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Abstract: For a Lorentzian invariant theory, the entanglement entropy should be a function of the domain of de-

pendence of the subregion under consideration. More precisely, it should be a function of the domain of dependence

and the appropriate cut-off. In this study, we refine the concept of cut-off to make it applicable to timelike regions

and assume that the usual entanglement entropy formula also applies to timelike intervals. Using the Rindler method,

the timelike entanglement entropy can be regarded as the thermal entropy of the CFT after the Rindler transforma-
tion plus a constant irc/6, where ¢ denotes the central charge. The gravitational dual of the 'covariant' timelike en-

tanglement entropy is presented following this method.
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I. INTRODUCTION

The Anti-de Sitter/Conformal Field Theory
(AdS/CFT) correspondence [1—3] provides an interesting
perspective on gravity and CFT: quantum gravity in
a(d + 1)-dimensional AdS spacetime is equivalent to a
CFT on the d-dimensional boundary. Over the past two
decades, an increasing number of evidences has suppor-
ted this correspondence [4—9]. In particular, the holo-
graphic entanglement entropy [10—12] is one of the
strongest evidences. In a quantum theory, if we divide the
entire Hilbert space into two parts, 4 and B, the entangle-
ment entropy S, is defined as the von Neumann entropy
of the reduced density matrix p,

SA = —TI'A (pA IngA) s (1)

where p, = Trg(p); p denotes the density matrix for the
whole system. In general, the calculation of entangle-
ment entropy in CFT is not easy [13—15]. Fortunately,
Ryu and Takayanagi proposed a method to calculate the
entanglement entropy of a given region in CFT utilizing
the AdS/CFT correspondence [10]. The Ryu-Takayanagi
formula is elegant and simple. In short, the entanglement
entropy of a region 4 in the boundary CFT can be ex-
pressed as the area of minimal surface m, in the bulk
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having the same boundary as A4 (denoted as dA),

1
SA = E Area(mA), (2)

where Gy is the Newton's constant.

Since the initial proposal by Ryu and Takayanagi,
there have been several attempts to prove the Ryu-Takay-
anagi formula [16—18]. Among these, reference [17] was
the first to use the conformal transformations to prove the
formula for a spherical entanglement surface (i.e., 0A).
The basic idea of the proof is to utilize the conformal
transformations to convert the calculation of the entangle-
ment entropy into that of the thermal entropy in the CFT,
which can then be mapped into the calculation of the
black hole entropy in the gravitational dual according to
the AdS/CFT correspondence. This method was later de-
veloped to derive the holographic entanglement entropy
formula in other holographic theories [19-21] and is
known as the "Rindler method".

There are many types of entanglement entropy [22].
Among them, pseudo-entropy is an interesting generaliza-
tion of the entanglement entropy [23—26]. Its definition is
similar to that of the entanglement entropy,

Sa=-Tr[rslogs], 3)
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where 7, is given by two pure states, |) and |¢), as fol-
lows:

) <90|} .

Ta =T { )

“)

Although the expressions in Egs. (3) and (1) are sim-
ilar, pseudo-entropy is usually complex because Eq. (4) is
not Hermitian. When |¥) = |¢), pseudo-entropy becomes
ordinary entanglement entropy as defined in Eq. (1).
When calculating the holographic entanglement entropy,
the subregions considered are spacelike regions on the
boundary. However, a recent study [27] has shown that
the traditional spacelike entanglement entropy does not
fully capture the entangling properties of CFTs, and time-
like entanglement entropy needs to be introduced. Inter-
estingly, a later study [28] found that the pseudo-entropy
in dS/CFT is directly related to the timelike entangle-
ment entropy in AdS/CFT. This timelike entanglement
entropy is defined by analytically continuing a spacelike
subregion into a timelike one. Furthermore, in [29], it is
suggested that the time coordinate may emerge from the
imaginary part of the timelike entanglement entropy or
pseudo-entropy, generalizing the familiar idea that the
space coordinate can emerge from the ordinary entangle-
ment entropy [30—33]. Therefore, timelike entanglement
entropy appears to be an important generalization of the
ordinary entanglement entropy. Related work on the
timelike entanglement entropy can be found in refer-
ences [29, 34—40].

The timelike entanglement entropy is currently con-
sidered as a special pseudo-entropy. In the AdS/CFT
framework, both the real and imaginary parts of pseudo-
entropy have clear spacetime geometric interpretations
[23]. Moreover, studies on quantum many-body systems
suggest that pseudo-entropy can be used to detect
quantum chaos in such systems [41] and to distinguish
between different quantum phases [42]. Pseudo-entropy
has been widely discussed in holographic duality,
quantum field theory, quantum information, and quantum
many-body systems [23, 24, 28, 43, 44]. However, the
physical significance of timelike entanglement entropy is
not yet well understood.

In this study, we used the Rindler method to re-exam-
ine the (holographic) timelike entanglement entropy in
AdS;/CFT, correspondence. Given that the introduction
of the cut-off when calculating entanglement entropy us-
ing the replica trick [13—15] in field theory seems some-
what arbitrary, our treatment of the cut-off is different
from those in previous studies [28, 29]. Specifically, our
idea is that the entanglement entropy should be generally
a function of the domain of dependence D and the cut-off
of the subregion under consideration. When calculating
entanglement entropy, a spacelike cut-off ¢ is always in-
troduced. However, if we extend the entanglement en-

tropy to timelike subregions, the cut-off naturally be-
comes timelike. This timelike cut-off & isused to re-
place the previous spacelike cut-off; consequently, the
timelike entanglement entropy S becomes

S=S(D,e)>S"=5 (D,e), (5)

which is exactly the timelike entanglement entropy stud-
ied in references [28, 29].

This paper is organized as follows. In Sec. II, we
briefly review the previous definition of timelike entan-
glement entropy and its holographic dual in AdS;/CFT,.
In Sec. III, we first review how to calculate holographic
entanglement entropy using the Rindler method. Then,
we define timelike entanglement entropy and apply the
Rindler method to obtain the gravitational dual of the
timelike entanglement entropy. Finally, a discussion and
conclusions are provided in Sec. IV.

II. BRIEF REVIEW OF TIMELIKE ENTANGLE-
MENT ENTROPY

Let us consider a spacelike interval A =[(#,x),
(t,x,)] in a (1+1) dimensional Minkowski space (with
the signature of the metric as (—1,+1)), and let us define

To=t,—1, Xo=x—Xy. (6)
Using the replica trick [13—15], one can obtain the entan-
glement entropy of the subregion 4 as

/X2 _ T2

Sy = ¢ log M’ (7)
3 e

where c is the central charge of the CFT and ¢ is a UV
cut-off. Now let us suppose that the entanglement en-
tropy formula also applies to the timelike interval, which
defines the timelike entanglement entropy [29]. Thus,
X3 -T2 <0. Consequently, we obtain the timelike entan-
glement entropy:

T2 _ XZ
SP = Slog V070 T8 (8)
3 £ 6
The definition of timelike entanglement entropy can also
be extended to finite size CFT and finite temperature
CFT, respectively,

0~ 1o | B sin (~
Sg = log{ sm(R(AtJrA(p))

6 m2g?

X sin (%(At—m)” i, 9)

6
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§O = Cog {—2 sinh (5 (At+ Ax))
B 6 2e? B

x sinh ( % (Ar— Ax))

e
i—, 10
+1i 6 (10)

where R is the total length of the finite system, Ar is the
difference between the time coordinates of the endpoints
of the considered interval, A¢ and Ax are the differences
between the coordinates in the spatial direction of the
considered interval, and f is the inverse of the finite tem-
perature.

In terms of the AdS;/CFT, correspondence, one can
define the metric of the AdS; spacetime in Poincaré co-
ordinate as (the AdS radius is set to £xqs = 1)

,  d2—dP+de

ds : . (11)

V4

In the boundary CFT,, we consider a timelike interval of
length T, with fixed spatial coordinates. In this case,
there are no spacelike geodesics which can directly con-
nect the boundaries of the timelike interval in the CFT.
However, this timelike interval can be connected by two
spacelike geodesics and one timelike geodesic in the bulk
of AdS;, as shown in Fig. 1. The spacelike geodesics (in
blue) connect the endpoints of the interval to null infinity,
while the timelike geodesic (in purple) connects the end-
points of the two spacelike curves at null infinity [28].

to

t

Fig. 1.  (color online) Penrose diagrams of the geodesics
connecting the boundary subregions, where the boundary sub-
region A4 is represented by the red line segment. The blue
curves represent the spacelike geodesics, while the purple
curve represents the timelike geodesic.

Therefore, the spacelike geodesics are given by

1=+\/2+T3/4, z€(0,00). (12)

and the form of the timelike geodesic is

2=\ (t—1) +2,

where 7, and z, are two constants determined by the end-
point positions of the spacelike geodesic at null infinity.
The final results indicate that two spacelike geodesics
contribute to the real part of the timelike entanglement
entropy, while the timelike geodesic corresponds to the
imaginary part of the timelike entanglement entropy.

It is worth noting that the appearance of the imagin-
ary part in the definition of timelike entanglement en-
tropy seems strange, regardless of how you examine it.
There seems to be an analytic continuation to make the
holographic entanglement entropy applicable to timelike
intervals, but the cut-off is still that corresponding to
spacelike intervals. Therefore, an imaginary part appears.
Thus, there can naturally be an equivalent definition,
where the interval is still a spacelike interval, but the cut-
off is taken in the timelike interval. This is precisely the
idea behind another approach for defining timelike entan-
glement entropy in reference [29]. (We briefly review this
definition in Appendix A.)

t € (—00,00), (13)

III. ALTERNATIVE PERSPECTIVE ON
TIMELIKE ENTANGLEMENT ENTROPY:
RINDLER METHOD

In this section, we describe an alternative perspective
on timelike entanglement entropy based on the Rindler
method. For the convenience of the reader and sub-
sequent narrative, we first briefly review how to compute
the holographic entanglement entropy in AdS;/CFT, us-
ing the Rindler method. Interested readers can refer to
references [17, 19-21, 45—47].

A. Derivation of holographic entanglement entropy
using the Rindler method

Consider a spatial interval 7 whose domain of de-
pendence in a two-dimensional Minkowski spacetime is
given by

D= {(u,v)l—%"ﬁuﬁ

in which we have set u = x+¢ and v = x—¢. The key to the
Rindler method is to find a Rindler transformation that
maps D to an infinitely large region 8. This is a con-
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formal transformation that maps the vacuum state in D to
B and correspondingly maps the entanglement entropy of
I to the thermal entropy in 8. For a two-dimensional
CFT, the Rindler transformation is

2 2
u' = arctanhl—u, V= arctanhl—v. (15)

u v

This transformation implies that the thermal circle in B is

W V) ~W +in, V' —in). (16)

Consequently, the thermal entropy in B gives rise to the
desired entanglement entropy.

According to the AdS/CFT correspondence, the com-
putation of thermal entropy can be transformed into the
computation of black hole entropy in the gravitational
dual, which can be obtained by applying the Rindler
transformation in the bulk:

R (B-4v) 44 (~Pud+4 (wv+27)°)
Z =

, 17
81,1, a7

1 P,+20)’—4(Ly+2(w+2))’
i = Mog  ( u)2 (Lv+2 (uv Z))z’ (18)
4 B, —2u)y —4(,y-2wv+72)

1 B+2v =4 (Lu+2 (w+22))
v = —log i V)Z (hu+2 w2 ))2 , (19)
4 R, -2v)* —4(lu—2uv+z%)

where u,v, and z are coordinates in the Poincaré AdS,

1
metric ds* = = (dz2 +dudv) . After this transformation, the

new metric becomes
2 72 72 ’ ’ , l 7”2
ds® =du”” +dv"* +27'du’dv +74 dz”. (20)
7=
Its event horizon is located at

Z=1. 1)

Substituting Eq. (21) into Eq. (17) yields

7=

v+ 2u) (1, - 2v), (22)

| —

or

z= % (1, —2u) (1, +2v). (23)

Combining Eqs. (22) and (23) yields the RT/HRT sur-

face:

Ly
u= >

1 20
= i=3 G+ (lu——v). 24)

I,

Therefore, the final result of the entanglement entropy is

LI,

EuEy

S = glog (25)

where ¢, and ¢, are introduced as cut-offs in the # and v
directions, as shown in Fig. 2.

More generally, we can consider subsystems (i.e.,
spacelike curves with a domain of dependence of D) with
different truncations at the left (&,1,&,1) and right (&,0,£,2)
ends. In this case, the entanglement entropy becomes

c L1, c
S =—1 +—1
12 °8 Eu1€v1 12 o8

ll,t l\/’

Ewév

(26)

Given that /, and [, are related to the domain of depend-
ence of the subsystem, the entanglement entropy can be
eventually obtained once the subsystem is given and the
truncations are chosen.

B. Timelike entanglement entropy from
a timelike curve

As mentioned above, Egs. (25) and (26) can be re-
garded as functions that depend on the domain of depend-
ence and cut-off, where the domain of dependence is
characterized by [,/,. Next, we elaborate on the concept
of entanglement entropy to be applicable not only to
spacelike subregions but also to timelike subregions. A

&y

7 <
EuNL ~SEy

Fig. 2. (color online) A schematic diagram of a spatial inter-
val (horizontal line) and its domain of dependence (blue
shape), with cut-offs ¢,,e, marked in the diagram.
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natural idea is that the "entanglement entropy" of a time-
like region is also related to a spacetime subregion and
cut-offs. We expect that this spacetime subregion re-
mains the causal domain of some spacelike interval. The
current issue is how to establish a connection between a
spacelike interval and a timelike interval. Below, we pro-
ceed to accomplish this task.

Let us suppose there is a spacelike curve 7, with
parametric equations:

u = u(s), v=v(s), s€[0,1], 27)
where s is the parameter. Then, we can define a timelike

curve 7, as

u = u(s), v =—v(s), s€[0,1], (28)
which is called the dual to I,. From Eq. (28) we can
clearly see that 7, and 7, are symmetric to each other,
with the u axis as the symmetry axis. Therefore, 7, con-
nects the left and right endpoints of the domain of de-
pendence, while 7, connects the upper and lower end-
points of the domain of dependence. Figure 3 provides an
intuitive illustration of this setup.

Next, we define the "cut-offs" ¢, and &, on the space-
like curve with s; and s, as two parameters:

eu=u(s)—uls1), &=v(s)-v(si), si,5€[0,1], (29)
where s, —s; — 0*. To clarify this, we analyze a specific

example. Let us suppose a spacelike curve defined as

Fig. 3.  (color online) Illustration of the spacelike curve I
and its dual timelike curve 7,. The cut-offs of 7, are marked
by the blue line segment.

I, = {(u,v)luzlu <s—%) ,v=1, (s—%) ,S E [0,1]}.

(30)

After the cut-off, its regulated version is

I = {(u,v)|u:lu (s—%),v:lv<s—%>,se [8,1—8]}.

€2

where ¢ is a positive infinitesimal parameter whose rela-
tionships with ¢, and ¢, are

&, =1,¢, g, =le. (32)
Therefore, we can obtain the entanglement entropy for
the above subregion, which is exactly given by Eq. (25).

It is evident that for the dual timelike versions of Egs.
(30) and (31), the truncations are

& =g, g =-g¢,. (33)

in which the superscript ¢ denotes "timelike". This rela-
tionship holds for any two dual curves. If we generalize
the entanglement entropy in a way that Eq. (25), which
holds for the spacelike subregions, also holds for the
timelike subregions, then the entanglement entropy of the
timelike subregion 7, which is dual to the spacelike sub-
region I, becomes

Ll c Ll nc
SO =Slog— = Sjog M 4iIE 34
6 °8 Eu(_EV) 6 o8 Euy i 6 ( )

It is evident that the entanglement entropy of the res-
ulting timelike interval only differs from the entangle-
ment entropy of the corresponding spacelike interval by
an additional term of inc/6. When [, =1,, Eq. (34) is ex-
actly the timelike entanglement entropy introduced in ref-
erences [28, 29, 36]. More generally, we can extend Eq.
(26) to the entanglement entropy of timelike subregions:

c L1, c L1
S(;): 9 uly + uly
12 %% 6, T12°¢

nc
i—. 35
+1i 6 (35)

En€n

Compared to references [28, 29, 36], the formula for
timelike entanglement entropy derived here has a broad-
er applicability. It is applicable to any timelike interval,
not limited to pure null intervals. Our method for defin-
ing timelike entanglement entropy can be directly ap-
plied to the finite size CFT and finite temperature CFT,
with an extra inc/6 added, similar to Eq. (35). We did not
elaborate on this in this study.
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C. Holographic timelike entanglement entropy from
the Rindler method

A question arising is whether the Rindler method can
also be applied to derive the gravitational dual of the
timelike entanglement entropy Stgg. The formal expres-
sion of Eq. (34) is

.4
STEE = S thermat + lg, (36)

i.e., the timelike entanglement entropy is equal to the sum
of the thermal entropy S wema undergoing a Rindler trans-
formation and the constant irc/6. However, Sec. 1II.A
shows that the thermal entropy here corresponds to the
black hole entropy, and the black hole horizon corres-
ponds to the RT/HRT surface. Similar to the usual calcu-
lation of holographic entanglement entropy, the black
hole entropy can only provide a real area [17]; it cannot
provide an imaginary part. Therefore, it seems that this
method does not directly provide a gravitational dual for
timelike entanglement entropy.

Nevertheless, an alternative solution is to modify the
Rindler transformation so that the black hole horizon pre-
cisely corresponds to the two spacelike geodesics in the
gravitational dual of timelike entanglement entropy.
Mathematically speaking, there is no difference between
the negative sign appearing on &, or [, in Eq. (34), that is,

LI,

S(r) — Elog lu (_lv)

= . 37
6 g, (-g,) 6 8 £,8, 7

Following this approach, we can replace all [, in the
Rindler method with —/,. Therefore, the previous Rindler
transformation defined by Egs. (17)—(19) in the bulk be-
comes

B(B-4?) +4 (-2 +4 (uv+27)")
B 8lu (_lv)zz ’

’

Z

(38)

1 I l,+2 2 4 Lv+2 +72 2
i = Log 7 ( u)2 (Lv+2(uv+z ))2 ’ 39)
4 2, -2u)y —4(,y-2wv+7%))

C 1 P20 4 (L) u+2 (w+2))’
J T W oy P Yoo

Interestingly, this new transformation also turns the
Poincaré AdS; metric into Eq. (20). Correspondingly, in
the boundary conformal field theory, this transformation
becomes

2 2
u' = arctanhl—u, V= —arctanhl—v. (41)

This transformation can map the domain of dependence
D to B as well. Therefore, the thermal entropy in B re-
mains unchanged and can also be given by the horizon
entropy expressed by Eq. (20). Then, we substitute the
horizon zj, = 1 into Eq. (38), obtaining

l 1 [
=—— P4+4-12 =— P44 42
u > -+ lvz, v > >+ luz, (42)
or
u=- L +4l—“z2 v=—= 12+4£zz. (43)
2 LT 2T,

These are exactly the two spacelike geodesics in the
gravitational duality of the timelike entanglement en-
tropy mentioned in references [28, 29, 36]. To examine
this more closely, we set [, =1, =1; then, Egs. (42) and
(43) become

1 1
u=-3 V2 +4z72, v= EWZ+4Z2 (44)

and

1 1
u= EVZZ+4z2, v=-3 V2 +4722. (45)

Note that u = x+¢ and v = x—¢; thus, we have

1

3 VE+ 2. (46)

x=0, t==

If we change the notation to be [ =Ty, then Eq. (46) de-
scribes precisely the spacelike geodesics in Eq. (12), and
their areas are related to the real part of the timelike en-
tanglement entropy. By connecting the endpoints of the
two spacelike geodesics at null infinity with timelike
geodesics, we can finally obtain the complete form of the
holographic timelike entanglement entropy, i.e., Stgg =
Sthermal + i7l'C/6.

IV. DISCUSSION AND CONCLUSIONS

In this study, we re-examined the holographic entan-
glement entropy in AdS;/CFT,. For a Lorentz invariant
theory, we assumed that the entanglement entropy should
be a function of the domain of dependence of the region
under consideration. By generalizing the concept of cut-
off or defining a cut-off that is applicable to both space-
like and timelike regions, we rei-ntroduced the timelike
entanglement entropy. We found that the timelike entan-
glement entropy is the thermal entropy of the CFT after
applying the Rindler transformation plus the constant
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imc/6. Moreover, we obtained the gravitational dual of
the timelike entanglement entropy, which is consistent
with previous results.

There are some interesting issues which need further
investigation. For instance, in the usual Rindler approach,
the Rindler transformation is a symmetric transformation;
for instance, in conformal field theory, it is a conformal
transformation. This symmetric transformation induces a
unitary operator U in Hilbert space that relates the dens-
ity matrix p of the vacuum state in the original u, v co-
ordinate system to the thermal density matrix p’ in the u’,
v coordinate system,

o =UpU". 47

Given that the unitary transformation does not change
the von Neumann entropy, the entanglement entropy of
the vacuum state is equal to the thermal entropy of the
transformed thermal state [17].

If we assume that the timelike entanglement entropy
is also the von Neumann entropy of some "density mat-
rix", given that the current Rindler transformation ex-
pressed by Eq. (41) is no longer a conformal transforma-
tion, we have reasons to believe that the timelike entan-
glement entropy is related to the "transformed thermal en-
tropy", but not exactly equal to it. This is in perfect agree-
ment with Eq. (36) and also explains why we were un-
able to directly obtain the timelike geodesics given by Eq.
(13) connecting the two spacelike geodesics from the
Rindler method. Moreover, one can consider the new
"Rindler transformation" to be composed of a transforma-
tion

u' =u, Vi=—y (48)

and the original Rindler transformation

’7 2 ’’
u’ = arctanh , v’ = arctanh lv . (49)

u Vv

The transformation expressed by Eq. (48) makes ds® —
—ds?. Such a transformation turns timelike curves into
spacelike curves and vice versa. For convenience, this pa-
per refers to it as "dual transformation". Although the
properties of this dual transformation remain unknown,
we can naively conjecture that under the dual transforma-
tion, the entanglement entropy remains unchanged up to a
constant inc/6. (Further discussion can be found in Ap-
pendix B.)

Holographic entanglement entropy also leads to the
interesting idea that the spatial coordinates of AdS come
from quantum entanglement [31, 48]. It is natural to hy-
pothesize whether the time coordinate also comes from

quantum entanglement. Timelike entanglement entropy is
likely to be a quantity related to the emergence of the
time coordinate, although its physical meaning is not yet
clear [29]. However, it opens a new window for general-
izing entanglement entropy and deserves further study.

APPENDIX A: DEFINITION OF TIMELIKE
ENTANGLEMENT ENTROPY VIA WICK
ROTATION

Consider a free scalar field on a cylinder with mass m.
The space and time coordinates are denoted by x and ¢,
respectively. Assuming that the spatial circle is x ~ x+R,
we can easily express the action of the scalar field as

Zy= / Dge®s.

To define the timelike entanglement entropy, we treat ¢ as
the spatial direction and x as the Euclidean time. It can be
considered that the spacetime has been rotated by 90 de-
grees. Then, the "timelike Hamiltonian" H is

(AT)

H= —% / dr [7* +(8,¢9) —m*¢°], (A2)
where
T =—0¢. (A3)
Then, the partition function is
Zy=Tr[e ™. (A4)

We introduce the rescaled Hamiltonian H =iH, which
takes the conventional form with a minus sign for the
mass term:

A= % / dr [7* + (8,9 —m*¢’] . (A5)
Eq. (A4) can be rewritten as
Zy=Te[e"] = Te[e#7]. (A6)

1/B, is the temperature of the cylinder after spacetime ro-
tation. A spacelike region 4 on this cylinder corresponds
to a timelike region on the cylinder before rotation. We
can obtain the timelike entanglement entropy by making
the following substitution to the usual entanglement en-
tropy formula:
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Bs — —iR, m — —im. (A7)
For two-dimentional CFT, the entanglement entropy for
the thermal state at temperature 1/3; is

Sa="Slog {ﬁi sinh g} , (A8)
Tt Bs

where X is the length of the spatial interval 4, € is the cut-
off defined for A, while & = i€ is defined for the Hamilto-
nian H we are interested in. By making the substitutions
in Eq. (A7) as mentioned earlier and setting X =T, we
obtain the timelike entanglement entropy:

R
SP = glog {—sm %} + % (A9)
If we set R — oo, we obtain
T
SO =S10g 0+ Ly (A10)
3 e 6

This is precisely Eq. (8) in the case of a pure timelike in-
terval.

APPENDIX B: ORIGIN OF inc/6

To express our ideas more clearly, we would like to
provide some explanations on the origins of ixc/6. In the
preceding text, we mentioned the following coordinate
transformation:

u’ =u, V= —v. (B1)

This transformation is equivalent to swapping the space-
time coordinates:

7 =x. (B2)

Then we have

ds2 — —d12 +dx2, ds/rZ — _dZNZ +dx/r2 (B3)

and

ds* = —ds"%. (B4)
Let us suppose ds? and ds”? describe the geometries M
and M”, respectively. Then, a timelike curve in M corres-
ponds to a spatial curve in M”. In M”, we can use an or-
dinary Rindler transformation to obtain the entanglement
entropy of the spatial curve, which has the following
form:

S = S (Domain of dependence, cutoffs), (BS)

in which the cut-offs must be calculated by the spacetime
interval. We aim to define the timelike entanglement en-
tropy in M through the entanglement entropy of M” by
directly replacing the domain of dependence and cut-offs
in §. Interestingly, the corresponding domains of depend-
ence on M and M” are identical, but the cut-offs differ,
leading to a term icnr/6 in the timelike entanglement en-

tropy.
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