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Translation gauge field theory of gravity in Minkowski spacetime”
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Abstract: The gravitational field 4, with spin-2 is introduced naturally by the requirement that the Lagrangian is

locally translation invariant in Minkowski spacetime. The interactions between the £, and spin- 5 0, 1 matter fields

are obtained along with the Lagrangian for the gravitational field including self-interactions. The deflection angle of

light when it passes through the sun is calculated with different gauge conditions as an example. Our leading-order
result is the same as that from general relativity, although the basic ideas are different. It is interesting that gravity

can be described in a similar way to other fundamental interactions in Minkowski spacetime, and it may provide a

new scenario for the Universe.

Keywords: gravitational interaction, translation invariance, spin-2 field, gauge interaction

DOI: 10.1088/1674-1137/acf0b2

I. INTRODUCTION

Einstein's general relativity takes gravity as a geomet-
ric property of spacetime and has successfully described a
variety of gravitational phenomena at several scales [1,
2]. Many experiments have verified that gravitation is a
phenomenon of curved spacetime, i.e., the underlying
gravitational theory should be a metric one. The great
success of general relativity, however, has not stopped al-
ternatives from being propounded. There are many modi-
fied gravity theories, such as scalar-tensor theory [3, 4],
vector-tensor theory [5], bimetric theory [6, 7], tensor-
vector-scalar theory [8, 9], f(R) theory [10, 11], Hofava-
Lifschitz gravity [12, 13], Galileon theory [14], and mod-
els of extra dimensions, including Kaluza-Klein [15],
Randall-Sundrum [16, 17], and Dvali-Gabadadze-Porrati
gravity [18]. The parameterized post-Newtonian (PPN)
formalism was proposed to compare and assess various
gravity theories [2]. For a theoretical review, see, for ex-
ample, Ref. [19].

In contrast with gravity, the electromagnetic, weak,
and strong interactions are all described as gauge theor-
ies, which are related to some internal symmetries. Ein-
stein himself attempted to unify the electromagnetic and
gravitational fields by introducing a tetrad or vierbein
field [20—22]. This is known as the teleparallel theory of
gravity. Later, Mdller revived teleparallel theory when he
introduced his energy-momentum complex to solve the
localization of energy and momentum in general relativ-

ity [23]. After this, Hayashi et al. proposed the new gen-
eral relativity as a teleparallel theory described by the
Weitzenbdck connection obtained due to the condition of
absolute parallelism [24—28]. This implies that the new
general relativity can be presented as a gauge theory of
the translation group. Localizing the translation group
will result in Weitzenbdck spacetime. In fact, after the
emergence of the gauge concept, several authors began to
attempt to derive the gravitational interaction by gauging
the Lorentz and Poincaré groups [29—31]. Applying these
external groups in Minkowski spacetime will lead to a
gauge theory related to gravity [32]. Fixing the paramet-
ers emerging from the decomposition of the Weitzenbock
torsion can render a new general relativity to the telepar-
allel equivalent of general relativity. In the teleparallel
equivalent of general relativity, all the effects of gravity
are encoded in the torsion tensor. Some authors estab-
lished a more mathematically sound framework for new
general relativity using Cartan geometry [33, 34]. The en-
ergy -momentum distribution in the framework of this
teleparallel theory of gravity has also been discussed
[35—37]. Besides the different gravity theories obtained
by gauging different symmetry groups [38—40], there are
several other gauge theories of gravity, such as nonlocal
translation gauge theory [41] and the f(7) theories of
modified teleparallel gravity [42, 43].

In contrast with general relativity and the above
gauge theories that use the geometrical gravity approach
to explain gravitation, the "field" gravity theory was con-
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structed similar to other fundamental physical fields us-
ing the Lagrangian formalism of relativistic quantum
field theory in Minkowski spacetime [44—46]. Many au-
thors have derived Einstein's field equations of general
relativity from spin-2 field theory [47—50]. From the free
spin-2Lagrangian, which is infinitesimally translation in-
variant, and the interaction between the gravitational field
and matter fields, one can obtain the equation of motion
for the spin-2 field. However, it is not self-consistent be-
cause in the gauge field theory of gravity, the spin-2
gravitational field itself should have the energy-mo-
mentum as well as other matter fields, which is also the
source of gravity. Simply adding the energy-momentum
tensor of the gravitational field to the tensor 7, of mat-
ter fields is still not consistent because the modified Lag-
rangian, which includes the self-interaction of the gravita-
tional field, will generate a new energy-momentum
tensor, and this new energy-momentum tensor will again
result in a new modified Lagrangian. This is an infinite
process. An iterative gravity field theory in Minkowski
spacetime was partly developed, where the theory was
constructed step by step using an iteration procedure so
that at each step, all physical properties of the energy-mo-
mentum tensor of the gravity field are under control
[51-54]. Each step of iteration is described by linear
gauge-invariant field equations with fixed sources. It has
been noted that an ostensible field theory of gravity in flat
spacetime is actually general relativity. All the deriva-
tions of general relativity from spin-2 field theory are
based on some additional assumptions equivalent to the
geometrization of the gravitational interaction [1, 55, 56].
It is still an open question whether the field gravity the-
ory is experimentally equivalent to geometrical general
relativity. Some tests that can clarify whether gravity is
the curvature of spacetime or a matter field in Minkowski
spacetime, as is the case of other physical forces, have
been reviewed [57, 58].

General relativity is constructed in curved Riemann
spacetime, whereas the gauge theory of gravity usually
deforms the underlying Minkowski spacetime and leads
to new geometry. In these gauge theories, the gravitation-
al field is represented by the metric tensor. The field the-
ory of gravity applies the iteration process starting from
the free spin-2 field. The interaction Lagrangian has been
introduced as a principle of universality to replace the
equivalence principle used in the geometrical approach
[53]. However, in this study, the gravitational tensor field
hy, 1s introduced naturally to guarantee the local transla-
tion invariance of the Lagrangian, and it has nothing to do
with the metric. The spacetime is always flat, as in the
field gravity theory. However, our translation gauge
group is not infinitesimal. In addition, the principle of
universality, i.e., the interaction between the gravitation-
al and matter fields, is derived from gauge invariance
rather than introduced as an assumption. In Sec. II, the

gravitational interactions between the tensor field 7, and
matter field with spin-0, 1/2, and 1, and the self-interac-
tions for h,, are all obtained with the same requirement
that the Lagrangian is locally translation invariant. We
discuss the deflection of light when it passes through the
sun as an example in Sec. III. Finally, Sec. IV presents a
summary.

II. TRANSLATION INVARIANT LAGRANGIAN

The free Lagrangian L9 = ¢(iy“d, —m)y for a quark
or lepton field is invariant under the global U(1) trans-
formation y(x) — e“%y(x), where a is a constant. With
the Nother theory, the electromagnetic current J¥(x) can
be obtained as JH(x) =ey(x)y*y(x). The interaction
between the quark/lepton field and photon field A,(x) can
then be expressed as J*(x)A,(x). The photon field can be
naturally introduced with the proper transformation prop-
erty, and the interaction between the quark/lepton and
photon fields can be automatically obtained if we assume
that the total Lagrangian is locally U(1) invariant, which
means o is spacetime dependent. The standard model for
strong and electroweak interactions is established in a
similar way. One may wonder whether the gravitational
interaction can also be constructed in this way. For grav-
ity, the current is related to the energy-momentum tensor,
which is generated from the translation invariance of the
Lagrangian. In this section, we discuss the interactions
between the gravitational field and matter fields, includ-
ing Fermion and Boson fields, and the self-interactions of
the gravitational field.

A. Lagrangian for the fermion field

Under the local translation, a Dirac field transforms as

Y(x) = ¢ (0) = y(x), (1

where x* = x*+6“(x). The free Lagrangian £} trans-
forms as

L0003 B Q) ~ @Oy
—mp(xX W (x)
:% (GO O (x') = G )y v (x)]
—m (& ()
b3 [T W)~ @ TN U)] 3,60,
@)

where the first line on the right hand side is the same as
the original Lagrangian, except the argument x is re-
placed by x’. To cancel the second line, the tensor field
h.(x) must be introduced to the Lagrangian as
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Uiy hyy ()0 Y(x) = gy ()" Y(x))y*Y(x)  with  the
transformation property
1
hyv(x)ap - huv(xl) - gauev(x) a;)r (3)

where g is the coupling constant. Therefore, the total Lag-
rangian Lg(x) is locally translation invariant, which is ex-
pressed as

Lo() =5 0+ 8l ()[BT 0(0)
=~ (@YY~ mP ()
= L200) + gl (OTE ()

=3 [FOP D0 = (DB 9(0)] = mi (),
@)

where T5"(x) is the asymmetric tensor for the Dirac field,
expressed as

T = 5 [J0y' v -@Hon ). ()

D, is the covariant derivative D, =9, + gh,,(x)d”, and
N = diag{+1,-1,-1,-1} is the metric tensor of
Minkowski spacetime. Because 8, = () + 0,07 (X)),
when 0,6,(x) is small, the transformation property of
huy(x) can be obtained order by order. For example, at
leading order, h,,,(x) transforms as

1
hﬂv(x) - hpv(x’) - ga,uev(x)' (6)

At next-to-leading order, it transforms as

1
h,uv(x) _>h,uv(x/) - gapev(x)

1
— | hyp(x") - gaﬂé’p(x) 96, (x). @)

From Eq. (4), we can see that the locally translation in-
variant Lagrangian is obtained from the free Lagrangian
via the replacement of 9, with D,,. It is equivalent to re-
place n,, with 15, +gh,(x). It is interesting that the
tensor 75" (x) is not exactly the same as the energy-mo-
mentum tensor obtained by the No&ther theory from the
global translation symmetry. This is different from the
electromagnetic case, where the electromagnetic current
in the interaction A,(x)J*(x) obtained from the local U(1)
symmetry is the same as that obtained from the global
U(1) symmetry. Owing to the derivative in the tensor cur-

rent 75"(x), it is not invariant under the local translation,
ie.,

TE (x) —> T;’p(x’)(él‘; +0"6,(x)). ®)

This is similar to the color current in the QCD case,
where the current is not invariant under the local SU(3).
transformation. However, because the derivative in the
tensor current transforms together with the gravitational
field Ay, according to Eq. (3), the interaction hy, (x)T4" (x)
transforms as

Iy (T (x) —

1 v,
h/lV(x/) - gaugv(x):| T{:l (X ) (9)

This is comparable to the U(1) transformation of the elec-
tromagnetic interaction A, (x)J*(x)

1
Au(x0)JH(x) — {A#(x) - g(?,ﬂ(x)} JH(x). (10)

The tensor h,,(x) describes the gravitational field of
spin-2 with gauge freedoms owing to the invariance of
translation. It is convenient to set /,,(x) as symmetric,
traceless, and divergence free [59], i.e.,

h,uv(x) = hvy(x)’ U”Vhﬂv(x) =0, auh,uv(x) =0. (11)

With the above constraints, the Lagrangian Lr(x) can be
written as

Lr(x) = LU + ghyy (OTE (), (12)

where TE"(x) is the symmetric Belinfante—Rosenfeld en-
ergy—momentum tensor of the Dirac field, expressed as

v i 14 TAY
T (0 =3 @y 0"y + 97" 3"y
i _ -
- @YY+ @Dy v - Ly (13)
Neither the asymmetric part of 74" (x) nor the term 7 L2
has contributions to the gravitational interaction
ghuy(X)TE (x) when hy,(x) is symmetric and traceless. Un-

der the local translation, the Lagrangian of Eq. (12) will
generate an additional term,

Lr(x) 5 Le(x) + i(a,m(x) —0,0,(x))

X [P ) = @ PO Y]
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+ @ | 3 [P )
@I U] - miewe ) a4

In other words, the Lagrangian (12) is only invariant un-
der the symmetric and traceless translation with

0,0,(x) = 0,0,(x), 0,6"(x)=0. (15)
We should mention that, in general, the gravitational field
and tensor current of the matter field do not have to be
symmetric. Eq. (11) is the gauge condition rather than the
equation of motion for the gravitational field A, (x). This
is just one specified choice. The translation invariance
gives the field 7,,(x) gauge freedom.

B. Lagrangian for the boson field
For the spin-0 case, the free Lagrangian is written as

1 1
L8 = 50,009~ n* . (16)

In the above and most of the following equations, the ar-
gument x is omitted for convenience. Under the trans-
formation of translation, ¢(x) is changed to be ¢(x+6(x)).
By replacing 9, with the covariant derivative D,,, the free
Lagrangian £2 can be transformed into the locally trans-
lation invariant Lagrangian

1 1 .
Ls =5 DupDV'¢ - 5m2¢2 = L3+ ghy TE

1
+ Eg%ﬂphﬂ”a%a(,(p, (17)

where 74" is the tensor current for the spin-0 field, ex-
pressed as

T = 890" ¢. (18)

Unlike the spin-1/2 case, in the spin-0 case, the tensor
current 75", which couples with the gravitational field
hyy, i1s symmetric without the requirement that A, is
symmetric. In the spin-0 case, besides the leading order
interaction gh,, 74", there is a high order interaction

%gZhﬂphﬂ‘Tapanaq). Certainly, as in the spin-1/2 case, we
can also choose the symmetric and traceless gauge. The
leading interaction term can then be expressed as
gh,, T§", where T§" is the canonical energy-momentum
tensor

TE = 33 ¢ — " L3. (19)

It should be noted that for matter fields with any spin,
they transform in the manner of Eq. (1), which is differ-
ent from Refs. [59, 60], where the scalar, fermion, and
vector fields have different transformation properties. As
a result, there was no interaction between #h,, and the
scalar fields [60]. However, in our method, D, is the
same for all matter fields with any spin.

For the massive spin-1 field, the naive free Lagrangi-
an can be written as

0 1 , m?
‘ENaive = _EaﬂAvauA + TAIIAH' (2())

With the same approach, the locally translation invariant
Lagrangian can be written as

1 m?
LNaive =— EDuAvDHAV + TAﬂAH = L(Izlaive
oy 1
+ghu Th o — 5 Sh WP AHA, (1)

where T4 is the symmetric tensor current for the above

naive Lagrangian, expressed as

Tﬁ;ive =—-0lAPO"A,. (22)
Again, besides the leading order interaction, the high or-
der interaction appears. The vector A,(x) has four de-
grees of freedom, whereas the massive vector particle has
three degrees of freedom. To describe the massive vector
particle, the correct Lagrangian is the so-called Proca
Lagrangian Lp constructed by the strength tensor F,,
[61]. In the massless limit, for example, for a photon
field, the free Lagrangian is locally U(1) gauge invariant
and expressed as

1
L= ‘ZF””FW’ (23)

where

Fu=0,A,-0,A,. (24)
The interaction between the photon and gravitational
fields can be obtained via the requirement of translation

invariance. The locally translation invariant Lagrangian
for the photon field is written as

Ly= —%(DMAV - D,A)(D'A” - D" AM). (25)
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After the expansion of the above Lagrangian, we can get
— 1 uv Ty
Ly=— ZF”VF +gh, Ty
1
-5 G (hyph" 7P A3, A, — hy " F A,0,A"),  (26)
where T4 is expressed as
T = -F"§'A,. (27)

If hy,, is gauged to be symmetric and traceless, the inter-
. - 1
action ghy,, T, can be changed to 3 ghw (T +T3), where

T is the energy-momentum tensor of the photon field,
expressed as

y 1
T = ~F0 Ay + " Fpr P (28)

The »* term in 74" has no contribution to the interaction
18hu (T4 + T!') because hy, is traceless. As in the fermi-
on field case, with the symmetric tensor current, the cor-
responding Lagrangian is locally invariant only under the
symmetric and traceless translation.

With the replacement of the derivative 9, with D,,
the locally U(1) invariant Lagrangian £Y, is transformed
into a translation invariant one Ly. As a result, the Lag-
rangian of Eq. (26) is no longer U(1) invariant. This is
acceptable because the gravitational interaction is transla-
tion invariant rather than U(l) invariant. By replacing
F,, with F,, +gh,,Fy - gh,,Fi, we can obtain the U(1)
invariant Lagrangian

1
Ly=- Z(F”V +ghy F¥ — ghvaﬁ)(F“" + g F) —gh" F!)
_ 1 Ny My
=— ZFWF + gh/lVTEM

1 2 T ne)% o v
~ 38 Uyt P F gy = by FLFY),
(29)

where Tfy, is the symmetric Belinfante-Rosenfeld tensor
of the electromagnetic field, expressed as

1
TgKA = FﬂpF;+ ZquFpO'FP(T = T<I/V+6P(F‘UPAV), (30)

The difference between the symmetric Belinfante-Rosen-
feld tensor Tk, and the asymmetric energy-momentum
tensor 74", which corresponds to the conserved tensor

directly obtained from Nother theory, is the total derivat-

ive term d,(F*?A¥). We should mention that although the
interaction gh,,Tfy, is recognized as the interaction
between the photon and gravitational fields, the Lagrangi-
an of Eq. (29) is not locally translation invariant. In fact,
in the fermion field case, the situation is the same. The
spin-1/2 Lagrangian with the gravitational field cannot
be locally U(1) gauge invariant. For example, with min-
imal substitution, if we change the Lagrangian Ly to be

Lt =y My + 8hy )" +ieA" W — mynf, (€2))

the Lagrangian L will be locally U(l) invariant.
However it will no longer be locally translation invariant.
For the gravitational interaction, we should have transla-
tion invariance instead of U(1) invariance. In this sense,
the Lagrangian of Eq. (26) is more reasonable than that of
Eq. (29). This is different from the standard model, where
the total Lagrangian is invariant under the local
SUB)cxSUQ2), x U(1)y transformation. The QCD Lag-
rangian is SU(3)¢ invariant, and the electroweak Lag-
rangian is SU(2); x U(1)y invariant. Because the currents
in the standard model interactions have no derivatives,
their sum is both SU3)c and SU2), x U(1)y invariant.
However, if gravity is included, we cannot make the total
Lagrangian invariant under the T(4)xSU3)cXx
SU2);, x U(1)y transformation. The tensor current for the
gravitational interaction includes the derivative. As a res-
ult, the total Lagrangian including the gravitational field
will destroy the internal local gauge symmetry, although
the other parts without the gravitational field are still in-
variant under the internal gauge transformations.

C. Lagrangian for gravitational field

Now, we discuss the Lagrangian for the spin-2 gravit-
ational field. For the spin-2 field &, its free Lagrangian
is [59]

1 1
/ 0 _ Eaﬂhpgaﬂhp(r —[)ﬂh/“’(?"hpy +(9,,h3vh“" - Eaﬂha‘ h,
(32)

where £ is the trace of the field &,,. The above Lagrangi-
an is the same as the linear approximation of general re-
lativity, where A, is a weak field [1]. The Lagrangian £
is only invariant under the infinitesimal local translation.
To make the Lagrangian invariant under the general local
translation, we must change the derivative 9, to D,. For
example, for J,h,,(x), we must change it to be
D, D, V,(x), where V,(x) is an arbitrary vector field. This
"background" vector is introduced together with the de-
rivative because of the transformation property of the
gravitational field A, of Eq. (3). Under the local transla-
tion, D, D, V,(x) transforms as
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DD, V,(x) — {6,, +8 {hﬂg(x/) - é@lﬂg(x)} 6”7}
X { {6‘, +g (hw(x') - éﬁv&(x)) 3'7} Vp(x,)}
- {aﬂ +g {h,,(,(x’) - éa,,e(,(x)} a’”}

x {[8} + ghye(x)87] Vp(x') }
- {a/,l + ghﬂa_(x/)a/a'} { [6; + ghvr(x,)a”] V,D(x,)}

=D, D, V,(x).
(33)

Therefore, the Lagrangian for the gravitational field
can be constructed by D, D, V,(x). The simplest choice is

1 . 1
to choose V,(x) = —x,. 0,V,(x) turns into —%,,(x), where
N,,(x) transforms as 8

Ny (x) = Nyp(x)) +0,6,(x). (34)

In Minkowski spacetime, 9,,(x)=N,,(x")=mn,,. In this

1
case, —D,D,x,(x) = D h,,(x). Consequently, the locally
transla%ion invariant Lagrangian can then be written as

1
L6 =5 Dby DV 1¥7 = Dyl Dy + Dy Dy 1

1 3
~ 5 DuhD'h = L2+ ghy, TE

2
+ % (Ragch™ 1 Dy her = ™ &

= 2 hyg DB + 2y e PRV R),  (35)
where TZ" is expressed as
T =0y 17 — ' h h— 20" WP O
+ 8 WP, + P hO, . (36)

With the requirement of translation invariance, the self-
interactions of the gravitational field can be obtained,
which include the leading order interaction gh,, T4 and
higher order terms proportional to g2.

We obtain the interactions between the gravitational
field and other matter fields and its self-interactions based
on the translation invariance. In the next section, we
study the bending of light when it passes through the sun
as an example. The total related Lagrangian can be writ-
ten as

Lror =)y (0 +ieAu (W (x) + ghyy ()T — mi(x)(x)

4

1 5 2
— P P 4 g T — %(h,,ph,w.aPAVaO‘Av — Ryphy e P AT AMY

1 1 i
+ 3 Ol @ W = Bl F by + 3D W — 2 6,h o+ ghy TG

2

+ % (Raph™ & W7 8,y = ayoh®  hd b = 20 s 8y hy 07 B

+2hyhy e 7 h),

€0

where the other gauge fields for the strong and weak interactions are not included. They can be easily added to the
above Lagrangian. With the Lagrangian, the equation of motion for the gravitational field can be obtained as

HY +gHY" + g*H5 = g (TH + 1Y) = g (W*Fpo F*7 + hpo F* '), (38)

where

=0 - on— - + + o ’
HY = Ol = 0h — 00,1 — 80, h + 010" h+ 1/ 0,0 (39)
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HY 220,17 05 1™ + 217 0,0 " = 21" 01 b — 20" W7 80 e h = 20, W0 e h”” = 2080 e h””
=20 hye W = 2Ry P + OphP" & b+ 00" h+ 11" 0phap0P h + 1/ hapdyd° h*
+ W Oph+ W ph + 11" O’ 0% hoer + 11 7 3y hoor — TH (40)

lew :hlw—aphapao'(hﬂv - Tlllvh) + hapaphao—ao‘(hﬂv - Tlpvh) + haphavaparr(hﬂv - Tlpvh)
=20, (H* hya@ ™) + 3y (H* W D) + 17 O (hpahopd” P ) — B 8" WP 3 phag
+ 10 hdph + 200" WPy hop — hpw 0 1 07 h— hpy P h” 3 h. (41)

With the same gauge as Eq. (11), the above equation can be simplified to

OR + 8217000 " — 20 hpy K = 2hpe P + 11 Dphap P h™ — 175 hper)
+ 87 (hap® B g 1" + haph® & 9o h" — 21 8 (hgo 07 ™) + 1" B (hepd” hF)
—W° 8 WP Ophep + 20 WP Oshep + WPFpo 7 + hpe FF'7) = g (TE + T{) . (42)

On the right hand side of the equation, the tensor cur-
rents are for all matter fields that generate the gravitation-
al field. To study the bending of light by the sun, the en-
ergy-momentum tensor of the sun is dominant.

III. BENDING OF LIGHT

We now discuss the bending of light caused by the
sun in Minkowski spacetime with the Lagrangian ob-
tained in the previous section. We first obtain the solu-
tion of the gravitational field generated by the sun. It is
difficult to solve the full differential Eq. (38); therefore,
we solve the equation perturbatively. At leading order,
where the self-interactions of the gravitational field are
neglected, the equation for leading order /g is expressed
as

I:l/’ll(g’) - T]IJVDh(O) - (9“6,)/’1’()6’) - 6V6ph’<)6’)

+ 6‘“0"]1(0) + vaapa(rh}(o(; = gTélu‘;l’ (43)

where Thy is the tensor current for the classical object
sun. For a microscopic particle, the tensor 7+ is differ-
ent from the symmetric energy-momentum tensor TH”.
The difference between them is a total differential and a
term proportional to the free Lagrangian £°. For ex-

ample, for the Dirac field, T4 -T% = —11—66p (1}{7’1,
[yv,yp]}zp> +7 L), and for the scalar field,
TE - TE = £2. When studying gravity for an on-shell
(£ =0) classical object, one can express the tensor cur-
rent of the object as [1]

TH (x) = / m‘;i: %64(X—z(r))d‘r (44)

without specifying its spin. Here, z/(t) represents the
particle's world line, and m is the mass of the object. In
particular, the classical tensor for a static star T%y, has
only one non-zero component expressed as

Tom() = M (x), (45)
where M is the mass of the sun. Eq. (43) is comparable to
the metric b, in the linear approximation of general re-
lativity, where by, = g,y — 1., and g, is the metric tensor
of curved spacetime. In our case, the gravitational field
h.y is a dimensional quantity related to b, via gh,, = b,
The coupling constant is related to Newton's constant G
via g2 = 16nG. The value of g is an order of magnitude
similar to the Planck mass's reciprocal. This means that
the strength of the 7, coupling to itself and other fields is
weak.

We should note that when the high order terms are
neglected, the equation for the gravitational field at lead-
ing order is no longer translation invariant. The gauge
condition of Eq. (11) cannot be completely satisfied. In-
stead, we can choose the gauge condition as

hyy = hyy, 0y, =0. (46)

Then, the equations for the non-zero components of h’(’()v)
at leading order become
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—V2hg, + Vhoy = 4 VrGMS® (x), (47)
~V2h = V2 ho) 5 + 80 hgy = 0. (48)

The solutions for the above equations are

/ M Bl /G (M .. Mxx/

It is easy to check that the solutions satisfy the condition
i) = 0.

We can also choose another type of gauge condition
widely used in solving the metric b, in the linear approx-
imation of general relativity [1, 62]. The condition is

Ry = hyyy 20,1 =3"h, (50)
which is also weaker than the condition of Eq. (11). It is
not required that 7 =0 and 9,#*" =0, but there is a rela-
tionship between them. With the above gauge condition,
at leading order, the equations for the non-zero compon-
ent of A, turn into

1
-2 <h?8)—§h(0)) = 4VaGMsV(x), (51)
92 (hi 4 Lne) = 0 (52)
(0) ) ((ON .

The corresponding solutions are

1 /GmM , 1 [GM
o=3Vz 7 Moo=V O

With the obtained gravitational field #,,, we can now cal-
culate the deflection angle of light when it passes through
the sun.

The action of a classical particle in the presence of a
gravitational field is written as

dz* dz
Ipartlcle =- /(Uﬂv +gh,uv) dT~ (54)

With the variational principle, the equation of motion of
the particle is expressed as

d?z+ " dzf dz¥

Az TP dr dr (53)

where

1
Fga— = 5 (UHV + ghﬂv)(apghwr + 6a'ghvp - avghpa')- (56)

This equation is similar to the geodesic equation in the
general relativity case. The above equation is not mass
dependent and is suitable for a particle with any mass, in-
cluding photons With the definition P, = (5, + ghu)p",

where p” = dT , Eq. (55) yields

dP, = %[)th(fppdzo'. (57)

Suppose there is a photon moving in the x—y plane
(z=0). The direction of its initial momentum at
(x = —o0,y=R,z=0) is parallel to the x axis. The traject-
ory of the photon will be deflected by the sun when it
passes through the sun. Because the deflection of the
photon is slight, we can assume that p* is a constant and
|| < p° ~ p*. With the obtained A, in Eq. (49) for the
gauge condition of Eq. (46), the equation of motion (57)
for u =2 is expressed as

3GMR 3GMx’R
P, = - ( + al ) P (58)
2Vx2+R? 2Vx2+R2S
After the x integral, we have
*®( 3GMR 3GMx’R
Py<x=+oo>=—p*/ ( =t )
o0 \2VX24+R23 2Vx24+R?S
_ 4GM

(59)

The deflection angle of light is then obtained as
ppo PGE=t0)  Px=+e) _dGM

p* p* R

For the other gauge condition, Eq. (50), the correspond-
ing equation of motion for u =2 is

2GMR
dPy:—Wp dx. (61)

This equation is different from Eq. (58) owing to the dif-
ferent A, obtained in the different gauge. It is interesting
that after the x integral of the above equation, we obtain
the same Py(x = +0) as

“ 2GMR 4GM
Py(x =+00)=—p* ———dx=—-——+—p". (62)
VPR R

With the mass and radius of the sun, we can derive the
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deflection angle A¢=1.75". Therefore, for different
gauge conditions, although the corresponding #,, forms
are different, the obtained deflection angle of light is the
same. It is also the same as the result in general relativity
and experimental observations [2, 63].

We now estimate the deflection angle including the
self-interaction of the gravitational field. For simplicity,
we work in the gauge condition of Eq. (50). At next-to-
leading order, the equations for the non-zero components
of the gravitational field are expressed as

1 G M?
w2 (00 1 _ 3 (x)—4G 1/
v (h(l) 2h(1)> AVIGMS®P (x) - 4G —
(63)

1 G M? . .
-v? <h’(/1) + 56”}1(1)> =26\ — ¥, (64)

The solutions for the above equations are
1 [G(M GM?
00 _
=315 (5 %),
i 1 [G(M . 2GM* ;. GM? ; .
I’l(jl) 25 ;(751+T61+7xx1). (65)
With the same method, we obtain

*© 2GMR
Py(x=+oo)=—px/ (\/ = R23+
—00 X<+

. 4G2M2x2R)
x2 + R26
~ (4GM+77T GZMZ) .
- R 2 R )P

6G*M?*R
Va2 + R24

(66)

The deflection angle of light is then

_4GM  Tn G*M?

A i
=t (67)

where the second term on the right hand side is the next-
to-leading order contribution, which is highly suppressed

GM . .
by the factor ——. Numerically, the correction to A¢ at

next-to-leading order is negligible, at approximately
1.0"x 1075,

For the photon, the gravitational field generated by
the sun is very weak and the deflection angle of light is
small when it passes through the sun. In this case, the
self-interaction of the gravitational field is negligible. Its
correction to A¢ is not visible. For both #,, and A¢, the

high order contributions are suppressed by the factor

GM . .
X For more compatible stars, for example, the white

dwarf ZTFJ190132.9 + 145808.7, with a mass and radius

M .
of M ~1.35M; and R~ 2140km [64], the factor GT 1S

9.3x 10~*, which is 439 times larger than that of the sun.
As a result, at leading and next-to-leading order, the de-
flection angles A¢ are 12.79’ and 12.83’, respectively.
For neutron star HESS J1731-347, with a mass and radi-

GM .
us of M ~0.77Mg and R ~ 10.4km [65], the factor & s

0.11, and the contribution from the self-interaction of the
gravitational field may be as large as 30 of the leading or-
der contribution.

We should mention that gauge theories of gravity
have been proposed with respect to various external
groups, such as the Lorentz group, translation group, and
Poincaré group in the 1960s and 1970s [24—31]. In partic-
ular, a series of papers by Hayashi et al. discussed in de-
tail how to construct the gauge theory of gravity via the
translation group [24—27]. Compared with Ref. [24], al-
though the basic idea of this study is similar, for example,
the gravitational field is introduced by changing the glob-
al translation symmetry into a local one, there are several
major differences. First, our Lagrangian is invariant un-
der the finite translation transformation, whereas the Lag-
rangian in Ref. [24] is invariant under the infinitesimal
transformation. As a result, the corresponding transform-
ation of the gravitational field £, in this study is always
associated with the derivative, as shown in Eq. (3). The
transformation of 7, itself can be obtained order by or-
der as Egs. (6) and (7). The transformation property of
the gravitational field in Ref. [24] is the same as our lead-
ing order formula if high order terms are neglected.
Second, our gravitational field £, has nothing to do with
the metric. The metric g,, in our Lagrangian is always
nuw- The gravitational field A, is an independent quant-
ity. Owing to the translation invariance of the Lagrangi-
an, we can choose a different "gauge" for 4,,. Con-
versely, in Ref. [24], the gravitational field # was proved
to be a vierbein (tetrad) field and related to the metric. As
expressed in the reference, it is necessary to define the
field by, inverse to b, with byl =6y and b with
b =det(by,). The metric tensor was constructed as
g" =n"'bb), and the invariant volume element was bd*x
instead of d*x. The underlying Minkowski spacetime was
deformed after localizing the translation, thus one had to
reconstruct the emerging geometry [32]. Third, based on
the local translation invariance, the interactions between
the h,, and matter fields with spin 0, 1,and 1 are ob-
tained. Except the interaction between the £, and spin—%
field, there are high-order interactions. In particular, the
interaction between A, and the electromagnetic field A,
is not locally U(1) invariant. In addition, our Lagrangian
for the gravitational field is obtained from the free Lag-
rangian for the spin-2 field with the requirement of loc-
ally translation invariance. The obtained Lagrangian is
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also different from that of Ref. [24]. Finally, we describe
gravity in the same frame as that for the other interac-
tions in the standard model. The result obtained with our
Lagrangian is different from that with general relativity.
While previous gauge theories of gravity lead to the so
called "new general relativity," which is the teleparallel
equivalent of Einstein's general relativity [27], the "vier-
bein" approach can be regarded as another formalism to
derive Einstein's equation [19, 22].

IV. SUMMARY

Based on the requirement that the total Lagrangian
should be locally translation invariant, we obtain the in-
teractions between the gravitational field and matter
fields in Minkowski spacetime. For the spin-1 field, the
tensor current, which couples to the gravitational field
hyy, 1s not symmetric. This differs from the well known
symmetric Belinfante —Rosenfeld energy —momentum
tensor of the Dirac field. Only when the symmetric and
traceless gauge is chosen will the gravitational field
couple with the conserved symmetric tensor. With this
gauge, the Lagrangian is no longer invariant under the
general translation group but is only invariant under the
symmetric and traceless translation. This is also true for
the spin-1 case, where the current couples to the gravita-
tional field, which is not a symmetric conserved
energy -momentum tensor. In addition, for the photon
field, the inclusion of the gravitational interaction will

destroy the local U(1) invariance. For the spin-0 case, al-
though the tensor coupled to A4, is symmetric, it is still
different from the conserved energy-momentum tensor
because of the 7, term. For both the spin-0 and 1 cases,
besides the leading order interaction gh,,T*”, the local
translation invariance results in high order interactions
proportional to g?. The translation invariance also leads
to leading and next-to-leading order self-interactions in
the Lagrangian for the spin-2 gravitational field.

We discuss the deflection of light with the interaction
between the photon and gravitational field in Minkowski
spacetime. For two different choices of gauge conditions,
the obtained gravitational fields £, are different.
However, the deflection angles A¢ in the two cases are
the same. The obtained angle is also the same as that in
general relativity, although the basic scenario is com-
pletely different. The contribution from the self-interac-
tion of the gravitational field is suppressed by the factor
GTM. It is negligible and causes no visible effect on A¢ of
light when it passes through the sun. For more compact
stars, for example, a neutron star, the self-interaction may
contribute as large as 30 of the leading order contribu-
tion. Therefore, the difference between the gravity de-
scribed in our method and that in general relativity is sig-
nificant when gravity is strong. This may provide a new
scenario for our Universe. It is also interesting that grav-
ity can be described in a similar way to the interactions in
the standard model, which is based on local symmetry in
Minkowski spacetime.
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