow
mass function with the rainbow functions, the existence
of outgoing nonspacelike geodesic, and the strength of
the singularities for the above k-essence emergent geo-
metry. Finally, Sec. V contains some conclusions as well
as a discussion of our work.

. BRIEF REVIEW OF THE K-ESSENCE GEO-
METRY, GRAVITY'S RAINBOW THEORY
AND MASSIVE GRAVITY

A. The k-essence geometry

The action of the k-essence scalar field ¢, minimally
coupled to the background spacetime metric g,, is given
by [73-77]
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mmmhfwﬁﬂwm (1)

1
where X = Eg’”VﬂgbV‘,qb.
The energy-momentum tensor can be written as

2 oSk

v = \/—__g@ = LXvH¢VV¢ _g/lVL’ (2)
where Ly = dL/dX, Lxx = d*L/dX?, Ly =dL/d¢, and V, is
the covariant derivative defined with respect to the gravit-
ational metric g, .

The equation of motion of the scalar field is

1 65¢ «
————=G"V, V,0+2XLxs—Ls =0, 3
N=AT, u Ve x¢— L 3)
where
Gjlv ELXgﬂV+LXXvﬂ¢VV¢ (4)

and 1+ (2XLxx)/Lx > 0.

The conformal transformation gives G** = (c,/L2)G*”,
with 2(X,¢) = (1+2X(Lxx/Lx))""; the inverse metric of
G* takes the form

Ly Lxx
Gyv = | 8w _Ci_vy¢vv¢ . Q)
Cs LX

Again, applying a conformal transformation [78, 79]
Guy = (¢5/Lx)G,y, We get

— LXX
y=8uw— ——V, 0V, .
GH Bu Lx +2XLxx H¢ ¢ (6)
To make Egs. (1) «(4) physically meaningful, we
should have Ly # 0 for ¢2, which should be positive def-
inite. If L does not directly depend on ¢, the EOM (3) re-
duces to

1 6S; -

-———=G""V,V,0=0. 7

Vg oo O ?

The Dirac-Born-Infeld (DBI) type Lagrangian
[70-72, 78-80] has the form

L(X,¢)=1-V(¢) V1 -2X, (®)

with V(¢) = V =constant and a kinetic energy of ¢ >>V,
i.e., (¢)> >> V. This ensures the domination of the kinetic
energy over the potential energy for the k-essence fields
and gives us c2(X,¢) = 1 —2X. For scalar fields V,¢ = d,¢.

Therefore, the effective emergent metric (6) ends up as

GﬂV =8uv— ap¢av¢ (9)

The new Christoffel symbols and the old Christoffel
symbols are related to each other [78, 94] as

o 01 1 1 o1
F#V = #V—m[éﬂaVX"'é‘vaﬂx]. (10)

Now, we can write the new geodesic equation for the
k-essence theory in terms of the new Christoffel connec-
tions T as

e dat dy
el o il 11
d2 A da (b

where A is an affine parameter.

B. Gravity's rainbow theory

Inspired by the works of Magueijo et al. [1-4] as well
as Kimberly et al. [5], the deformed energy-momentum
dispersion relation can be provided as

E*FA&) - p*G (&) =m?, (12)

where & = T i the energy ratio, which is evidently a di-

. P .
mensionless quantity, £ and p have been used to express
the energy and momentum (respectively) of the test
particle and Ep is the Planck energy.

The fact that the energy of a test particle cannot ex-
ceed the Plank energy gives us the limitof Eas 0<E< 1.
Therefore, the energy dependent rainbow functions ¥ (&)
and G(&) will satisfy the two conditions below:

lim7(&) = oo and limG(&) = o (13)

and the general relativity is recovered in the IR limit of
the theory [95-101].

Again, the energy dependent contribution in the met-
ric is given by

8(&) =" (E)®e/(©), (14)

with the energy dependence of the frame fields as fol-
lows: ep(&) =(1/f(E))ey and e;(E)=(1/g(E)e; in the
Planck length scale. Here, &, and ¢; are the energy inde-
pendent frame fields.

There are various possible choices for the rainbow
functions [13, 14, 102, 103] such as, from the back-
ground motivation of loop quantum gravity and
x—Minkowski noncommutative spacetime:
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FE =1, G6E&) = Vl-a&l, (15)

where we can take the rainbow functions with the con-
stant velocity of light [3] as

1
FE=6&)=1——= (16)

For the hard spectra from gamma-ray burster’s at cos-
mological distances, it is also possible to choose rainbow
functions [104] as
a& _

ab&

F(E) == GE =1. (17)

Whatever the choice, the main properties of all these
rainbow functions are spacetime energy dependent.

C. Massive gravity

The 4-dimensional massive gravity action [14, 15,
105, 106] can be written as

4
5= [dxveRe1 Y ath0.0+ L) a9

fbeing a fixed symmetric tensor (also known as the refer-
ence metric), ¢; are constants, M is the massive gravity
parameter and U, are symmetric polynomials of the ei-
genvalues of the d x d matrix K% = /gt £,

The symmetric polynomials, mentioned above, can be
written as

U =[K],
U =[K)? - [K2,
5 =KD = 3[KIK]+2[K°),
U, =[K1* - 6[KKT +8[KT[K] + 3[K*1 - 6K,
(19)

where K =%, .

With the help of the variational principle, the modi-
fied field equations for the massive gravity can be ob-
tained as

1
Ry — ERgﬂv + M2y, = Ty (20)

Here, x,, denotes the massive term, which can be ex-
pressed as

== 5~ {20725

_ %3(7,13 8uv = 3U Koy + 6T IC, — 6, )

- %((1/14&” —4U K,y + 12%{27(%,
— 24K, + 24K, ), @1

considering 87G = 1 in geometrized units.
In their paper, Heydarzade et al. [15] took a spatial
reference metric on the basis of (v,r,0,®) [14, 107, 108]

fu = diag(0,0,c*h;)), (22)

in which ¢? is a positive constant and h;; is the two di-
mensional Euclidean metric.

We can write the barotropic relation and the energy-
momentum tensor respectively as

P =Kp, (23)
T =T + T, (24)
with
T =,
T =(p+ p)Uuny + Lny) + p g (25)

The terms T f]",) and Tl(,'f) in the above expression are
the energy-momentum tensor for the Vaidya null radi-
ation and the energy-momentum tensor of the perfect flu-
id, respectively. o, p, and p denote the null radiation dens-
ity, energy density, and pressure of the perfect fluid, re-
spectively, and [,and n, are the two null vectors. These
null vectors are defined as [15]: /,=(1,0,0,0), n,=

1 .
-(;— MO-1) _10,0) with 1, = nn = 0 and L = 1.

2 r
aking the above assumptions into consideration,

Heydarzade et al. [15] constructed the following metric
for the Vaidya spacetime in massive gravity:

m(v,r)

ds? = —<1 - T)dv2 +2dv dr+r2dQ2, (26)

with dQ? = d6? + sin? d®?, and

1-2«

1-2«

m(v,r) = W+ Hv) - %Mzc] cr? - MZCzczr, (27)

. 1
under the constraint « # =, where fi(v) and f>(v) are ar-
bitrary functions of v and can be expressed as

” r7(1+2K) . 1 .
A0)=p,nr 05 o, = Z—— i)+ 5 ),
— 2K r
(28)
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where a "dot" represents the derivative with respect to v.
Here, v represents the null coordinate corresponding to
the Eddington advanced time with r decreasing towards
the future along a ray related to v = constant.

We can establish the following metric with the help of
[15], considering the rainbow deformations of the Vaidya
spacetime in massive gravity [14]

FE)
2 dvdre —2a0? (29)
F(EG(E) GX(&) '
with
1-2«
m(v.r) =15 filr) + o(7)
— ZK
1 1
—mMzclc -M2eyc?r, (Ki 5) (30)
and

pv,r) 2040,
62(8) |

,—(1+26)
o(v,r) T(S)Q(S)[

fiv) =—=%—7

—fi )+ 2 fz(V)] €2y

As expected, the mass function given in (30) is differ-
ent from the mass function of Heydarzade et al. [ 14]

III. k-ESSENCE VAIDYA SPACETIME IN
MASSIVE GRAVITY'S RAINBOW

In this section, we discuss the k-essence Vaidya geo-
metry in the context of massive gravity's rainbow. Manna
et al. established the connection between the k-essence
geometry and the Vaidya spacetime based on the DBI
type action in [ 67, 69].

Therefore, let us assume the background metric to be
the Vaidya massive gravity's rainbow (29) with the defin-
itions (30) and (31).

The k-essence emergent line element can be written
from Eq. (9)

dS? = ds* - 9,40,¢dx"dx". (32)

Assuming the k-essence scalar field ¢(x) = ¢(v) only,
the emergent line element in the context of massive grav-
ity's rainbow (32) can be written as

457 = [ﬁl(a)( - r)) i ¢3}dv2

———dvdr+ ——

r2dQ?, 33
QZ(E) 33)

2
TFEGE©)

which can also be represented as [ 69]:

1 M,y
ds- = T2(8)(1 )v —T(S)Q(G)d‘}dr
L h o
+ Q2(8)r do-. (34)

Here, we define the Kk-essence emergent Vaidya
massive gravity's rainbow mass function as

M, r) =m(v,r) + rF 2 E)¢?

1-2«
a2
2 10+ (V) = ZQ(S)M crer
—M2C2c2r+r7—'2(3)¢5, (m&%), 35)
where ¢? (¢, = —) is the kinetic energy of the scalar

field ¢, which should not be equal to zero.

For a well-defined signature of the above metric (33),
the values of ¢? should lie between 0 and 1, ie.,
0<¢2<1. Because, in general, spherical symmetry
would only require that ¢ = ¢(v,r), the k-essence scalar
field ¢ actually violates local Lorentz invariance. The
choice of ¢(v,r) = ¢(v) additionally implies that outside of
this particular choice of frame, a spherically symmetric ¢
is actually a function of both v and r. Because the dynam-
ical solutions of the k-essence equation of motion spon-
taneously break Lorentz invariance and also change the
metric for the perturbations around these solutions, the k-
essence theory allows us to use this type of Lorentz viola-
tion. Also, notice that the choice of ¢(v,r) (= #(v)) is
equally important in the context of cosmology and gravit-
ation [67-69, 86, 87].

Using the following definitions

M, =My, r) = MO0
ov
M. =My = 200, (36)

the non-zero components of the emergent Ricci tensors
can be represented as

. GA® ge .
Rv _Rr =T M= 2 Myy 5
2 2
R=Ry=COM = C O @0 6

72

Also, the Ricci scalar is given by
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2 2 2
RGO, 6O, GO,
r I r
2
+ 2, P00, (38)

The non-vanishing components of the Einstein tensor
are

2 2
or=0;=- L0 - _CO 1726,
r r
2 2
&=L M= E P m, 207 2E)pudv)
r r
G (©) G (&)
0 _~d _ _
Gy =Go = =5, My === =mp, (39)

where from Eq. (35), we have

M, = fiw)r - %Mzcl cr=M2cyc? + FHE)P?,  (40)
r1—2/< . .

My = T fil0) + o0) + 2 FHE)p o, (41)

M,y = =2k 20 £(v) — %Mzclc. (42)

The k-essence emergent Einstein equation is
ay =77 (43)

If we consider 87G = 1, it immediately leads us to the
components 7', which can be parametrized exactly as in
Refs. [59, 61, 62,69] in terms of the components o, p, and
p given by

(a/2+p) o/2 0 0
_ ) | a(m) _ /2 (c/2-p) 0 O
0 0 0 p

(44)

where T3 = olyly; T = (0 + p)uny + hny) + pG,, With
I, and n, being two null vectors. Any doubt in using the
perfect fluid energy-momentum tensor for the k-essence
theory can be erased by the form of the Lagrangian
L(X)=1-VV1-2X, where V is a constant and does not
explicitly depend on ¢. This class of models can be
thought of as equivalent to perfect fluid models with zero
vorticity and the pressure (Lagrangian) can be expressed
through the energy density only [77].

Therefore, the three independent components are ex-

pressed as
2 2
o= C M =0 (m+2iF2©pup0), (49
r r
2 2
p= g (28) m=¢ (28) (m+F2(©)8), (46)
r r
e, GO 47
L=- 2 rr = 2 My ( )

The energy conditions for the combination of the
Type-I and Type-II matter field energy momentum tensor
T v, are defined [69, 109] as follows:

(a) The weak and strong energy conditions:
c>0,p>0, p>0 (o #0). (48)
(b) The dominant energy conditions:
c20,p2p>0 (oc#0). (49)
Therefore, the above energy conditions (48) and (49),

imposed on 7,,, will be constrained in m(v,r) and ¢(v)
and their derivatives. Thus,

o>0=m,+2r¢,¢,, >0
1-2«

1-2k

A+ L) +2rF A E)pupry > 0, (50)

=

p>0=m+¢>>0= fi(r
1
- ——M?cjer—M?er® + FAE)PE > 0, 51
70 cier e +F(E); > (51)

p>0=my, <0=2cfi(v)r 129 L MPeic > 0. (52)

IV. COLLAPSING SCENARIO FOR THE K-ES-
SENCE VAIDYA SPACETIME IN MASSIVE
GRAVITY'S RAINBOW

Now, let us cultivate the collapsing scenario of the k-
essence emergent Vaidya spacetime in the context of the
massive gravity's rainbow. At the beginning, we define

K" as the tangent to non-spacelike geodesics with
dx* . .
Kt = %, where A is the affine parameter. The geodesic

equation takes the form [62, 69]
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GwK'K* =B, (53)

where 8 is a constant. Here, =0 and 8 <0 describe the
null geodesics and the timelike geodesics, respectively.

Expressing the k-essence emergent geodesic equa-
tion (11) in terms of K*, we get

dK*
— + K"K = 0. (54)

Now, using Egs. (34), (53), and (54), we get the
geodesic equations [53, 62, 69] in the form

dK” & &
+z€f(<§>[r2 P K a0
dK*  G@&) [m m| s FE P _
= +25"(8)[r_2 r}(K) cer-" (55)
K" GE) M, v)g_g%a)[ﬂ_mr}x[_ 1 1__)( e KK ]
o e 2 |2 F2E) r F(EG(E)
- (1 - M)r[(KG)Q +sin’ 9(1(‘1’)2] =0
r
dK”  G(&) ) 2 B, 2 o fm o my
o 27—'(8)( +2F (8)¢‘¢W)( ") r3( -F (8)¢‘,) Y (8)( ; )_0, (56)

dk? 2

ﬁ + rKgKr sind COSH(K(D)Z (57)
d 2 2 D

17 (7 sin” 0K )=0, (58)

where we use the relation [53, 69]

Icosd l
KO = 20‘?_5‘20 . K?= = sindcos @, (59)
r?sin r

where / and 6 are constants of integration, which repres-
ent the impact parameter and the isotropy parameter, re-
spectively, satisfying the relation sin® tan§ = cot6.

The definition of K¥ [53, 62] gives us

POEALLY) (60)
r
and the relation G,, K*K” = B provides
- P Q(S) _ ﬂ ) 2 7—-(8) 12
K= 2r T(S)( r F (8)¢V) Q(S) 2Pr
Br
+F(EGE) 75 (61)

where P(v,r) is an arbitrary function.
Next, differenting Eq. (60) with respect to 1, we get

a1\ al

dP 1 ( dKV dr)

— +
_G©) P 2m FE) P
“F@) ﬁ(l T +m’)+ 6© 27

B_GE P

T re e O ®)

+F(O)GE)5

After this, we examine the destiny of the collapse,
whether it ends with a black hole or a naked singularity
for the given k-essence emergent Vaidya massive gravity
rainbow mass function (35). If there exist some families
of future directed non-spacelike trajectories, which ter-
minate in the past at a singularity and reach faraway ob-
servers in spacetime, a naked singularity forms as the fi-
nal state of the collapse. On the flip side, if no such famil-
ies exist and an event horizon forms sufficiently early to
cover the singularity, we have a black hole.

The radial null geodesic (I =0, 8 =0) can be achieved
using Egs. (60) and (61) as

Q _ 2rfF (&)

dr G@E)(r-mv.r) - rF2&)¢?)
= 275(;) . (63)
g(8)(1— (r”))

For a suitable choice of rainbow functions, there is a
singularity at r = 0, v = 0, provided ¢? # 0.
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A. Structure of the Central singularity for the
k-essence emergent Vaidya spacetime in
massive gravity rainbow

In general, the above Eq. (63) can be written as [62,
69]

dv  M(,r)
dr = No,r)’

(64)

with the singular points » = 0, v = 0, where both the above
functions M(v,r) and N(v,r) vanish.

As discussed in [62], we can also have the character-
istic equation for the existence and uniqueness of the
above form of the differential equation (64) in the vicin-
ity of the singularity as

Y —(A+D)y+AD-BC =0, (65)

where A = M,(0,0), B = M,(0,0), C = N,(0,0), D = N,(0,0)
and AD - BC #0.
The roots of the above Eq. (65) are

x=3|4+D)= A~ DR +4BC| (66)

The singularity can be of two types; the first one is a
node, if (A—D)>+4BC >0 and BC >0, and the second
one is a center or focus.

Comparing Egs. (63) and (64), we have

M@,r) =2rF (E),

N,r) =G(E)(r— M(v.n))
=G@E)(r-mv.r)-rFXE).  (67)

At the central singularity (v = 0,r = 0), we define

. ) . 0 )
My= lim OM(V, r; Myp= v—}(lJ,I}l—m 5/\/((\/, r);

v—0,r—

0 0
Moo= lim —Mw,r); ¢po= lim —o®O);
v—0,r—0 ov

v—0,r—0 or

0
a—m(v, r). (68)

. 0 .
my = lim —m,r); mo= lim
v—0,r—-0 Or

v—0,r—0 ov

Using Eqgs. (67) and (68), we get A=0, B=2F(5),
C =-G(Emyo and D = GE)(1-myo - FHE)¢Y). Hence,
roots of the characteristic Eq. (65) can be written as:

1
X=3 [Q(S)(l —myo - FHE))

2
+ \/g2(8>(1 —mo = FAEVY,) —8F (E)GEmo|.  (69)

The required conditions for the singular point at
r=0, v=0 to be a node are

GE)(1-mo-FAE) = 8F Emo, mo>0and 6% > 0.
(70)

Therefore, to satisfy the condition (70), the k-essence
emergent Vaidya massive gravity rainbow mass function
M(v,r) and the rainbow functions (¥ (&) and G(E)) can be
chosen in a certain way and then, the singularity at the
origin (v =0,r =0) will be a node resulting in the outgo-
ing non-spacelike geodesics coming out of the singular-
ity with a definite value of the tangent.

The null geodesic equation can be linearized near the
central singularity using the limits (68) as

dv 2rF (E)
dr G©)|(1—my - F2Er—myov|

. (7Y

which is also singular at v=0, r=0 provided ¢?# 0.
From (35), we get

2 0f>(v)

2
myy =—-M"crc”; myy= =
r0 20, v0 av o

o). (72)

B. Existence of outgoing non-spacelike geodesics for
the k-essence emergent Vaidya spacetime
in massive gravity rainbow

The summary up to now is that the outgoing radial
null geodesics have to end up in the past at a singularity,
particularly, in the central physical singularity located at
v =0, r =0. With the help of this remark, we will now ex-
plore the existence of a naked singularity (NS) in the k-
essence emergent Vaidya spacetime in the massive grav-
ity rainbow. For a locally naked singularity, such null
geodesics exist. The possibility of this singularity to be
either a naked singularity or a black hole (BH) implies
that if the singularity is not a naked singularity, then the
formation of a black hole is undoubtable. So, the analysis
of the radial null geodesics emerging from the singularity
can help us understand the nature of such a singularity,
which can be established by a catastrophic gravitational
collapse.

It is well-known in general relativity that such a sin-
gularity, which comes from a gravitational collapse, is al-
ways a black hole because of the cosmic censorship in
general relativity. Therefore, there will be an event hori-
zon by which the singularity is always covered in general

125103-9



Saibal Ray, Arijit Panda, Bivash Majumder et al.

Chin. Phys. C 46, 125103 (2022)

relativity. Regarding the generalized case, it is possible
for inhomogeneous dust clouds to form a naked singular-
ity through collapse [110]. Also, it is noted that some in-
teresting results have been obtained for fluids whose
equations of state (EOS) are not exactly similar to that of
a dust cloud [111]. Thus, the generalization of the cos-
mic censorship becomes evident in general relativity
[112].

Let us now consider that, the k-essence emergent
Vaidya massive gravity mass function M(v,r) with ac-
ceptable choices of rainbow functions satisfies all physic-
al energy conditions (48) and (49) with constraints (50),
(51), and (52). The partial derivatives of the mass func-
tion, which are continuous in the entire k-essence emer-
gent Vaidya massive gravity's rainbow spacetime (35)
also exist and obey the conditions (70) at the central sin-
gularity. Following Refs. [14, 15, 62, 63, 69], we now de-
termine the nature (a black hole or a naked singularity) of
the collapsing solutions. To do this, we consider the func-

tion X behaving as X = Y and having the limiting value at
r
the central singularity as follows:

lim X= lim -. (73)

XO - v—0,r—0 v—0,r—0 r
Using Egs. (63), (73), and L'Hospital's rule, we get
X, = lim 2= Iim &= _ e
o= v—0,r—0 1 B v—0,r—0 dr - v—0,r—0 g(8)<1 _ M(V,r)) ’
r

(74)

Again using (35), the above Eq. (74) can be written as

2 . G o L)
X, = dm F(E) =T 0-==
: (75)
+ 26E) M2ceir+M2c?cy — ?’2(8)¢3 ,

. 1
under the constraint « # —.

Now, considering fi(v) = av* and f>(v) = v, the al-
gebraic equation of X, can be expressed as

@l F (&)
5% +4x3—(1 +M2c2c2—¢2(8)¢§0)xo+2% =(;)é)

where « and 8 are constants.

As mentioned before, Eq. (76) is not similar to Eq.
(3.7) of Heydarzade et al. [15] due to the presence of the
terms ¢§0 and the rainbow functions. But we choose the
same functions of fj(v) and f>(v) as in [15] along with the
same characteristics. In the early universe (x> 0), fi(v)

grows with v, whereas in the late universe (x <0), fi(v)
decays with time. In contrast, f>(v) is a linear function of
v. These choices of the arbitrary functions f;(v) and f>(v)
are self-similar in nature and this comes from the defini-
tion of Xy given in Eq. (74). For the same reasons as
shown by Heydarzade et al. [15], we also consider self-
similar cases.

The formation of a black hole can be assured in this
system by achieving a non-positive solution of the above
Eq. (76). However, the positive roots of this equation can
produce a naked singularity. With the specific choice of
the rainbow functions, we will examine the effects of the
mass term and kinetic energy of the k-essence scalar field
(¢%,) on the formation of a naked singularity and observe
the effect of a mass term and ¢§O on the formation of na-
ked singularities. For this purpose, we choose a specific
rainbow function [14, 104, 113] as

E
FE) =1, GE) = 41 —n(E—l). (77)
P

In the above expressions, we have denoted Planck en-
ergy by E,, given by E,=1/VG=1221x10"GeV,
where G denotes the gravitational constant and E; =
1.42x 10713 [14, 104, 113]. In [14, 104], the authors es-
timated the value of # as n ~ 1. Therefore, in our study we
use = 1. It is very cumbersome to find exact solutions
for Xy, except for some particular values. Therefore, for
some preferable values we find the exact solutions as:

Case-1: k =0: The zero value of « represents the pres-
sure-less dust regime of the universe. For this regime, Eq.
(76) reduces to

&
aXo+BXg — (1+M>Pey = F(E)gng )Xo + 2% =0, (78)
and the solutions become
(U-F2&)¢% - a)
Xox =
2B
JWU-F2AE)82 -0 86T (€)/G(E)
+ (79)

2B

with U = 1 + M2¢,c2.

For these two solutions to be real and finite, we must
have B#0 and GE)U +FA(E)¢?, —a)*> 8BF (E). In our
case, the values of ¢2, are 0<¢* <1, i.e., positive and
the rainbow functions (77) are also positive.

To make the solution Xj, positive, we have the fol-
lowing conditions:
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(i)
B>0: (U-F*E)pfy—a)=- \/(U - FAEP, — @) - 8BF(8)/G(E)
= £>0.
However, if the solutions are real and finite, with
B # 0, the solution X is positive for any positive 8.

(i)
B<0: (U-F2E)fy-a) <~ \/(U—T2(8)¢30 —a)? - 867 (8)/G(E)
= B<0.

As B+ 0, the solution Xy, has positive values for any
negative 8. Therefore, in conclusion, we can say that for
any non-zero real values of £, the solution Xp, is positive,
and this represents a naked singularity.

For the solution Xj_to be positive, we have, for 8> 0,
U-F2E)¢ly—a) = \/ (U -F2E)¢%, - @)? —8BF (E)/G(E)
= £>0.

For the same reason as explained above, here also,
B> 0, which implies that the solution is positive. Again
for B <0, we can get the positive solution following the
same reason. Hence, we can conclude that this solution
also represents a naked singularity. Finally, for x =0, we
will get a naked singularity as the destiny of the collapse.
Here, we would like to mention that the conditions for the
positive solutions of Eq. (76) are of a similar type as in
Heydarzade et al. [15].

Case-1I: x=1: This condition represents the early
stiff fluid [114] era of our universe. In this scenario Eq.
(76) reduces to

F(©)

—aX3+BX3 - (U~ 7—‘2(8)¢10)X0+2g(8)

=0.  (80)

If we consider a, £, U—-F2(&)¢?%,, F(E) and G(&) all
to be positive, then by the well-known theorem of
Descartes, also known as Descartes' Rule of Sign, the
number of variations of the sign is 3. Which means the
number of positive roots of Eq. (80) is either 1 or 3. The
minimum number of positive roots being 1, we can an-
nounce that a naked singularity forms for x = 1.

. 1 .
It is noteworthy, for the case « > 5 the energy condi-

tions (50-52) are apparently violated in our case, and
these energy conditions can be satisfied easily if we re-
define the mass function M(v,r).

Case-1II: k=-1/2: This represents the dark energy
dominated accelerating universe. For x =—1/2, Eq. (76)
is reduced to

% +BX3 — (1 +M2erc? = FHE)P )Xo + 2% =0, (81)

which bears the following solutions

1
Xos =—ﬂ[<U F2(E)pro)

2B

s —_(4F (&) +G©®))|

(82)

+ \/w - F2E) -

In this case, to get the real and finite solutions, we

must have B#0 and (U-F2(&)¢%)* > 2—@(45’(8)+

aG(E)). Following the same procedure as for case-I, en-
suring these solutions (82) are positive, we can show that

for 8> 0, we get the condition af,((?) > —4 and for 8 <0,
ag,((?) < —4. Due to the presence of the rainbow func-

tions, the solutions we get here are different from those of
Heydarzade et al. [15].

C. Numerical solution of X

Using numerical methods, we will try to find a nu-
merical solution for X, by considering the specific rain-
bow functions (77) in this subsection. The dynamics of
collapse lies in the knowledge of X, for the whole cosmo-
logically meaningful region « < 1, i.e., from the early to
the late universe, not only at discrete points of «. So, we
decide to visualize these solutions by obtaining various
contours for k—X, for different numerical values of the
involved parameters.

Looking at the above figures, we get to know that the
trajectories run across the positive range of Xy, which is
an indication of the formation of naked singularity (NS).
Figure 1 (a) reveals the dependence of X, on the equa-
tion of state (23) parameter (x) for particular values of the
massive gravity parameter M(=2,3,5,7) with fixed ¢30.
Also, from this figure, we see that with increasing M the
tendency of formation of an NS decreases. Therefore, we
can say that the addition of graviton mass to this system
with the specific choice of rainbow functions (77) de-
forms the dynamics of the system. In Fig. 1(b), we obtain
the «—-X, trajectories by varying the values of
a(=0.5,5,10,15). In this figure, we see that, with greater
values of «, the tendency to form an NS is greater.

In Fig. 2(a), we observe how c affects the collapsing
scenario. It is clear that for a greater value of
¢(=2,3,5,10), the tendency to form NS is lower. In
Fig. 2(b), we can observe the effect of ¢, onthe col-
lapsing system. Similar to that for ¢, we see that an in-
crease in ¢, decreases the possibility of NS.

InF ig. 3, we have showed the effect of the kinetic en-
ergy ( ¢2,) of the k-essence scalar field on the collapsing
scenario. It has been observed that all values of ¢2, pre-
dict the same trajectories for the system and form the NS
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of the collapsing system. Here, we consider the restric-
tion of ¢, not exceeding unity.

All the above observations and the corresponding dis-

cussions of the x— X, trajectories make it clear that the
trajectories reside in the positive X, region, which as-
sures the formation of a naked singularity from the col-
lapse of this system.

D. Strength of singularity for the k-essence emergent

Vaidya spacetime in massive gravity rainbow
Taking the recommendation of [15, 63, 69, 115-117],

we can conclude that a singularity (r=v =21=0) would
be strong if the following condition is satisfied

lim A% = lim AR, K*K" >
Hm A%y = lim ARy %

(83)

where R, is the Ricci tensor and y = R, K*K” is defined
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as a scalar of the k-essence emergent Vaidya massive
gravity rainbow spacetime. We would like to mention
that this scalar y is not the k-essence scalar field and is
not coupled with the background gravitational metric g, .
Stepping into the footsteps of [62, 69], with the condi-
tions of (70), it can be shown that

. 1
lim Py gz(S)(Mvo)ng > 0. (84)

So far we have seen that, if this condition is satisfied
for some real and positive roots of Xy, the naked singular-
ity of the k-essence emergent Vaidya massive gravity
rainbow spacetime is strong. In contrast, if there is no
positive real root of X,, we can conclude that no outgo-
ing future directed null geodesics from the singularity ex-
ist, i.e., the collapse ends in a black hole.

Now from the definition of fi(v) and f>(v) and from
(35), we have

2ka
M, = 1—2/<(

1%

2k—1
) 4B+ 2T E)pubn (85)

r

Thus, we have

2Kk
/\1V0 =

= 2Kx§K—1 +3 = my. (86)

In the above three cases, ie., k=0, «=1, and
k = —1/2, we have derived the positive roots of X, for the
respective conditions. Also, from Eq. (86), we observe
the following situations for the above three cases:

(1) k=0and M,y =B, which is positive for any posit-
ive value of 3,

(i) «=1land M, = aXo+pB, where the positivity of
M, implies that Xy +8 >0 and

(i) k=-1/2and Mo =B~ 5%, where the positive
value of M, implies that 28X2 > a.

With the above conditions and the specific rainbow
functions (77), we see that lim A%y > 0. Therefore, it can
be concluded that the naked singularity is strong under
the above conditions.

E. Apparent horizon for the emergent spacetime and

physical consequences

1. Apparent horizon

The authors in [67, 68] described the dynamical hori-
zon (DH) on the basis of [118—122] in the context of k-

essence geometry considering the Schwarzschild metric
as the background metric. In contrast, in [62, 69], the au-
thors described the apparent horizon (AH) for the gener-
alized Vaidya type geometry. The AH is nothing but the
boundary of the trapped surface region in the given
spacetime (34). The casual behavior of the trapped sur-
faces developed in the spacetime during the collapse
evolution decides the occurrence of a naked singularity or
black hole.

We should remember that the AHs are not invariant
properties of a spacetime and are distinct from event hori-
zons (EHs). Within an AH, light does not move away
from it. This is in contrast with the EH, where, in a dy-
namical spacetime, outgoing light rays exterior to an AH
(but still interior to the EH) can exist. Specifically, an AH
is a local notion of the boundary of a spacetime, whereas
an EH is the global notion of a black hole.

2. Physical consequences

The AH for the k-essence emergent Vaidya space-
time in massive gravity rainbow (34) can be represented
as

m(v,r)

M_W):l:,_r e =1 6D

r

with (&) # 0.
Considering Refs. [62, 69], the slope of the AH at the
central singularity (r — 0,v — 0) can be written as

s

(dv) _Lomo-FAE, 1+ MParc’ -F2(E)y,
AH

dr My Fro(v)
(83)

where we have used Eq. (72).

Now, the sufficient conditions for the existence of a
locally naked singularity for the collapsing k-essence
emergent Vaidya spacetime in massive gravity's rainbow
have been attained. The emergent mass function M(v,r)
obeys all the energy conditions and constraints men-
tioned in (50), (51), and (52). Also, as in [69], there ex-
ists an open set of parameter values for which the singu-
larity is locally naked for the case of k-essence emergent
Vaidya spacetime in massive gravity's rainbow.

It is important not to forget that the k-essence emer-
gent Vaidya spacetime in the massive gravity rainbow
metric may exchange radiation with the surroundings, but
the mass function (35) cannot totally evaporate due the
presence of the massive gravity terms and the kinetic part
of the k-essence scalar field, which is a function of v. As
an example, in [68], the authors showed the decreasing
nature of the black hole mass m(v,r) in the k-essence
emergent Schwarzschild Vaidya spacetime, but it does
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not completely vanish by using the DH equation as
> — 0.

V. DISCUSSION AND CONCLUSION

This paper shows the construction of a theory of the
k-essence Vaidya spacetime in massive gravity ’s rain-
bow. We have also analyzed the energy dependent de-
formation of massive gravity in our work. We have used
the Vainshtein mechanism and the dRGT mechanism in
the construction of massive gravity in which deformation
by the rainbow functions has been considered. This pa-
per also includes an analysis of the gravitational collapse
of null fluids in the radiating k-essence Vaidya black hole
solution of massive gravity’s rainbow based on the Dirac-
Born-Infeld Lagrangian. The above said exploration has
been presented in the context of the cosmic censorship
hypothesis with the k-essence emergent Vaidya massive
gravity rainbow mass function. The Einstein tensor and
the energy conditions for the combination of Type-I and
Type-II matter field energy-momentum tensor for the k-
essence emergent Vaidya massive gravity rainbow space-
time have also been studied thoroughly. We have shed
some light on the classification of non-spacelike geodes-
ic for the k-essence emergent Vaidya massive gravity
rainbow spacetime which connects the naked singularity
in the past, which is a strong curvature singularity in the
stronger sense. The central singularity is a node, which
allows outgoing non-spacelike geodesics to come out of
the singularity pursuing a definite value of the tangent.
This positivity of the tangent implies the violation of the
strong cosmic censorship conjecture, i.e., the singularity
is locally naked, though not necessarily a weak one.

If somehow the value of the tangent does not have a
positive value, the central singularity deviates from being
a naked one because, in that case, there are no outgoing
future-directed null geodesics coming out from the singu-
larity, i.e., the collapse will always lead to a black hole.
With these results we have also studied the effects of the
graviton mass, the kinetic energy of the k-essence scalar
field and the rainbow deformation for a time-dependent
system.

We have obtained the contours for the tangent X,
against the barometric parameter « for different values of
other parameters, namely M, a, 8, ¢>§0, etc. Various re-
gimes of the fluid content of the universe such as the radi-
ation (k> 0), pressure-less dust («x=0), dark energy
(k <0) have been plotted. From those figures it is clear
that the negative region contains no trajectories for spe-
cific choices of the rainbow functions. This outcome
makes us believe the existence of black holes cannot be
possible as the end state of collapse in the context of
massive gravity's rainbow with the considered paramet-
ers.

It should be noted that, here, we have studied the

structure of the gravitational collapse of a non-rotating
type spacetime. The violation of CCC allows us to
achieve a naked singularity which by definition is not
bounded by any EH. In contrast, there have been con-
sidered several models in which the non-spacelike
geodesics originate in the central singularity. However,
this is not a proof for the nakedness of the singularity. In
[123], for the rotating case there should be a considera-
tion of the ergosphere in describing the motion of the
non-spacelike geodesics. The authors have also studied in
detail the geodesics in the ergosphere of a rotating black
hole which has negative energies. An ergoshpere is basic-
ally a region located outside a rotating black hole's outer
EH. Particularly in non-extremal Kerr spacetime (a < M
case), a non-spacelike geodesic for particles having neg-
ative, zero and positive energy can originate at the cent-
ral singularity, when the collapse is a black hole. In [124]
the authors studied the dynamics of high energy particles,
which have negative and positive energies in the vicinity
of black holes. They also studied the time of movement
of particles with negative energy in the ergosphere. Ver-
togradov [125] examined the nature of the geodesics for
particles with negative energy in Kerr’s metric. Also, we
would like to mention that in our article we have not dis-
cussed the formation of the ergosphere. We may try to
explore this type of formation in the near future.

In this study, we found a significant similarity
between the k-essence emergent gravity metric and the
generalized Vaidya massive gravity metric with the rain-
bow deformations. Obviously, this may establish another
motivation or foundation for gravity's rainbow theory.
The result continues to include that the rainbow deforma-
tions of the k-essence emergent Vaidya massive gravity
metric also satisfy the required energy conditions. There-
fore, from a purely physical background, the results are
viable and demand for some observational clues on the
possibility of observing the naked singularity. The cru-
cial issue then becomes the following: How can the na-
ked singularity be experimentally tested? Let us elabor-
ate this point a bit based on the available literature as fol-
lows:

(i) The authors of [126] investigated the optical ap-
pearance of a geometrically thin and optically thick ac-
cretion disk around the strongly naked Janis-Newman-
Winicour (JNW) singularity in their study. Their solution
represents an example of a compact object spacetime,
which possesses no photon sphere. They [ 126] also es-
tablished a general observational signature for distin-
guishable compact objects possessing no photon sphere
from black holes.

(i1) In [127, 128], the authors studied the distinction
between black holes and naked singularities using the im-
ages of their accretion disks. They considered a simpli-
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fied model of spherical accretion onto the central object
and studied the shadows and images of Joshi-Malafarina-
Narayan (JMN) [129, 130] for naked singularities.

(ii1) Bhattacharya et al. [131] studied a new class of
naked singularities and their observational signatures on
the basis of suitable junction conditions matched with an
expanding FLRW metric with a generic contracting solu-
tion of Einstein’s equations on a spacelike hypersurface.
They also studied some observational aspects of the res-
ulting two-parameter family of static naked singularity
backgrounds.

(iv) Kovacs et al. [132] noted the properties of the ac-
cretion disk and observationally different black holes
from naked singularities. They considered a rotating solu-
tion of the Einstein-massless scalar field equations for the
naked singularity, which reduces to the Kerr solution
when the scalar charge tends to 1. They also showed their
interest in studying the motions of the particles in the
gravitational potential of this solution. Depending on the
values of the mass, scalar charge, and spin parameter,
there are two types of disks that can exist around naked
singularities. The first type comprises marginally stable
orbits, located outside the naked singularity, while the
second type is reachable for the particles and in direct
contact with the singularity.

(v) Ortiz et al. [133] studied the observational differ-
ences between black holes and naked singularities
through the redshift function. They stated that the photons
propagating from past to future null infinity through the

center of a cloud obtain a frequency shift, which can be
measured by distant stationary observers and that it can
help in discriminating naked singularities from black
holes. They showed that, according to their model, it is
possible to differentiate between the formation of a na-
ked singularity and the formation of a black hole based
on the detection of photons traversing a collapsing object.

(vi) Vertogradov [134, 135] proposed a method for
studying the formation of an eternal naked singularity in
the case of gravitational collapse of generalized Vaidya
spacetime. Also, in [136, 137], the authors studied the na-
ked singularity using gravitational lensing.

We would like to end our discussion by mentioning
that we have analytically discussed the formation of a na-
ked singularity in the k-essence Vaidya spacetime in
massive gravity's rainbow. From the above observational
discussions of the existence of naked singularity, one may
conclude that it is also possible for this type of singular-
ity to exist in reality; however, this needs observational
confirmation and evidence.

Data availability: Our manuscript has no associated
data.
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