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Abstract: Traditionally, the cosmological constant has been viewed as dark energy that mimics matter with negat-

ive energy. Given that matter with negative energy provides a repulsive force, which fundamentally differs from typ-
ical gravitational forces, it has been believed that the cosmological constant effectively contributes a repulsive force.

However, it is important to note that the concept of gravitational force is valid only within the framework of Newto-

nian dynamics. In this study, we demonstrate that the traditional understanding of the gravitational force contributed

by the cosmological constant is not entirely correct. Our approach involves investigating the Newtonian limit of the

Einstein equation with a cosmological constant. The subtleties involved in this analysis are discussed in detail. Inter-

estingly, we find that the effect of the cosmological constant on Newtonian gravity is an attractive force rather than a

repulsive one for ordinary matter. As expected, this corrective force is negligibly small. However, our findings may

offer a way to distinguish between dark energy and the cosmological constant, as one contributes a repulsive force

while the other contributes an attractive force.
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I. INTRODUCTION

The story of Einstein introducing the cosmological
constant is well known. The key takeaway from this story
is that Einstein valued physical reality more than his the-
ory itself. In other words, the inclusion or exclusion of a
cosmological constant in the theory should be guided by
physical evidence. Since the discovery of the accelerat-
ing expansion of our Universe, it has become clear that a
cosmological constant is necessary in the Einstein equa-
tion.

G,y +Agyy = 81T, )

Corresponding to the accelerating expansion of our
Universe, we have A > 0. Consequently the term Ag,, in
the aforementioned Einstein equation mimics an ideal flu-
id with negative energy and negative pressure. Hence, the
cosmological term has been considered to represent dark
energy.

The concept of dark matter is inspired by galaxy rota-
tion curves. Typically, the observed rotation velocity at
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relatively large distances from the center of the galaxy is
greater than what is predicted by Newtonian gravity. This
discrepancy suggests the presence of additional matter
that provides extra gravitational attraction.

If the cosmological constant is related to dark energy,
it would provide a repulsive force rather than an attract-
ive one, which contrasts with the behavior of dark matter.
As a result, few scientists consider the cosmological con-
stant problem and the dark matter problem as a single is-
sue. One interesting and somewhat mysterious fact is
that, through data fitting using modified Newtonian dy-
namics (MOND) [1-3], galaxy rotation curves reveal a
characteristic acceleration scale ay ~ 107'° ms=2 (with in-
ternational system of units) ~ 107'¥s~! (with geometric
units) ~ VA [4]. Some authors have suggested that this
phenomenon may be related to the quantum nature of
gravity [5] or to alternative gravity theories beyond those
of Newton and Einstein [6—10].

If general relativity were to break down, the related
equivalence principle or the general covariance principle
would have to be violated. To date, there is no definitive
evidence of such a breakdown at either the galaxy scale
or the cosmological scale [11—17]. Unlike previous stud-
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ies, we would like to pose the following question: Is it
possible to relate the cosmological constant A to the char-
acteristic acceleration scale ay completely within the the-
ory of general relativity?

To relate the cosmological constant A to the phe-
nomenological MOND theory, we must first investigate
the gravitational force associated with the cosmological
constant. In general relativity, the concept of gravitation-
al force does not exist in the traditional sense. To discuss
whether the gravitational force is attractive or repulsive,
the Newtonian limit must be considered.

In this study, we highlight the subtleties involved in
deriving the Newtonian limit of the Einstein equation
with the cosmological constant. A careless reduction can
lead to a modified Newtonian gravity with a repulsive
gravitational force correction, but our analysis will show
that this result is incorrect. A careful reduction instead
leads to a modified Newtonian gravity with an attractive
gravitational force correction.

The analysis of the modified Newtonian gravity equa-
tion in this work indicates that the cosmological constant
A does contribute to an attractive gravitational force. But
the correction is approximately H?r?, where H denotes
the Hubble parameter and » denotes the distance to the
force center. In typical galaxy scenarios, this correction is
negligibly small. As a result, the cosmological constant A
does not significantly affect galaxy rotation curves.

Through the entire paper, geometric units are used,
where the speed of light and the gravitational constant are
set to one ¢ = G = 1. Thise paper is organized as follows:
In the next section, we outline the initial reduction of the
Newtonian limit of the Einstein equation with a cosmolo-
gical constant and then highlight the mistakes involved.
In Section III, we accurately deduce the Newtonian limit
of the Einstein equation with a cosmological constant.
Following this, we analyze the modified Newtonian
gravity equation derived in Section III and estimate
the resulting corrections. Finally, we conclude the paper
with a summary and some discussions in the last
section.

II. SIGN FOR REPULSIVE FORCE IS WRONG

In the traditional approach to deducing the Newtoni-
an limit of the Einstein equation, it is common to assume
that the metric is a perturbation of the Minkowski space-
time.

8uv = Nuwy + hyv- (2)

Regarding the gravitational source, the mass density p
is the leading term, while the velocity-dependent terms
are subleading or higher-order. Therefore, when consider-
ing only the leading order for the Newtonian limit, the

stress-energy tensor for the gravitational source reads as
follows:

)

=

S O O
oS O O O
S o o O
S o o O

As usual, we introduce the trace-inverse tensor of 7,
. 1
By = hy — Ehnﬂv, @)

where /1 denotes the trace of £,,. To the linear order of
h,v, the Einstein tensor of g,, can be expressed as:

1 . - ,
G = 5 [P+ o™ = By =t Br] . (5)

As is customary, we apply the harmonic gauge condi-
tion:

By = 0. (6)

Consequently, we have:

1-
G;w = _E ;u/,/l‘/l~

(M

Then, the Einstein equation (1) becomes:

Ohy,, = —167T,, +2Ag,y, ()

where O denotes the usual d'Alembert operator. Given the
fact that the speed of light is multiplied to time ¢, the time
derivative is higher order than the spatial derivative with
respect to the Newtonian limit. Hence, the above equa-
tion becomes:

V2 = —167T,, +2Ag,,, ©))

where V2 denotes the usual Laplace operator.

Furthermore, it is reasonable to assume A is a small
quantity. Hence, Ah,, are high order terms and can be
neglected. Consequently, Eq. (9) becomes:

V2hyy = =167T 4y +2A1),. (10)

The 00 component of Eq. (10) takes the form:
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V2hgo = — 1610 — 2A. (11)
Compared to the Newtonian potential ¢ satisfies:
V2 = 4np, (12)
Hence, we obtain solution of Eq. (11) [6]
;l00=—490—%”2, (13)

where r denotes the distance to the source center.
Hence, ii component of Eq. (10) becomes:

Vzl_l,'l‘ = 2A (14)

Corresponding to solution (13), we obtain the following
solution [6]:

r. (15)

In summary, we obtain:

A
—4¢— 3 P 0 0 0
A
- 0 =r 0 0
Ry = 34 (16)
0 0 3 o0
A
0 0 0 grz
Correspondingly,
hyy =
A
_2(p —+ 5 r2 O 0 0
A
0 —2¢p— grz 0
A
0 0 20— grz 0
A
0 0 0 20— §r2
(17)

Compared to the usual Newtonian limit of Einstein equa-
tion without the cosmological constant, we can determ-
ine that the correction term of the cosmological constant
to the Newtonian potential is:

—%rz. (18)

This correction term results in an effective force

A
37 (19)

which behaves as a repulsive force.

At first glance, this result seems consistent with the
expectation that dark energy should produce a repulsive
gravitational force. Due to this incorrect sign of A, it is
often concluded that the cosmological constant cannot be
related to dark matter.

However, the aforementioned analysis reveals a fatal
problem. Matter 7, is the source to the result in perturba-
tion h,, . In this sense, when T, vanishes, A, should van-
ish too. However, this is not true.

I can be argued that this nonvanishing #,, is due to
the small but nonvanishing A. Approximately, this argu-
ment makes sense. However, a subtle problem continues
to exist. When T, vanishes, (11) and (14) become:

V2 = —2A, (20)

Vzljll‘,' = 2A (21)

Now the entire system is uniform and isotropic. Similar
to the famous Neumann-Zeeliger problem, the above
equations have no solutions that correspond to the iso-
tropic symmetry the equations admit. This fact presents a
significant issue when applying the result of Equation
(19) to a galaxy. The galaxy in question is accounted for
by Equation (19), but what about other galaxies far away?
According to Equation (19), the farther the galaxy, the
stronger the force, which leads to a paradoxical situation.

We can observe the contradiction further through Eq.
(11). Effectively, A term acts as a form of matter:

A

off = — 22
Peff 8 (22)

which is positive p.s >0 as usual matter. This implies
that it should contribute an attractive gravitational force.
Additionally, it does not correspond to dark energy.

Mathematically, this issue is related to fact that the
partial differential equation

V2u=2A (23)

does not admit an unique solution without a suitable
boundary condition. The solution (15) is just one of many
possible solutions.

Given that there is no resolution to the aforemen-
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tioned critical issue, we conclude that the previously de-
rived result of a repulsive force associated with A is in-
correct..

III. COSMOLOGICAL CONSTANT PRODUCES
AN ATTRACTIVE GRAVITATIONAL FORCE

The discussion in the previous section suggests that
there may be no Newtonian limit for the Finstein equa-
tion. This observation aligns with the famous Neumann-
Zeeliger problem, which implies that Newtonian gravity
cannot describe cosmology. However, interestingly, gen-
eral relativity can indeed describe cosmology. Specific-
ally, when small-scale matter is absent, Equation (1) ad-
mits a cosmological solution, the Friedman-Robertson-
Walker (FRW) metric.

As in the previous section, we can again assume that
matter introduces a perturbation to the metric, which dis-
appears when matter is absent. Following this approach,
we find that the background metric should be the FRW
metric, rather than the Minkowski metric used in the pre-
vious section.

8w = Yuv + h,uv, (24)
where 7y,, denotes the FRW metric corresponding to the
cosmology solution. In the following, we always use the
background metric y,, to raise and lower the indexes. For
an example, the trace of 7, implies:

h=y"hy,. (25)

Along with this assumption, we have the Christoffel
symbol of gus

ruaﬁ — fuaﬁ + F(l)ﬂaﬁ +0(h?), (26)
1 N N A
T = 3+ Vahyf =¥V o). (27)

Here V, denotes the covariant derivative associated with
the FRW metric y,5. Furthermore, the Riemann curvature
tensor of g,, is as follows:

R, =Ry, +V, 0, VI 00, (28

Hvo

where R,/ denotes the Riemann curvature tensor of y,, .

Accordingly, the Ricci tensor of g, reads

R =Ry +RY) +0(h?), (29)

where I?W denotes the Ricci tensor of y,, and

R =5 ( ~V, VPl =V, Vo h+ VR + V,,V,,h;) . (30)

The Einstein tensor of g, reads:

Guo = Guo + Gl + O(h?), (1)

A 1 14 1 A
G;(ll(l = R;(tl(l - E(VaﬂREr]ﬁ) Wyo = ERhl“" + E(haﬁRﬂﬁ)VW’
(32)

where GAW and R denote the Einstein tensor and scalar
curvature of y,,, respectively.
Given that

N 1. N
R, — ER)/HV + Ay = 81T, (33)

where T, denotes the cosmological scale matternto lin-

ear order of &

., the Einstein equation (1) leads to:

L, sy 14 | A
R}(ll())' - 5(7 ﬁRaﬂ )7;40' - ERh;w' + E(h ﬁRaﬁ)'y;ur
+ Ahyy = 87T, (34)
Here, T,, denotes the small-scale matter.

By combining all of these results, we obtain the fol-
lowing:

—_

>
—_
>
—_
>

po‘pahm) += p;ur(th”p + ER(r(th{l + ER;uYh -

. 1 .n
- ~Rh,, + E(h“ﬁRaﬁ)yW = 87T - (35)

N == DN =1
>

Using the same trick as in the last section, we can use
the trace-inverse tensor of £,

- 1
My =y — ihyw,, (36)

to simplify the aforementioned equation, and the result is
as follows:
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la 2 A-
EV \%4 hl“r + Al’l Eh’yﬂo-

1@ 1@ B, (V B")
TRYethT Yuor

ap 1 A 7 @ 1A a
R+ 5 Rl + 2 Ruh
Ao 1 - .4
- ERhW + E(h"ﬁRaﬁ)yHU =8nT e (37)

Furthermore, we use harmonic gauge in the last sec-
tion as follows:

B, =Vfh,, =0. (38)
Then, the aforementioned equation can be simplified to:

V,Vhy = = 16T, + 2NNy — Ay,e + 2R o R
+Rooh! + Ryoh ! = Rhyo + (R Rop)yye. (39)

Corresponding to the cosmology background, we use
Friedman-Robertson-Walker (FRW) coordinate:

Ywdatdx” = —dr? + a(t)*dx‘dx’. (40)

The 'Cartesian' coordinate (x,y,z) corresponds to the di-
mensionless coordinate with respect the size of current
universe ag. In this viewpoint, which is the focus of the
current paper, variables (x,y,z) are considerd as small val-

1
ues, with x,y,z< 1. It should be noted that ao~ I
0

where H, denotes the Hubble constant and x,y,z ~ Hyr,
where » denotes the size we are interested in.

For the FRW metric, we have the following nonzero
curvature components as follows:

)

a a
R = =i Riju = ;(%‘k?’jz —YitYjk)» 41)
N a 24 +ad
ROO = _3;7 le - Yij» (42)
& +ai
= 6" (43)

Corresponding to the left hand side of (39), we obtain the
following.

C e > P 8-
V,VPhy :_[%2 00+ azza(xf)z 00— 3H&hoo

3

9 h i}
+ 8H By — 4H ~ Z = 4 2H?R,

(44)
- Pl - o -
V Vph,'i = - 7]1,',‘ - 7,]’1,‘,‘ H*hi,’
, o it Z ooy i g
”= 0
+2H h”+2 l’l,, 4H6 hol+2(l h()(),
(45)
Ao 1 - 0 -
VP phOi 8t2 01 a2 Z a( /)2 Ol athOI
27 7 9 -
+7H hOi + *h(),' - 2H7_h00
oxi
3
1 o h;;
-2H- =4, 46
a ; ox/ a (46)
9,9, = S O en i
o= (9t2 it Z a( o i+ H g
0 0
-2H— h -2H— h, 2 hl
% PRl
+Hhyj,i # j (47)

a
where H = p denotes the Hubble parameter.

We change the dimensionless coordinate (x,y,z) to an
appropriate length coordinate (x’,y’,z’) = (ax,ay,az) and
introduce auxiliary variables as follows:

Xo0 = hoos Xoo = hoo, (48)
= = (49)
Xij=%, )_(ij=%, (50)

X=X =h, (51)
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X = TI”V)?W =h. (52)
Then, Eqgs. (44)—(47) become:
¥,V hoo = Ooo — 3Hx0o + 8H Yoo

3

d i
—4HY o R+ 2H R, (53)
J=1

@p@phii = (12 D/?ii - 3aa/\4/ii + 2a2/\_/ii
0
—46108 ,,Xol +24 X005 (54)
& ene o ) 9
V,VPho; = aOkoi — 3axo: + 6H ayo; —2116 S X0
9
—2; —¥iis 55
DI (59)
V,VPh; = >0y, — 3ady; + &*xi;
0 .0 _ .
—2aa0 ~X0j— 2““@)(01‘,1 #J (56)

Here, operator O implies:

0 0 & 0
o= ~a0 + o2 + By + pe (57)

Plugging the aforementioned results in (39) and con-
sidering the Newtonian limit (3) of T,,,, we obtain:

0
Oioo = — 1670 +3Hi oo +4HZ Ep XOJ

+ A - 16H +4%) g0 + (A - 482 + Dyg,
a a

(58)
, - a, ,_ 0
a’Oyi = 3aay; + QA —4-)a’y;; +4aaa - X 0i
a i
—3aig — (A —2H* —29)a, (59)
a
_ - 2\, = 0
aOyo; = 3ajo; + QA — 10H)ajo; + 2616 X0
SN
+2L'IZ] @/\_ﬁ']’, (60)
=

GZD/\_{[j = 3aa/?,j+(2A+H2 —43)(12/\_/[/‘4'261(16 ,,XO/
L0
+zaaﬁ)(0i’l Eal
a (61)

Once again, given that the speed of light is multiplied by
the time ¢, the time derivative is of higher order than the
spatial derivative in the context of the Newtonian limit.
Therefore, the aforementioned Eqs. (58)—(61) simplify to:

0
Voo = —167Tp+4HZa X0j

QA 16H +45 )70 + (A —4H2 + Dy,
a a

(62)
. 0
v ll_(2A 4 )X”+4H(9 ”XOI
—3*)'(00—(A—2H —2*))2, (63)
a a
2o _ _ 2\ 0
Vxoi = (2A-10H )X0i+2H6 S X00
9
+2H Z S (64)
=
2- 2 a; - 9
VXIJ—(2A+H 4a)Xl]+2H6 ,,XO]
+2Haa, Xoiri % J (65)
Here, operator V> implies:
62 62 82
’= (66)

= + + .
o x/Z ayIZ aZIZ

4
The current observation facts indicate that P H? and

H ~ VA, which is a small quantity [18, 19]. The afore-
mentioned Egs. (62)—(65) lead to:

o0 ~ O(H®), (67)
Xoi ~ O(H), (68)
Xij~ O(H?). (69)
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In the following, we use perturbation method to solve
Egs. (62)—(65). Up to O(H"), we obtain:

Voo = —167p, (70)

V¥, = 0, other u,v. (71)

Accordingly, we obtain:

Xoo = —4p, (72)

Xuw =0, other pu,v, (73)
where ¢ denotes the Newtonian potential satisfying
V3¢ = 4np. (74)

Up to O(H), we obtain:

Vz)_(o() = —167Tp, (75)
0
V%o = —8H—, (76)
ox't

Accordingly, we obtain:

Yoo = —4¢, (78)

to= s (79)
ax/l

Xij =0, (80)

where v is determined through:
Vi =g (81
Up to O(H?), we obtain:

V2500 = 44H> — A =3 Z)(p 167, (82)

0y a

Vi = —32H—— +4Q2H> — A +5-)p, (83)
ox'2 a

d

V20 = —8H L (84)
ox't

0y
V2y,. = —32H? [+ ]
XU 3 ax,iax,j’l¢.] (85)

The corresponding solution of j is:
Yoo = —do+4(4H? — A - 3%)11/. (86)
Furthermore, we obtain:
S 52y

3 .
3 Vi = 3287 +12QH - A+5%)p
= ox't a

i=1

= “32Hp+ 12QH> - A+ sg)¢

= 4152 Z3A—2H?)p,
a

(87)
: i
3 R =4(15% —38 -2H)y. (88)
a
i=1
Consequently, we obtain:
: i
=Ko+ > Xi=4p—8CGH +A-9-)y, (89)
i=1 a
oo = oo + 2 = oo + o
00 =100+ 35 = Xoo 2)(
= 20+ 4(H - 2A+6% ). (90)
a

Concerning the motion of a test particle in the curved
spacetime described by the metric in (24), we have the
geodesic equation:

d?ax dx” dx*
=- ﬂo"ri . 91
ds? ds ds ©n
A dx? dx” dx” dx®
_ #mii_r(l)ﬂmii_ 92
ds ds ds ds ©2)
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Here, s denotes an affine parameter.

Similar to the usual treatment of Newtonian limit of
Einstein equation without cosmological constant, we con-
sider both the velocity of test particle v and perturbation
metric coefficient y,, as small quantities with the same
order. Accordingly, for time component, we obtain:

d’t
— =0 93
452 (93)
up to the first order of small quantities. Hence, we can
use ¢ to replace s as the Newtonian limit for Einstein
equation without cosmological constant.

Then, for the spatial components of (92), we obtain:

d2x dx’ 1
=-2H —hoo,. 94
e ar 2™ ©4)
Given that
L&
X = @(ax) (95)
= dx+2a% + ak (96)
a 10
= X + = — hoo, 97
ax 20x " ©7)

a change to appropriate length coordinate (x’,y’,z’) leads
to acceleration:

d=2H-2A+6yvy + L7 v, (98)
a a

Compared to the usual Newtonian dynamics, we ob-
tain extra-corrected acceleration

Go = 2(H* =20+ 6y Wy + 472 (99)
a a

where y is determined through (81).
The current observation [18] indicates that

H, ~ 67.4kms™'Mpc™!

~2.19x107"®s7! in geometric units, (100)

A ~ 4.24x107%eV? in natural units
~9.54x 107°s7% in geometric units (101)
~ 1.99H2, (102)

4 ~0.55H2. (103)
a

This implies we have the following corresponding to the
current universe.

deor ~ H [0.32V) +0.557] . (104)

Given that the Newtonian potential is negative, the cor-
rection described in (81) behaves like a gravitational
force produced by positive matter. Hence, we can ob-

:
serve that the correction term 2(H*-— 2A+6;)VW ~

0.32H}Vy yields an attractive force. Additionally, the

a
. > . .
correction term ;? ~0.55H;7 results in a repulsive force

for an increasingly expansion universe.

IV. QUANTITATIVE ESTIMATION OF THE
COSMOLOGICAL CONSTANT EFFECT ON
THE NEWTONIAN LIMIT
As an example, we consider a point mass M distribu-

M
tion p which results in ¢ = - Then, Eq. (81) becomes:

M
Vi =——

r

(105)
The solution is:

1
Y =—=Mr.

5 (106)

Apparently, the extra gravitational force introduced by w
is:

2H*—2A+ 6Z)w ~ —0.16H>Ma,, (107)

which is an attractive force. Based on the point mass case
and circular orbit of test particle, we obtain:

1
va VM 'r+0.16H§r. (108)

Using our milky way galaxy as an example, we plot the
corrected velocity when compared to standard Newtoni-
an gravity prediction with a point mass model in Fig. 1.

If we further consider the effect of the universe's ex-
pansion, we obtain the following:
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5 %107
—corrected
— Newton
1.57¢ 1
&)
S 1) —
0.5¢ 1
0
0 0.5 1 1.5 2
r/kpc %10’

Fig. 1. (color online) We use our Milky Way galaxy as an
example to demonstrate the effect of the correction in Equa-
tion (108). We assume a point mass distribution model for the
Milky Way galaxy with a total mass of M = 1.5x10'2M,. Fur-
thermore, we consider Hp=~1x10"2Mj'. Qualitatively, we
can observe an asymptotic relic velocity, which results from
the correction. However, quantitatively, it is too small to ex-
plain the observed rotation curve [20].

5
6
7
-8
9

log,o HoM

-9 -8.5 -8 -7.5 -7 6.5 -6 -5.5 -5 -4.5 -4
ogyo Hyr

Fig. 2. (color online) Ratio between the corrected velocity v

by cosmological constant and velocity predicted by Newtoni-
v

an dynamics vy, 10810 ~ -1}, with respect to different space

scale Hor and galaxy mass scale HoM.

v~ /Ir(V—0.32H3Vy - 0.55H2r)|

1 ) H3r?
~ VM |- +0.16Hr—0.55—"—|. (109)
r M
Quantitatively, we can estimate the ratio between the
corrected v and velocity predicted by Newtonian dynam-
ics VN

V 1 r 1
— = — —(0.55— -0.16)H, —_—.
( i YHor|/ 7

110
VN H()r or ( )

We plot log,

1%
o 1‘ with respect to Hyr in Fig. 2. The
N

size of usual galaxy is approximately Hyr ~ 107°. The
mass of usual galaxy is approximately H,M ~ 1072,
Hence, in galaxy scale, we obtain that the correction is
approximately 107°.

Typically, we consider a general power law mass dis-
tribution model of galaxy

p=Cr. (111)
Physically, the mass distribution should be a decreasing

function with respect to » such that @ < 0. The aforemen-
tioned mass distribution results in:

_ c +a
$= (2+a)(3+a/)r2 ’ (112)
—Ve= —3Sar“"ér. (113)

The corresponding circular orbit test particle velocity is:

C
3+a

VN ~ V| =

re, (114)

The observed velocity does not increase along with r.
This implies that o <-2. Given that the observations
show that the resulted gravitational force is attractive, we
obtain @ > —3. Altogether, we obtain the following:

3<a<-2. (115)
Then, Eq. (81) becomes:
C
V2 — 2+a.
V= vt (116)
The solution is:
v ¢ e (117)

T 2ra)G+o)d+a)Gra)

Interestingly, we determine that the corrected gravita-
tional force introduced by w is attractive when
-3 <a < -2 and is repulsive when @ > -2 or @ < -3. For
real galaxy, an attractive corrected force is expected.

Again we consider circular orbit of test particle, so we
have

105101-9
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v~ \/IN(Ve—-032H2Vy - 0.55H}r)|

_ 032H}? 0.55(3+a)H3r
C+a)5+a) Creve

(118)

Hence, the corresponding correction can be estimated
as:

0.28CG+a)

Cr2+n

v N 0.16 ) 5

w T ((2+a)(5+a) >H°r' (119)
For typical galaxy Hyr ~ 107°, the correction is approxim-
ately 107'2, which is ignorably small.

When « = -2, the aforementioned correction appears
to diverge. Hence, @ =-2 corresponds to the Singular
Isothermal Sphere (SIS) mass distribution model of
galaxy. Usually, SIS model is used to describe dark mat-
ter. We should consider this case individually. For SIS,
we obtain:

o
= , 120
p 4rr? (120)
¢=0’lnr, (121)
2
lﬂzzl"z (1117‘-8), (122)

where parameter o corresponds to the asymptotic velo-
city in the rotation curves of galaxies. In this case, the
corrected force is repulsive. The velocity correction for
circular orbit test particle is approximately:

v
— —1~Hr,
VN

(123)

which is approximately 1072, ignorably small, for a typ-
ical galaxy Hor ~ 107°.
V. CONCLUSION AND DISCUSSION

The acceleration of the expanding universe has been
confirmed by several independent observations. This phe-

nomenon can be explained by the Einstein equation with
a cosmological constant. Alternatively, some prefer to ex-
plain it with dark energy, which is characterized by neg-
ative energy and negative pressure. Due to these proper-
ties, it is often concluded that the cosmological constant
might contribute to a repulsive gravitational force.

We would like to emphasize that the concept of grav-
itational force is valid only within the framework of New-
tonian dynamics. For dark energy, a repulsive gravitation-
al force is a natural consequence of its negative energy.
However, for the cosmological constant, this is not as
straightforward.

To address the behavior of the gravitational force as-
sociated with the cosmological constant, we investigate
the Newtonian limit of the Einstein equation with a cos-
mological constant. We argue that the approach based on
perturbations of Minkowski spacetime is incorrect. In-
stead, perturbations should be applied to the FRW space-
time.

Based on the analysis of FRW metric perturbation, we
observe two effective gravitational forces contributed by

ae . .
the cosmological constant A. Specifically, s which is

repulsive but proportional to the distance to the center of
the galaxy in question. The another gravitational force is
due to the nonlinear behavior of matter's gravitational

force 2 <H2 A+ 62) Vo ~ 0.32H2Vy with

V2 = . (124)

If only the Newton potential ¢ of the matter is negative,
then this effective gravitational force introduced by the
cosmological constant is attractive.

Quantitatively, the effective gravitational force intro-
duced by the cosmological constant is H3r*. For dark en-
ergy model, the average density of dark energy is approx-
imately HZ. The gravitational forcg: potential acted by
dark energy is approximately ~ OTr = H;r*, which is
comparable to the effective gravitational force intro-
duced by the cosmological constant. However, there is an
essential difference between these two forces. The force
of dark energy is repulsive while the force of cosmologic-
al constant is attractive. Hence, in principle, we can use
this feature to distinguish the two different theoretical
models for the accelerating expansion universe.
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