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Abstract: The Pryce (e) spin and position operators of the quantum theory of Dirac's free field were re-defined and
studied recently with the help of a new spin symmetry and suitable spectral representations [Eur. Phys. J. C 82, 1073
(2022)].  This  approach  is  generalized  here,  associating  a  pair  of  integral  operators  acting  directly  on  particle  and
antiparticle wave spinors in momentum representation to any integral operator in configuration representation, act-
ing on mode spinors. This framework allows an effective quantization procedure, giving a large set of one-particle
operators with physical meaning as the spin and orbital parts of the isometry generators, the Pauli-Lubanski and pos-
ition operators, or other spin-type operators proposed to date. Special attention is paid to the operators that mix the
particle and antiparticle sectors whose off-diagonal associated operators have oscillating terms producing Zitterbeve-
gung. The principal operators of this type, including the usual coordinate operator, are derived here for the first time.
As  an  application,  it  is  shown  that  an  apparatus  measuring  these  new  observables  may  prepare  and  detect  one-
particle  wave packets  moving uniformly without  Zitterbewegung or  spin  dynamics,  spreading in  time normally  as
any other relativistic or even non-relativistic wave packet.
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I.  INTRODUCTION

S L(2,C)

In the relativistic quantum mechanics (RQM) of Dir-
ac's field, one traditionally considers the usual coordinate
operator, which is affected by Zitterbewegung [1−3], and
the  Pauli-Dirac spin  operator,  whose  components  gener-
ate  the  rotations  of  the  Dirac  representation  of  the

 group [1] but are not conserved. For this reason,
many  researchers  have  struggled  to  find  a  suitable con-
served spin operator [4−9], giving rise to a rich literature
(e.g.,  see  Refs.  [10−13]  and  the  references  therein).  As
this problem remains of interest [14−17], we attempted to
reach  the  next  step  to  quantization  [18].  As  a  result,  we
observed that the required spin operator has been known
for a long time and was proposed by Pryce in momentum
representation  (MR)  according  to  his  hypothesis  (e)  [5].
In  fact,  Pryce studied the  relativistic  mass-center operat-
or,  analyzing  many  possible  definitions;  among  them,
versions (c), (d), and (e) are of interest regarding Dirac's
theory. Each  version  gives  its  own  specific  angular  mo-
mentum  related  to  a  convenient  spin  operator,  ensuring
the conservation of  the total  angular  momentum. Pryce's
hypothesis  (e)  is  a  unique  version  with  correct  physical

meaning,  giving  a  would-be  mass-center  vector-operator
with commuting components  related to a  conserved spin
operator whose components generate an su(2) algebra.

Foldy and  Wouthuysen  later  showed  that  their  fam-
ous  transformation  [6]  leads  to  the  Newton-Wigner rep-
resentation [19] in  which the  Dirac  Hamiltonian is  diag-
onal, while  the Pryce (e)  spin and position operators  be-
come  the  aforementioned  usual  ones.  Besides  the  Pauli-
Dirac  and  Pryce  (e)  spin  operators,  other  versions  have
been proposed by Frenkel [4], Pryce (c) and Czochor [5,
9],  Fradkin  and  Good  [7],  and  Chakrabarti  [8].  Among
them,  only  the  components  of  Pauli-Dirac and  Chakra-
barti spin operators generate su(2) algebras, but these op-
erators are  not  conserved.  In  contrast,  the  operators  pro-
posed by Frenkel,  Pryce  (c)-Czochor,  and Fradkin-Good
are conserved, but their components do not close su(2) al-
gebras.  For  this  reason,  we  say  that  these  are  spin-type
operators.

We can understand the role of the Pryce (e) spin oper-
ator  by  studying  the  symmetry  of  Pauli  polarization
spinors,  which  define  the  fermion  polarization.  These
spinors enter in the structure of the plane wave solutions
of the Dirac equation that form the basis of mode (or fun-
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damental)  spinors.  Technically,  the  fermion  polarization
depends on the direction of spin projection, which can be
chosen arbitrarily.  When  this  direction  depends  on  mo-
mentum,  as  in  the  case  of  the  largely  used  momentum-
helicity  basis,  we  say  that  the  polarization  is peculiar.
Otherwise,  we  have  a common polarization  independent
of  momentum,  such  as  in  the  momentum-spin  basis
defined in Ref. [20]. In both these cases, the polarization
spinors offer us the degrees of freedom of the new (2)
spin symmetry that we require to construct a spin operat-
or  conserved  via  Noether's  theorem  [18].  However,  this
symmetry has been neglected so far because of the diffi-
culties  in  finding  suitable  operators  in  configuration  (or
coordinate)  representation  (CR)  able  to  transform  only
the  polarization  spinors  in  MR  without  affecting  other
quantities. Fortunately,  we  have  found  a  spectral  repres-
entation  of  a  class  of  integral  operators  allowing  us  to
define the action of the little group SU(2) upon the polar-
ization spinors [18], showing that the generators of these
transformations are the components of the conserved spin
operator  whose  Fourier  transform  is  just  the  operator  of
the Pryce (e) version (see the third of Eqs. (6), (7) in Ref.
[5]).  In  this  new  framework,  we  defined  the  operator  of
fermion polarization and studied how the principal oper-
ators  of  Dirac's  theory  depend  on  polarization  through
new momentum-dependent  Pauli-type matrices  and  cov-
ariant momentum derivatives [18].

This was  a  crucial  step  towards  quantization,  allow-
ing  us  to  derive  the  principal  one-particle  operators  of
quantum  field  theory  (QFT).  After  quantization,  the
would-be  mass-center  operator  of  the  Pryce  (e)  version
becomes the time-dependent dipole one-particle operator
whose velocity is the conserved part of the Dirac current
(unaffected by Zitterbewegung),  often  called  the  classic-
al  current  [21, 22]  and referred  to  here  as  the conserved
current. Quantifying,  in  addition,  the  spin,  and  polariza-
tion operators as well the isometry generators for any po-
larization we outlined a coherent version of Dirac's QFT
[18].

In this paper, we would like to continue and complete
this study by improving the general formalism to elimin-
ate the  difficulties  that  impeded  the  aforementioned  res-
ults for more than seven decades. In our opinion, the prin-
cipal impediment was the manner in which the action of
the integral operators of RQM was considered so far. The
Dirac  free  fields  in  CR  can  be  expanded  in  terms  of
particle  and  antiparticle  Pauli  wave  spinors  in  MR  in  a
basis  of  Dirac's  mode  spinors.  The  matrix,  differential,
and  integral  operators  act  directly  on  the  mode  spinors.
Difficulties arise because of some integral operators with
complicated actions  that  cannot  be  manipulated  or  inter-
preted, as  in  the  case  of  all  Pryce's  operators.  The  solu-
tion  is  to  associate  a  pair  of  integral  operators  acting  in
MR on the particle and antiparticle wave spinors to each
integral  operator  in  CR,  acting  on  mode  spinors.  In  this

manner, the kernels of the integral operators in CR can be
related to those of the associated operators in MR through
spectral  representations,  which  are  generalized  here  to  a
large class of integral operators. We thus obtain a friendly
approach by which we may study and interpret  the prin-
cipal integral operators of RQM, taking a decisive step to
towards quantization.

In  view  of  the  above  arguments,  this  paper  presents
an extended review of the operators of Dirac's theory, fol-
lowing three major objectives. The first is to improve the
entire formalism, focusing on the theory of integral oper-
ators acting on the wave spinors. The second objective is
to  develop  and complete  the  quantum theory  outlined  in
Ref. [18], studying the entire collection of operators with
physical meaning of Dirac's QFT derived from the oper-
ators  of  RQM  proposed  to  date,  including  the  operators
with oscillating terms producing Zitterbewegung. Finally,
for the first time, we present an example of Dirac's wave
packet  prepared  and  detected  by  an  apparatus  able  to
measure  the  new  Pryce's  spin  and  position  operators,
presenting  the  image  of  a  natural  smooth  propagation
without Zitterbewegung or spin dynamics.

In the next  section,  we start  with the Dirac theory in
CR and MR, presenting our framework and explicitly de-
fining the new spin and orbital symmetries in CR before
considering the solutions in MR where the mode spinors
are  constructed  according  to  Wigner's  method,  allowing
us  to  demonstrate  the  role  of  the  polarization  spinors.
Then, we present the equal-time and Fourier integral op-
erators acting on the mode spinors through their kernels.
We  pay  special  attention  to  the  operators  proposed  by
Pryce but  without  neglecting the other  historical  propos-
als of spin or spin-type operators [4, 6−9].

Section III  is  devoted  to  our  principal  technical  im-
provement of the operator theory, namely, the method of
associated  operators,  relating  the  operators  acting  on
fields  to  pairs  of  operators  acting  directly  on  the  Pauli
wave spinors in MR, which we call associated operators.
The  operators  that  do  not  mix  particle  and  antiparticle
wave  functions  are  called  reducible;  otherwise,  they  are
irreducible.  We show that  the  irreducible  operators  have
associated operators whose off-diagonal kernels, between
particle  and  antiparticle  wave  functions,  oscillate  with
high  frequency.  Fortunately,  the  principal  operators  we
require are  reducible,  without  oscillating  terms.  We  de-
rive and study the operators associated with the spin, pos-
ition,  polarization  and  Pauli-Lubanski ones,  paying  spe-
cial  attention  to  the  isometry  generators  of  the  covariant
representation of the Dirac field in CR, which is equival-
ent  to  a  pair  of  associated  Wigner-induced representa-
tions in MR [23, 25, 26].  Remarkably, our approach can
show  that  the  spin  part  of  the  rotation  generators  of  the
covariant  representation  are  just  the  components  of
Pryce's spin operator in CR associated with the spin parts
of  the  rotation  generators  of  Wigner's  representations
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defined in MR. In addition, we study the conserved spin-
type  operators  proposed  by  Frankel,  Pryce  (c)-Czogor,
and  Fradkin-Good,  analyzing  their  algebraic  properties.
Section  IV  generalizes  the  spectral  representations
defined in Ref.  [18], expressing the kernels of  the integ-
ral operators  acting  in  CR in  terms  of  kernels  of  associ-
ated  operators  defined  in  MR.  This  method allows us  to
particularly  focus  on  the  principal  non-Fourier  operators
whose  kernels  in  MR  are  momentum  derivatives  of
Dirac's -distributions of complicated arguments.

The previous results prepare the quantization presen-
ted in Sec. V, where we apply the Bogolyubov quantiza-
tion method [27],  transforming the expectation values of
RQM in  operators  of  QFT.  We find that,  after  quantiza-
tion, the reducible operators of RQM become one-particle
operators,  which  we  divide  into  even  and  odd  operators
according  to  the  relative  sign  between  the  particle  and
antiparticle terms (i.e., charge parity).  We define the op-
erators  of  unitary  transformations  under  isometries  with
general  calculation  rules,  and  we  study  the  algebra  of
principal observables  generated  by  the  reducible  operat-
ors of RQM. The last subsection is devoted to the quant-
ization of the irreducible operators with oscillating terms.
The new results presented here are the operators of QFT
corresponding to the traditional  Pauli-Dirac spin and co-
ordinate  operators  of  RQM,  which  can  be  related  to  the
vector  or  axial  currents,  and  other  interesting  operators,
such as  the  Chakrabarti  spin  operator  and the  generators
of the Foldy-Wouthuysen transformations.

Turning  back  to  RQM  but  now  as  a  one-particle re-
striction  of  QFT,  in  Sec.  VI,  we  consider  wave  packets
prepared  and  detected  by  two  different  observers.  We
first present the general theory, assuming that the detect-
or filters momenta oriented along the direction source-de-
tector  such  that  this  measures  a  one-dimensional  wave
packet governed by radial observables. An isotropic wave
packet example is presented, showing that it has an iner-
tial motion spreading in time just as other scalar or even
non-relativistic wave  packets  do,  without  Zitterbewe-
gung or spin dynamics [28].

S L(2,C)

Concluding  remarks  are  presented  in  Sec.  VII.  The
four Appendices successively present the Dirac represent-
ation of the  group, the commutation relations of
the  algebra  of  associated  operators  in  MR,  the  Pryce  (c)
and (d) position operators, and examples of known pecu-
liar and common fermion polarizations. 

II.  DIRAC'S FREE FIELD

η = diag(1,−1,−1,−1) xµ

α, β, ...µ, ν... = 0,1,2,3

(Λ,a) : x→ x′ = Λx+a P↑+ =

In special relativity, the covariant free fields [20, 29]
are defined in Minkowski's space-time M with the metric

 and  Cartesian  coordinates 
labeled  by  Greek  indices  ( ).  These
fields  transform  covariantly  under  Poincaré  isometries,

,  which  form  the  group 

T (4)ⓈL↑+ Λ ∈ L↑+

η a ∈ R4

T (4)

P̄↑+ = T (4)ⓈS L(2,C)
λ ∈ S L(2,C)

L↑+
λ→ Λ(λ) ∈ L↑+

SL(2,C)

 [30]  constituted  by the  transformations 
of  the  orthochronous  proper  Lorentz  group,  preserving
the metric , and the four-dimensional translations 
of  the  invariant  subgroup .  For  the  fields  with  half-
integer spins, in addition, the universal covering group of
the  Poincaré  one, ,  formed  by  the
mentioned translations and transformations is
related to those of the group  through the canonical ho-
momorphism  [30]  obeying  the  condition
(A.2).  In  this  framework,  the  covariant  fields  with  spin
can be defined on M with values in  vector  spaces carry-
ing  reducible  finite-dimensional  representations  of  the

 group  where  invariant  Hermitian  forms  can  be
defined. 

A.    Lagrangian theory and its symmetries
ψ : M→VD

VD =VP⊕VP

VP

(1/2,0) (0,1/2)
SL(2,C)
ρD = (1/2,0)⊕ (0,1/2) γ

ψψ

ψ = ψ+γ0 ψ

ψ ψ

The Dirac field  takes values in the space
of  Dirac  spinors ,  which is  the  orthogonal
sum of two spaces of Pauli spinors, , carrying the irre-
ducible  representations  and  of  the

 group.  These  form  the  Dirac  representation
, where one may define the Dirac -

matrices  and  invariant  Hermitian  form  with  the  help
of  the  Dirac  adjoint  of  (see  Appendix  A for
details). The fields  and  are the canonical variables of
the action 

S[ψ,ψ] =
∫

d4xLD(ψ,ψ) , (1)

defined by the Lagrangian density 

LD(ψ,ψ) =
i
2

[ψγα∂αψ− (∂αψ)γαψ]−mψψ, (2)

m , 0
EDψ = (iγµ∂µ−

m)ψ = 0

depending on the mass  of the Dirac field. This ac-
tion  gives  rise  to  the  Dirac  equation 

, which can be put in Hamiltonian form as 

i∂tψ(x) = HDψ(x) , HD = −iγ0γi∂i+mγ0 . (3)

In  other  respects,  the  conservation  of  the  electric  charge
via  Noether's  theorem  [20, 29]  suggests  the  form  of  the
Dirac relativistic scalar product 

⟨ψ,ψ′⟩D =
∫

d3xψ(x)γ0ψ′(x) =
∫

d3xψ+(x)ψ′(x) . (4)

F = {ψ |EDψ = 0}We  denote  by  the  space  of free  fields
that  can be organized as a rigged Hilbert  space by using
the Dirac scalar product.

The  action  (1)  is  invariant  under  the  transformations
of the well-known symmetries, namely, the Poincaré iso-
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U(1)em

T : (λ,a)→
Tλ,a ∈ Aut(F ) P̃↑+

metries and  transformations of the electromagnet-
ic gauge. The Dirac field transforms under isometries ac-
cording  to  the covariant representation 

 of the group  as [30] 

(Tλ,aψ)(x) = λψ
[
Λ(λ)−1(x−a)

]
, (5)

Lie(T )
generated  by  the  basis  generators  of  the  corresponding
representation of the Lie algebra  that reads 

Pµ = − i
∂T1,a

∂aµ

∣∣∣∣
a=0

, Jµν = i
∂Tλ(ω),0

∂ωµν

∣∣∣∣
ω=0

. (6)

Pi = −i∂i

H = P0 = i∂t S L(2,C)

To demonstrate the physical meaning of these generators,
one separates the momentum components, ,  and
the  energy  operator, ,  denoting  the 
generators as 

Ji =
1
2
εi jk J jk = −iεi jk x j∂k + si , (7)

 

Ki = J0i = i(xi∂t + t∂i)+ s0i , (8)

xi

x⃗ (xiψ)(x) = xiψ(x)
si s0i

{H,Pi, Ji,Ki}
Lie(T )

where  are the components of the coordinate vector-op-
erator  acting  as .  The  reducible
matrices  and  are given by Eqs.  (A6)  and (A8),  re-
spectively.  The  operators  form  the  usual
basis  of  the  Lie  algebra  of  the  representation  (5)
[30].

⟨ψ,Xψ⟩D
ψ→ Tψ = ψ− iξXψ+ ...

⟨Tψ,Tψ′⟩D = ⟨ψ,ψ′⟩D

The  scalar  product  (4)  helps  us  to  simply  write  the
quantities conserved  via  Noether's  theorem  as  expecta-
tion  values, ,  of  the  generators  of  the  symmetry
transformations , which  leave  in-
variant  the  action  (1)  and  implicitly  the  scalar  product,

. Hereby,  we  deduce  that  the  gener-
ators X are self-adjoint, obeying 

⟨ψ,X+ψ′⟩D = ⟨Xψ,ψ′⟩D = ⟨ψ,Xψ′⟩D . (9)

Therefore, we may conclude that the covariant repres-
entation (5) is unitary with respect to the relativistic scal-
ar product (4).

The  above  operators  may  freely  generate  new  ones,
such as the Pauli-Lubanski pseudo-vector [30] 

Wµ = −1
2
εµναβPνJαβ , (10)

with components 

W0 = JiPi = siPi , W i = H Ji+εi jkP jKk , (11)

ε0123 = −ε0123 = −1

W0

where .  This  operator  is  considered  by
many authors as  the covariant  four-dimensional spin op-
erator  as  long  as  is  just  the  helicity  operator  [31].
Moreover,  this  gives rise  to  the second Casimir  operator
of the pair [1] 

C1 = PµPµ ∼ m2 , (12)
 

C2 =WµWµ ∼ −m2s(s+1) , s =
1
2
, (13)

whose eigenvalues depend on the invariants (m,s) determ-
ining the representation T.

S U(2) ⊂ S L(2,C)

T
T r ≡ T |S U(2) Tr,0 = T r

r̂
r̂ ∈ S U(2) r = diag(r̂, r̂) ∈ ρD

T r

J⃗ = x⃗∧ P⃗+ s⃗
x⃗∧ P⃗

s⃗

S⃗
X⃗ = x⃗+δX⃗

Here, the subgroup  will play a spe-
cial role in studying the spin operator. For this reason, we
consider  the restriction of  the covariant  representation 
to  this  subgroup, ,  such  that  for  any

 or .  The  basis  generators  of
the representation  are the components of the total an-
gular  momentum  operator ,  defined  by  Eq.
(7), which is formed by the orbital term  and Pauli-
Dirac spin matrix . However, as mentioned before, these
operators  are  not  conserved  separately;  thus,  we  must
look  for  a  new  conserved  spin  operator  related  to  a
suitable  new  position  operator, ,  allowing  the
new splitting 

J⃗ = x⃗∧ P⃗+ s⃗ = L⃗+ S⃗ , L⃗ = X⃗∧ P⃗ , (14)

δX⃗ δX⃗∧ P⃗ = s⃗− S⃗
su(2) ∼ so(3)

{L1,L2,L3} {S 1,S 2,S 3}

S⃗ δX⃗

which imposes the correction  to satisfy .
This new splitting gives rise to a pair of new 
symmetries,  namely,  the orbital symmetry  generated  by

 and  the spin one  generated  by .
Moreover, we have shown that the Fourier transforms of
the  operators  and  are  just  the  Pryce  (e)  operators
[18].

ξ = {ξσ|σ = ± 1
2 }

VP

( 1
2 ,0) (0, 1

2 ) ρD

ψ : M×VP→VD

ψξ ψ
ξ→ r̂ξ

r̂ ∈ SU(2)
T s : r̂→ T s

r̂

To write the plane wave solutions of the Dirac equa-
tion, it is known that we must choose the same orthonor-
mal  basis  of  polarization  spinors  in  both
the  spaces  of  Pauli  spinors  carrying  the  irreducible
representations  and  of . Because the polar-
ization spinors are free parameters,  we may consider the
Dirac field as , denoting it explicitly by

 instead of . The basis of polarization spinors can be
changed  at  any  time, ,  by  applying  a  rotation

,  which  changes  the  form  of  the  Dirac  spinor,
giving  rise  to  the  new  representation  of  the
group SU(2), which encapsulates the spin symmetry. The
operators of this representation have the action 

(
T s

r̂(θ)ψξ
)

(x) = ψr̂(θ)ξ(x) , (15)
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r̂(θ)where  are the rotations (A7) with Cayley-Klein para-
meters. The components of the spin operator can now be
defined as the generators of this representation [18], 

S i = i
∂T s

r̂(θ)

∂θi

∣∣∣∣
θi=0
⇒ S iψξ = ψŝiξ , (16)

T o : r̂→ T o
r̂

whose action is  obvious.  For  the  first  time,  we similarly
define the orbital representation  as 

(
T o

r̂(θ)ψξ
)

(t, x⃗) = r(θ)ψr̂(θ)−1ξ

(
t,R[r̂(θ)]−1 x⃗

)
(17)

T r = T o⊗T sto  accomplish  the  factorization .  The  basis
generators of the orbital representation 

Li = i
∂T o

r̂(θ)

∂θi

∣∣∣∣
θi=0

(18)

L⃗
S⃗ L⃗ X⃗

are the components of the new conserved orbital angular
momentum operator .  In  the  following,  we  pay  special
attention to the new operators , , and . 

B.    Momentum representation

Ω p̊ = { p⃗ | p⃗ = Λ p̊,Λ ∈ L↑+}

p̊

p̊ = (m,0,0,0)
p̊ Λ(r) p̊ = p̊ ⊂ L↑+

p̊

p̊

In MR,  all  quantities  are  defined  on  orbits  in  mo-
mentum  space, ,  which  can  be
built by applying Lorentz transformations on a represent-
ative momentum  [23−25].  In  the  case  of  massive
particles,  the  representative  momentum  is  just  the  rest
frame momentum, . The rotations that leave

 invariant, , form the stable group SO(3) 
of , whose universal covering group SU(2) is called the
little group associated with the representative momentum

.
p⃗ ∈Ω p̊ p⃗ = Λ p⃗ p̊

Λ p⃗ = L p⃗R(r( p⃗))
R(r( p⃗)) =

Λ(r( p⃗))
λ p⃗ ∈ ρD

Λ(λp⃗) = Λ p⃗ λ p⃗=0 = 1 ∈ ρD

The momenta  may be obtained as  by
applying transformations  formed by genu-
ine  Lorentz  boosts  and  arbitrary  rotations 

 that do not change the representative momentum.
The  corresponding  transformations , which  satis-
fy  and , have the form 

λ p⃗ = lp⃗ r( p⃗) , (19)

lp⃗

L p⃗ = Λ(lp⃗)
where  the  transformations  given by  Eq.  (A11)  are  re-
lated  to  the  genuine  Lorentz  boosts  with  the
matrix  elements  from  (A12).  The  invariant  measure  on
the massive orbits [30] 

µ(p⃗) = µ(Λp⃗) =
d3 p
E(p)

, ∀Λ ∈ L↑+ (20)

is the last tool required for relating CR and MR.
The  general  solutions  of  the  free  Dirac  equation,

ψ ∈ F
U p⃗,σ V p⃗,σ =CU∗p⃗,σ

C =C−1 = iγ2

,  may  be  expanded  in  terms  of  mode  spinors
spinors,  and ,  of  positive  and  negative
frequencies,  related  through  the  charge  conjugation
defined  by  the  matrix .  The  mode  spinors
are particular  solutions of  the Dirac equation that  satisfy
the eigenvalues problems 

HU p⃗,σ = E(p)U p⃗,σ , HV p⃗,σ = −E(p)V p⃗,σ , (21)

 

PiU p⃗,σ = pi U p⃗,σ , PiV p⃗,σ = −pi V p⃗,σ , (22)

depending  explicitly  on  the  polarization  spinors,  which
will be specified later. Therefore, the general solutions of
the Dirac equation are free fields that can be expanded as
[20, 29] 

ψ(x) = ψ+(x)+ψ−(x)

=

∫
d3 p
∑
σ

[
U p⃗,σ(x)ασ( p⃗)+Vp⃗,σ(x)β∗σ( p⃗)

]
, (23)

α :Ω p̊→VP β :Ω p̊→
VP

F

F = F +⊕F −

in  terms  of  spinors-functions  and 
 representing  the  particle  and  antiparticle wave

spinors, respectively. Thus, the space of free fields  can
be split  into  two subspaces  of  positive  and  negative  fre-
quencies, , which  are  orthogonal  with  re-
spect to the scalar product (4).

t0 = 0The mode spinors prepared at the initial time  by
an observer staying at rest in origin have the general form 

U p⃗,σ(x) = uσ( p⃗)
1

(2π)3/2
e−iE(p)t+ip⃗·x⃗ , (24)

 

V p⃗,σ(x) = vσ( p⃗)
1

(2π)3/2
eiE(p)t−ip⃗·x⃗ , (25)

vσ(p⃗) =Cu∗sσ(p⃗)where .  According  to  Wigner's  general
method  [1, 23, 24],  we  use  the  transformations  of  (19)
and (A.11) to represent the spinors 

uσ(p⃗) = n(p)λ p⃗ ůσ = n(p)l p⃗r( p⃗) ůσ

= n(p)lp⃗ ůσ( p⃗) , (26)

 

vσ(p⃗) =Cu∗σ( p⃗) = n(p)λp⃗v̊σ = n(p)lp⃗r(p⃗)v̊σ

= n(p)lp⃗v̊σ( p⃗) , (27)

n(0) = 1
ůσ = uσ(0) v̊σ = vσ(0) =Ců∗σ

depending  on  a  normalization  factor  satisfying .
The  rest  frame  spinors  and 
are solutions of the Dirac equation in the rest frame obey-
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γ0ůσ = ůσ γ0v̊σ = −v̊σing  and . If these equations are satis-
fied,  then  the  spinors  (24)  and  (25)  are  solutions  of  the
Dirac equation in MR, 

(γp−m)uσ( p⃗) = 0 , (γp+m)vσ( p⃗) = 0 , (28)

γp = E(p)γ0−γi pi = mlp⃗γ
0l−1

p⃗because .
r(p⃗)Considering  that  the  rotations  are  arbitrary,  we

separate the quantities 

ůσ(p⃗) = r( p⃗)ůσ =
1√
2

(
ξσ(p⃗)

ξσ(p⃗)

)
, (29)

 

v̊σ(p⃗) = r( p⃗)v̊σ =
1√
2

(
ησ(p⃗)

−ησ( p⃗)

)
, (30)

γ0

1 −1 r(p⃗)
γ0

ξσ( p⃗) ησ(p⃗) = iσ2ξ
∗
σ( p⃗)

ξσ( p⃗)

which are eigenspinors of the matrix  corresponding to
the  eigenvalues  and ,  respectively,  as  com-
mutes with . These Dirac spinors depend on the related
Pauli  spinors  and ,  which  we  call
the  polarization  spinors,  observing  that  only  the  spinors

 remain arbitrary.  The  orthogonality  and  complete-
ness  properties  of  these  spinors  (presented  in  Appendix
C) ensure the normalization of the spinors (29) and (30),
which give rise to the complete orthogonal system of pro-
jection matrices 

∑
σ

ůσ( p⃗)ů+σ( p⃗) =
∑
σ

ůσů+σ =
1+γ0

2
, (31)

 ∑
σ

v̊σ( p⃗)v̊+σ( p⃗) =
∑
σ

v̊σv̊+σ =
1−γ0

2
, (32)

γ0on the proper subspaces of the matrix .
Finally, by setting the normalization factor in accord-

ance with Eq. (A16), 

n(p) =
…

m
E(p)

, (33)

we obtain the orthonormalization, 

⟨U p⃗,σ,U p⃗ ′ ,σ′⟩D = ⟨V p⃗,σ,V p⃗ ′ ,σ′⟩D = δσσ′δ3(p⃗− p⃗ ′) ,

(34)
 

⟨U p⃗,σ,V p⃗ ′ ,σ′⟩D = ⟨V p⃗,σ,U p⃗ ′ ,σ′⟩D = 0 , (35)

and completeness, 

∫
d3 p
∑
σ

[
U p⃗,σ(t, x⃗)U+p⃗,σ(t, x⃗ ′)+V p⃗,σ(t, x⃗)V+p⃗,σ(t, x⃗ ′)

]
= δ3(x⃗− x⃗ ′) ,

(36)

of the basis of mode spinors.

ψ
Equation  (23)  can  now  be  seen  as  the  expansion  of

the free field  in the basis of mode spinors whose "coef-
ficients" are just the wave spinors 

α =

(
α 1

2

α− 1
2

)
∈ F̃ + , β =

(
β 1

2

β− 1
2

)
∈ F̃ − , (37)

ψ
ψ

which encapsulate  the physical  meaning of .  When the
field  is known, then the wave spinors can be derived by
applying the inversion formulas 

ασ( p⃗) = ⟨U p⃗,σ,ψ⟩D , βσ( p⃗) = ⟨ψ,Vp⃗,σ⟩D , (38)

F̃ + ∼ F̃ −

L2(Ω p̊,d3 p,VP)

resulting  from  Eqs.  (34)  and  (35).  We  assume  now  that
the  spaces  are  rigged  Hilbert  spaces,  including
Hilbert  spaces ,  equipped  with  the  same
scalar product, 

⟨α,α′⟩ =
∫

d3 pα+( p⃗)α′(p⃗) =
∫

d3 p
∑
σ

α∗σ( p⃗)α′σ(p⃗) , (39)

βand  similarly  for  the  spinors .  Then,  after  using  Eqs.
(34) and (35), we obtain the important identity 

⟨ψ,ψ′⟩D = ⟨α,α′⟩+ ⟨β,β′⟩ , (40)

⟨ψ,ψ⟩D = 1
|ασ(p⃗)|2 |βσ(p⃗)|2

σ

expressing  the  Dirac  scalar  product  in  terms  of  wave
spinors.  We remind the reader that  when ,  the
quantities  and  are the densities of probab-
ility in momentum space of a particle and antiparticle of
polarization , respectively. 

III.  OPERATORS OF DIRAC'S THEORY

A, B, ... ∈ Aut(F )
The observables of Dirac's RQM are linear operators

acting on the space of free fields, , which
must be self-adjoint with respect to the scalar product (4).
Apart from the familiar multiplicative and differential op-
erators,  there  are  integral  operators  that  deserve  special
attention. 

A.    From differential to integral operators
4×4

f (i∂µ) ∈ ρD

The  differential  operators  are  matrices depend-
ing on derivatives , whose action on the mode
spinors, 
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[
f (i∂µ)ψ

]
(x) =

∫
d3 p
∑
σ

[
f (pµ)U p⃗,σ(x)ασ( p⃗)

+ f (−pµ)V p⃗,σ(x)β∗σ(p⃗)
]
, (41)

f (pµ)

Pµ = i∂µ

is given by the momentum-dependent matrices . The
principal differential operators are the translation generat-
ors , the  operator  of  the  Dirac  equation,  and im-
plicitly the Dirac Hamiltonian (3). However, there are im-
portant  operators,  such  as  those  proposed  by  Pryce,  that
are integral  operators  and cannot  be reduced to differen-
tial ones.

Z : F →FIn general, the integral operators, , have the
action 

(Zψ)(x) =
∫

d4x′Z(x, x′)ψ(x′) , (42)

Z : M×M→ ρD

Z→ Z

Z = Z1Z2

defined by their kernels , denoted here by
the corresponding Fraktur symbol, e.g., . These op-
erators are linear, forming an algebra in which the multi-
plication, , is defined by the composition rule of
the corresponding kernels, 

Z(x, x′) =
∫

d4x”Z1(x, x”)Z2(x”, x′) . (43)

(Iψ)(x) =
ψ(x) I(x, x′) = δ4(x− x′)
The identity operator I of this algebra acting as 

 has  the  kernel .  For  any  integral
operator Z,  we  may write  the  Dirac  bracket  at  the  given
time t as 

⟨ψ,Zψ′⟩D|t =
∫

d3xd4x′ψ+(t, x⃗)Z(t, x⃗, x′)ψ(x′) , (44)

x⃗

∂µ
∂µδ

4(x)

integrating only over the space coordinates . The multi-
plicative  or  differential  operators  are  particular  cases  of
integral ones. For example, the derivatives  can be seen
as integral operators with the kernels . In general,
the  operators  with  kernels  depending  on t and t'  or  only
on t-t' play the role of propagators.

For  describing  usual  observables,  it  is  sufficient  to
consider equal-time  operators, A,  whose  kernels  of  the
form 

A(x, x′) = δ(t− t′)A(t, x⃗, x⃗ ′) (45)

define the operator action 

(Aψ)(t, x⃗) =
∫

d3x′A(t, x⃗, x⃗ ′)ψ(t, x⃗ ′) , (46)

preserving  the  time.  The  operator  multiplication  takes

over this property: 

A = A1A2

⇒ A(t, x⃗, x⃗ ′) =
∫

d3x′′A1(t, x⃗, x⃗ ′′)A2(t, x⃗ ′′, x⃗ ′) , (47)

E[t] ⊂ Aut(F )
which means that the set of equal-time operators forms an
algebra, ,  at  any fixed time t. The expecta-
tion values of these operators at a given time t, 

⟨ψ,Aψ′⟩D|t =
∫

d3xd3x′ψ+(t, x⃗)A(t, x⃗, x⃗ ′)ψ′(t, x⃗ ′) , (48)

are dynamic quantities evolving in time as 

∂t⟨ψ,Aψ′⟩D|t = ⟨ψ,dAψ′⟩D|t
dA = ∂A+ i[HD,A] , (49)

∂A
where dA plays the role of total time derivative assuming
that the new operator  has the action 

(∂Aψ)(t, x⃗) =
∫

d3x′∂tA(t, x⃗, x⃗ ′)ψ(t, x⃗ ′) . (50)

As mentioned before, we say that an operator is con-
served  if  its  expectation  value  is  independent  of  time.
This means that an equal-time operator A is conserved if
and only if it satisfies dA=0. Thus, we have a tool allow-
ing us to identify the conserved operators without resort-
ing to Noether's theorem.

F[t] ⊂ E[t]
A(t, x⃗, x⃗′) = A(t, x⃗− x⃗′)

A special subalgebra, , is formed by Fouri-
er  operators  with local  kernels, , al-
lowing three-dimensional Fourier representations, 

A(t, x⃗) =
∫

d3 p
eip⃗·x⃗

(2π)3
Â(t, p⃗) , (51)

Â(t, p⃗) ∈ ρDdepending on the matrices , which we call the
Fourier  transforms  of  the  operators A.  Then,  the  action
(46) on a field (23) can be written as 

(Aψ)(t, x⃗) =
∫

d3x′A(t, x⃗− x⃗ ′)ψ(t, x⃗ ′)

=

∫
d3 p
∑
σ

[
Â(t, p⃗)U p⃗,σ(t, x⃗)ασ( p⃗)

+Â(t,− p⃗)Vp⃗,σ(t, x⃗)β∗σ(p⃗)
]
. (52)

Â(t, p⃗) = Â(t, p⃗)+

One  can  verify  that  a  Fourier  operator A is  self-adjoint
with respect to the scalar product (4) if its Fourier trans-
form is a Hermitian matrix, .

F[t]In  the  algebra,  the  operator  multiplication,
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A = A1A2

A = A1 ∗A2

, is given by the convolution of the correspond-
ing kernels, , defined as 

A(t, x⃗− x⃗ ′) =
∫

d3x′′A1(t, x⃗− x⃗ ′′)A2(t, x⃗ ′′− x⃗ ′) , (53)

Â(t, p⃗) = Â1(t, p⃗)Â2(t, p⃗)

F̂[t]

Î(p⃗) = 1 ∈ ρD A ∈ F[t]
F̂[t]

which leads to the multiplication, ,
of the  Fourier  transforms.  Thus,  one  obtains  the  new al-
gebra  in  MR,  formed  by  the  Fourier  transforms  of
the Fourier  operators,  in  which the identity is  the matrix

.  Obviously,  the  operator  is invert-
ible if its Fourier transform is invertible in .

F[0] ⊂ E[0]
F[0]

F̂[0]

As  there  are  many  equal-time  or  Fourier  operators
whose  kernels  are  independent  of  time,  we  denote  their
algebras  by ,  observing  that  the  time-inde-
pendent  Fourier  transforms  of  the  operators  of  the 
algebra  constitute  the  algebra .  An  example  is  the
Dirac Hamiltonian (3), whose Fourier transform 

ĤD( p⃗) = mγ0+γ0γ⃗ · p⃗ ∈ F̂[0] , (54)

acts as 

ĤD( p⃗)U p⃗,σ(x) = E(p)U p⃗,σ(x) , (55)

 

ĤD(−p⃗)V p⃗,σ(x) = −E(p)V p⃗,σ(x) . (56)

ρD γµ sµν
Other elementary examples are the momentum-independ-
ent  matrices  of , , , etc.  which  can  be  seen  as
Fourier  operators  whose  Fourier  transforms  are  just  the
matrices themselves.

F̂[0]

F̂[0]

During the last century, many authors have preferred
to work in the  algebra, exclusively manipulating the
time-independent Fourier transforms of the operators un-
der consideration. In this manner, Pryce proposed his ver-
sions (c), (d), and (e) of related spin and position operat-
ors and a complete set of orthogonal projection operators,
defining their Fourier transforms [5]. In the same pape, r
Pryce proposed a transformation that differs only through
a parity from the famous Foldy-Wouthuysen transforma-
tion  proposed  two  years  later  [6],  whose  action  remains
exclusively at the level of the  algebra.
 

B.    Diagonal and oscillating terms
Π± ∈ F[0]

F̂[0]
The Pryce projection operators, , are defined

by their Fourier transforms from  that read
 

Π̂+( p⃗) =
m

E(p)
lp⃗

1+γ0

2
l p⃗ =

1
2

Ç
1+

ĤD( p⃗)
E(p)

å
, (57)

 

Π̂−( p⃗) =
m

E(p)
l−1

p⃗
1−γ0

2
l−1

p⃗ =
1
2

Ç
1− ĤD(p⃗)

E(p)

å
, (58)

ĤD(p⃗)where , defined by Eq. (54), can now be written in
the form 

ĤD( p⃗) = E(p)
[
Π̂+(p⃗)− Π̂−( p⃗)

]
. (59)

Moreover, according to Eq. (56), we verify that 

(Π+U p⃗,σ)(x) = Π̂+( p⃗)U p⃗,σ(x) = U p⃗,σ(x) ,

(Π−U p⃗,σ)(x) = Π̂−( p⃗)U p⃗,σ(x) = 0 ,

(Π+V p⃗,σ)(x) = Π̂+(− p⃗)V p⃗,σ(x) = 0 ,

(Π−V p⃗,σ)(x) = Π̂−(− p⃗)V p⃗,σ(x) = V p⃗,σ(x) ,

Π+ = Π
2
+ Π− = Π

2
−

Π+Π− = Π−Π+ = 0 Π++Π− = I

Π+F = F + Π−F = F −

N ∈ F[0]

concluding that the operators  and  satis-
fy  and ,  thus  forming  a
complete system of orthogonal projection operators. With
their help, one may separate the subspaces of positive and
negative  frequencies,  and  [5].
These projection operators allow us to define the new op-
erator  with Fourier transform 

N̂( p⃗) = Π̂+(p⃗)− Π̂−(p⃗) =
ĤD( p⃗)
E(p)

,

⇒ N̂2( p⃗) = 1 ∈ ρD ⇒ N2 = I . (60)

We postpone its interpretation as it is discussed later.

A ∈ E[t]
F = F +⊕F −

The Pryce  projection  operators  help  us  to  study how
an operator  acts  on the  orthogonal  subspaces  of

, resorting to the expansion 

A = A(+)+A(−)+A(±)+A(∓)

= Π+AΠ++Π−AΠ−+Π+AΠ−+Π−AΠ+ (61)

suggested by Pryce [5] and written here in a self-explan-
atory notation. When A is a Hermitian operator, we have 

[
A(+)
]+
= A(+) ,

[
A(−)
]+
= A(−) ,

[
A(±)
]+
= A(∓) . (62)

Adiag = A(+)+A(−)

F + F −
A(±) A(∓)

A ∈ E[t]
A = Adiag A(±) = A(∓) = 0

The first two terms form the diagonal part of A, denoted
by ,  which  does  not  mix  the  subspaces

 and  among  themselves.  The  off-diagonal  terms,
 and , are nilpotent operators changing the sign of

frequency. Under  such  circumstances,  we  adopt  the  fol-
lowing definition: an equal-time operator  is said
to  be reducible if  as .  Otherwise,
the operator is irreducible with off-diagonal terms.
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A ∈ F[t]
F̂[t]

In  the  case  of  time-dependent  Fourier  operators
, the  expansion  (61)  gives  the  equivalent  expan-

sion of the Fourier transforms in  algebra that reads 

Â(t, p⃗) = Â(+)(t, p⃗)+ Â(−)(t, p⃗)+ Â(±)(t, p⃗)+ Â(∓)(t, p⃗)

= Π̂+(p⃗)Â(t, p⃗)Π̂+( p⃗)+Π̂−( p⃗)Â(t, p⃗)Π̂−( p⃗)

+Π̂+( p⃗)Â(t, p⃗)Π̂−( p⃗)+Π̂−( p⃗)Â(t, p⃗)Π̂+(p⃗) . (63)

In addition, we observe that the total time derivative (49)
acts on the Fourier transforms of the operator A as 

dÂ(t, p⃗) = ∂tÂ(t, p⃗)+ i
[
ĤD( p⃗), Â(t, p⃗)

]
. (64)

Considering that the operator (59) depends on Pryce's
projection operators, we can calculate the following com-
mutators: 

[
ĤD( p⃗), Â(+)(t, p⃗)

]
=
[
ĤD(p⃗), Â(−)(t, p⃗)

]
= 0 , (65)

 [
ĤD( p⃗), Â(±)(t, p⃗)

]
= 2E(p)Â(±)(t, p⃗) , (66)

 [
ĤD( p⃗), Â(∓)(t, p⃗)

]
= −2E(p)Â(∓)(t, p⃗) , (67)

A = Adiag ∈ F[0]

Aosc = A(±)+A(∓)

concluding that a Fourier operator A is conserved (obey-
ing dA=0)  only  if  this  is  reducible  and  independent  of
time, . In fact, all the diagonal parts of the
Fourier  operators  of  the  algebra F[0]  are  conserved.  In
contrast,  the  off-diagonal  terms  are  oscillating  in  time
with frequency 2E(p),  resulting from Eqs.  (66) and (67).
These  terms form the oscillating part  of
the operator A. A well-known example is the operator of
Dirac's  current density,  whose oscillating terms give rise
to Zitterbewegung [2, 3, 21, 22].

A = Adiag ∈ E[0]

We must  stress  that  the  criteria  for  selecting  con-
served Fourier operators cannot be extended to any equal-
time  operators,  even  those  satisfying  a  similar  condition

.  An  example  is  the  position  operator,
which satisfies this condition but evolves linearly in time,
as we shall show in Sec. IV.B. 

C.     Pryce (e) spin and related operators

S⃗ Pr(e)

δX⃗Pr(e)

Pryce's  principal  proposal  is  his  version  (e)  defining
the Fourier transforms of a conserved spin operator 
related to a suitable correction to the coordinate operator,

. These Fourier transforms
 

⃗̂S Pr(e)(p⃗) =
m

E(p)
s⃗+

p⃗ (s⃗ · p⃗)
E(p)(E(p)+m)

+
i

2E(p)
p⃗∧ γ⃗ , (68)

 

δ⃗̂XPr(e)( p⃗) =
iγ⃗

2E(p)
+

p⃗∧ s⃗
E(p)(E(p)+m)

− ip⃗ (γ⃗ · p⃗)
2E(p)2(E(p)+m)

(69)

δ⃗̂XPr(e)( p⃗)∧ p⃗ = s⃗− ⃗̂S Pr(e)( p⃗)

S⃗ FW

S⃗ ≡ S⃗ Pr(e) ≡
S⃗ FW ∈ F[0]
⃗̂S ( p⃗) ≡ ⃗̂S Pr(e)( p⃗) ∈ F̂[0]

satisfy  the  identity  to  ensure
the conservation of the total angular momentum (14). The
Pryce (e) spin operator was considered later by Foldy and
Wouthuysen, who showed that their operator (A17) trans-
forms the Pryce (e) spin operator into the Pauli-Dirac one
in Eq. (A19). For this reason, many authors consider the
Pryce  (e)  spin  operator  as  the  Foldy-Wouthuysena  one,
denoting it by  [11, 12]. In the following, we use the
simpler  notation  of  the  spin  operator 

,  and  similarly,  for  its  Fourier  transform,
, defined by Eq. (68).

S⃗
In  Ref.  [18],  we  considered  a  spectral  representation

to  show  that  is  just  the  operator  defined  by  Eq.  (16),
whose  components  generate  the  spin  symmetry.  We
found  that  its  Fourier  transform  (68)  can  be  put  in  the
form [18] 

⃗̂S ( p⃗) =
m

E(p)

ï
l p⃗ s⃗

1+γ0

2
lp⃗+ l−1

p⃗ s⃗
1−γ0

2
l−1

p⃗

ò
= s⃗(p⃗) Π̂+( p⃗)+ s⃗(− p⃗) Π̂−( p⃗) , (70)

laying out the operator 

⃗̂S Ch( p⃗) ≡ s⃗(p⃗) = lp⃗ s⃗ l−1
p⃗ ∈ F̂[0] , (71)

S⃗ Ch ∈ F[0]
which  was  proposed  by  Chakrabarti  [8]  as  the  Fourier
transform  of  an  alternative  spin  operator, .
However, this operator is not conserved, having the same
action as the Pryce (e) one but only in the particle sector,
while  in  the  antiparticle  sector,  there  is  a  discrepancy
generating  oscillating  terms,  as  we  shall  show  in  Sec.
V.C. Nevertheless, the properties of the Chakrabarti oper-
ator, 

s⃗( p⃗) = s⃗+(−p⃗) , s⃗(± p⃗)Π̂±( p⃗) = Π̂±(p⃗)s⃗(∓p⃗) , (72)

S⃗
⃗̂S ( p⃗) = ⃗̂S +( p⃗) = ⃗̂S diag( p⃗) ∈ F̂[0]

S i

guarantee  that  is  a  conserved  Hermitian  operator,  and
its Fourier transform obeys .
In  addition,  the  components  are  translation  invariant,
commuting with the momentum operator,  having similar
algebraic properties to the Pauli-Dirac operator, [

Ŝ i( p⃗), Ŝ j( p⃗)
]
= iϵi jkŜ k( p⃗) ⇒

[
S i,S j

]
= iϵi jkS k ,{

Ŝ i( p⃗), Ŝ j( p⃗)
}
=

1
2
δi j ·1 ∈ ρD ⇒

{
S i,S j

}
=

1
2
δi jI ,

⃗̂S 2(p⃗) =
3
4
·1 ∈ ρD ⇒ S⃗ 2 =

3
4

I ,
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ψ→ ψξ U p⃗,σ→ U p⃗,ξσ V p⃗,σ→
V p⃗,ησ

thus  defining  a  spin  half  representation  of  the SU(2)
group.  Furthermore,  to  explicitly  write  the  action  of  this
operator,  we re-denote , ,  and 

.  Then,  by  using  the  form  of  the  spinors  (26)  and
(27), we may write the actions
 

(S iU p⃗,ξσ )(x) = Ŝ i( p⃗)U p⃗,ξσ (x) = U p⃗,ŝiξσ (x) , (73)

 

(S iV p⃗,ησ )(x) = Ŝ i(− p⃗)Vp⃗,ησ (x) = V p⃗,ŝiησ (x) , (74)

⃗̂S ( p⃗)

S⃗
concluding that  is  just  the  Fourier  transform of  the
spin operator  defined by Eq. (16). The integral repres-
entation helping us to derive the identity (70) will be dis-
cussed and generalized in Sec. IV.D.

S⃗
(+)

S⃗
(−)

In applications, we may use the new auxiliary operat-
ors  and  whose  components  have  the  Fourier
transforms
 

Ŝ (+)
i ( p⃗) = Θi j( p⃗)Ŝ j( p⃗) , Ŝ (−)

i (p⃗) = Θ−1
i j (p⃗)Ŝ j( p⃗) , (75)

Θ( p⃗)
L p⃗

where  is  the SO(3)  tensor  defined  in  Eq.  (A13)  as
the  space  part  of  the  Lorentz  boost  given  by  Eq.
(A12). With these notations, the Fourier transform of the
Pauli-Lubanski operator (11) can now be written as
 

Ŵµ( p⃗) = m(Lp⃗)µ ·· i Ŝ i( p⃗)⇒

Ŵ0(p⃗) = p⃗ · ⃗̂S ( p⃗) = p⃗ · s⃗ , ⃗̂W( p⃗) = m ⃗̂S (+)(p⃗) , (76)

pµŴµ(p⃗) = 0 Ŵµ( p⃗)Ŵµ( p⃗) = −m2 3
4 ·1 ∈ ρDsatisfying  and .

ξσ( p⃗) ησ(p⃗)

The form of  the  Pryce (e)  spin  operator  allows us  to
define the  operator  of  fermion  polarization  for  any  re-
lated polarization spinors,  and , satisfying the
general eigenvalues problems
 

ŝini( p⃗)ξσ( p⃗) = σξσ( p⃗)⇒ ŝini( p⃗)ησ(p⃗) = −σησ(p⃗), (77)

n⃗( p⃗)

Ws ∈ F[0]

where the unit vector  gives the peculiar direction of
spin  projection.  The  corresponding  polarization  operator
may be defined as the Fourier operator , whose
Fourier transform reads [18]
 

Ŵs(p⃗) = w( p⃗)Π̂+(p⃗)+w(− p⃗)Π̂−( p⃗) , (78)

w( p⃗) = s⃗( p⃗) · n⃗( p⃗)where . As in the case of the spin operat-
or, we find that the operator of fermion polarization acts
as
 

(WsU p⃗,ξσ( p⃗))(x) = Ŵs( p⃗)U p⃗,ξσ(p⃗)(x)

= U p⃗,ŝini(p⃗)ξσ(p⃗)(x) = σU p⃗,ξσ(p⃗)(x) , (79)
 

(WsV p⃗,ησ(p⃗))(x) = Ŵs(− p⃗)V p⃗,ησ(p⃗)(x)

= V p⃗,ŝini(p⃗)ησ(p⃗)(x) = −σV p⃗,ησ(p⃗)(x) . (80)

Ws

{H,P1,P2,P3,Ws}

These eigenvalue problems demonstrate that  is the
operator  we  need  to  complete  the  system  of  commuting
operators  defining the momentum bases
of RQM.

δX⃗

Finally, we remind the reader that the conserved spin
operator  (70)  is  related  to  Pryce's  position  operator  of
version  (e),  whose  correction  has the  Fourier  trans-
form (69), which can be written in the simpler form [18] 

δ⃗̂X( p⃗) ≡ δ⃗̂XPr(e)( p⃗) = δx⃗+( p⃗)Π̂+( p⃗)+δx⃗−( p⃗)Π̂−( p⃗) , (81)

δx⃗±( p⃗)where the components of  have the form 

δxi
±( p⃗) = −i

1
n(p)

(
∂pi n(p)l± p⃗

)
l∓ p⃗ , (82)

X⃗ = x⃗+δX⃗
x⃗

depending on  the  normalization  factor  (33)  and  mo-
mentum  derivatives.  However,  we  cannot  construct  the
whole position operator  with the tools we con-
sidered so far because of the coordinate operator , which
is no longer a Fourier one. For this reason, we shall study
this operator in Sec. IV.B after constructing a convenient
framework. 

D.    Other spin-type and position operators
Other conserved spin-type Fourier operators that can-

not  be  integrated  naturally  in  Dirac's  theory  have  been
proposed,  as  in  the  case  of  the  Pryce  (e)  one,  because
their  components  do  not  satisfy su(2) commutation  rela-
tions.  Nevertheless,  these operators  deserve to be briefly
examined  as  they  represent  observables  that  could  be
measured in some dedicated experiments [11, 12].

S⃗ Fr

The oldest proposal is the Frankel spin-type operator,
which  is  a  Fourier  operator, , with  the  Fourier  trans-
form [4] 

⃗̂S Fr( p⃗) = s⃗+
i

2m
p⃗∧ γ⃗

=
E(p)

m

(
⃗̂S ( p⃗)− p⃗ ( p⃗ · ⃗̂S ( p⃗))

E(p)(E(p)+m)

)

=
E(p)

m
⃗̂S (−)( p⃗) , (83)

where the notation is the same as that for (75). The com-
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HD Pi
ponents of this operator are conserved and translation in-
variant, commuting with  and , but these do not sat-
isfy the su(2) algebra such that the squared norm, 

⃗̂S 2
Fr(p⃗) =

1
4

Å
1+2

E(p)2

m2

ã
·1 ∈ ρD , (84)

3/4is larger than . The Frankel spin-type operator may be
generated as 

[
Ŝ (+)

i ( p⃗), Ŝ (+)
j ( p⃗)

]
= iϵi jkŜ Frk(p⃗)

⇒
[
S (+)

i ,S (+)
j

]
= iϵi jkS Frk , (85)

with specific commutation rules 

[
Ŝ Fr i(p⃗), Ŝ Fr j(p⃗)

]
= iϵi jkĈFrk( p⃗)

⇒
[
S Fr i,S Fr j

]
= iϵi jkCFrk , (86)

C⃗Frwhich define the new Fourier operator  whose Fourier
transform reads 

⃗̂CFr( p⃗) =
E(p)

m

(
⃗̂S (p⃗)+

p⃗ ( p⃗ · ⃗̂S (p⃗))
m(E(p)+m)

)
=

E(p)
m

⃗̂S (+)(p⃗) .

(87)

A similar  spin-type  operator  was  considered  initially
by Pryce according to his hypothesis (c) [5] and then re-
defined and studied by Czochor [9] such that this is often
caled the Czochor spin operator [11, 12]. Here, we speak
about the Pryce (c)-Czochor (PC) operator defined as the
diagonal part of the Pauli-Dirac one [9], 

S⃗ PC = Π+ s⃗Π++Π− s⃗Π− . (88)

This has the Fourier transform [9, 11, 12] 

⃗̂S PC( p⃗) = Π̂+(p⃗)s⃗ Π̂+(p⃗)+Π̂−( p⃗)s⃗ Π̂−( p⃗)

=
m2

E(p)2
s⃗+

p⃗ ( p⃗ · s⃗)
E(p)2

+
im

2E(p)2
p⃗∧ γ⃗

=
m

E(p)
⃗̂S (+)( p⃗) , (89)

whose squared norm, 

⃗̂S 2
PC(p⃗) =

1
4

Å
1+2

m2

E(p)2

ã
·1 ∈ ρD , (90)Ä1

4
,
3
4

ó
takes  values  in  the  domain .  The  Pryce  (c)-Czo-
chor spin-type operator may be generated as 

[
Ŝ (−)

i ( p⃗), Ŝ (−)
j ( p⃗)

]
= iϵi jkŜ PCk(p⃗)

⇒
[
S (−)

i ,S (−)
j

]
= iϵi jkS PCk , (91)

satisfying the commutation relations 

[
Ŝ PC i(p⃗), Ŝ PC j(p⃗)

]
= iϵi jkĈPCk( p⃗)

⇒
[
S PC i,S PC j

]
= iϵi jkCPCk , (92)

C⃗PCwhere  the  Fourier  transform  of  the  new  operator 
reads 

⃗̂CPC(p⃗) =
m

E(p)
⃗̂S (−)( p⃗) . (93)

S⃗
(+)

S⃗
(−)

We conclude that  the Frankel  and Pryce (c)-Czochor
spin-type  operators  are  elements  of  a  larger  algebraic
structure depending only on the pair of operators  and

. In other respects,  all  the Fourier transforms of con-
served spin and spin-type operators discussed so far have
the  same projection  along  the  momentum direction  such
that 

p⃗ · ⃗̂S Fr( p⃗) = p⃗ · ⃗̂S PC(p⃗) = p⃗ · ⃗̂S ( p⃗) = p⃗ · s⃗ ∈ F̂[0] . (94)

⃗̂S Fr(p⃗) ⃗̂S PC(p⃗)
⃗̂CFr( p⃗) ⃗̂CPC( p⃗)

This means that we can inverse Eqs. (83) and (89), relat-
ing  the  operators  and  and  implicitly  their
commutator operators,  and , at any time .

Another  conserved  and  translation-invariant  operator
was proposed by Fradkin and Good [7]. Its Fourier trans-
form is defined as 

⃗̂S FG( p⃗) = γ0 s⃗+
p⃗ ( p⃗ · s⃗))

p2

Ç
ĤD(p⃗)
E(p)

−γ0

å
= ⃗̂S ( p⃗)N̂(p⃗) ⇒ S⃗ FG = S⃗ N , (95)

S⃗ N2 = I
where the operator N has the Fourier transform (60). As N
commutes  with  the  spin  operator  and ,  we  may
write the commutators directly as 

[
S FG i,S FG j

]
= iϵi jkNS FGk , ⇒ S⃗ 2

FG = S⃗ 2 =
3
4

I , (96)

which guarantee a desired square norm but without defin-
ing a Lie algebra.  The simple algebraic properties of the
Fradkin-Good  spin-type  operator  indicate  that  this  is
somewhat  useless  as  it  is  equivalent  with  the  Pryce  (e)
one. Other operators proposed recently [16, 17] could be
related  to  the  above  spin  and  spin-type operators  in  fur-
ther investigations.

The  Pryce  (c)-Czochor  spin-type operator  was  con-
structed from  the  beginning  according  to  Pryce's  hypo-
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X⃗Pr(c) = x⃗+δX⃗Pr(c) X⃗Pr(d) = x⃗+δX⃗Pr(d)

thesis  (c).  Moreover,  it  is  not  difficult  to  verify  that  the
Frankel  one  complies  with  the  hypothesis  (d)  such  that
both these operators are related to specific position oper-
ators,  and , respectively.
Observing that the corrections are Fourier operators, it is
convenient to use the artifice 

X⃗Pr(c) = X⃗+δX⃗Pr(c)−δX⃗ , X⃗Pr(d) = X⃗+δX⃗Pr(d)−δX⃗ , (97)

providing us with simple Fourier transforms 

δ⃗̂XPr(c)( p⃗)−δ⃗̂X(p⃗) =
p⃗∧ ⃗̂S ( p⃗)

E(p)(E(p)+m)
, (98)

 

δ⃗̂XPr(d)(p⃗)−δ⃗̂X( p⃗) = − p⃗∧ ⃗̂S ( p⃗)
m(E(p)+m)

, (99)

resulting  from  the  formulas  of  Ref.  [5].  These  position
operators  give  alternative  splittings  of  the  total  angular
momentum, 

J⃗ = X⃗Pr(c)∧ P⃗+ S⃗ PC = X⃗Pr(d)∧ P⃗+ S⃗ Fr ,

but they are formal,  without  a  precise physical  meaning,
as the components of the position operators do not com-
mute among themselves, while those of the spin-type op-
erators do not satisfy an su(2) algebra. The only attribute
of  the  above  spin-type and  related  orbital  angular  mo-
mentum operators is that they are conserved.

We conclude that the study of various position operat-
ors  reduces  to  the  Pryce  (e)  one,  which must  be  derived
after passing  beyond  the  technical  difficulties  of  con-
structing another suitable effective framework. 

IV.  METHOD OF ASSOCIATED OPERATORS

The  difficulties  arising  in  Dirac's  theory  come  from
the fact that there are many equal-time integral operators
with bi-local kernels that do not have Fourier transforms.
To study  such  operators,  we  must  resort  to  integral  rep-
resentations that can only be defined properly by relating
the operators  acting on the free fields  to  pairs  of  operat-
ors  acting  on  the  wave  spinors  (37);  here,  we  call  these
associated operators. In other worlds, we transfer the ac-
tion  of  a  given  operator  from mode  spinors  to  the  wave
spinors,  thus obtaining a  tool  for  systematically  deriving
expectation values in terms of the wave spinors we need
for preparing the quantization. 

A.    Associated operators
A : F →F

Ã : F̃ +→ F̃ Ãc : F̃ −→ F̃
We start by associating to each operator  in

CR  the  pair  of  operators  and ,

obeying
 

(Aψ)(x) =
∫

d3 p
∑
σ

[
(AU p⃗,σ)(x)α)σ( p⃗)+ (AVp⃗,σ)(x)β∗σ( p⃗)

]
≡
∫

d3 p
∑
σ

[
U p⃗,σ(x)(Ãα)σ( p⃗)+V p⃗,σ(x)(Ãcβ)∗σ( p⃗)

]
,

(100)

ψ

ψ′
such that the brackets of A for two different fields,  and

, can be calculated as
 

⟨ψ,Aψ′⟩D = ⟨α, Ãα′⟩+ ⟨β, Ãc+β′⟩ . (101)

A = A+

Ã = Ã+ Ãc = Ãc +

F F̃

Hereby,  we  deduce  that  if  is Hermitian  with  re-
spect  to  the Dirac scalar  product  (4),  then the associated
operators are Hermitian with respect to the scalar product
(39),  and . For simplicity, we denote the
Hermitian  conjugation  of  the  operators  acting  on  the
spaces  and  with  the  same  symbol  but  bearing  in
mind that the scalar products of these spaces are different.

A ∈ E[t]
(Ã, Ãc)

Ã Ãc

Ã Ãc

In general, the operators  and their associated
operators  may depend on time such that  we must
be  careful  considering  the  entire  algebra  we  manipulate
as  frozen at  a  fixed time t.  The new operators  and 
are  well-defined at  any  time  as  their  action  can  be  de-
rived  by  applying  the  inversion  formulas  (38)  to  Eq.
(100)  at  a  given instance t.  Thus,  we find that  and 
are integral operators that may depend on time acting as
 

(Ãα)σ(p⃗)
∣∣

t =

∫
d3 p′

∑
σ′

⟨U p⃗,σ,AU p⃗ ′ ,σ′⟩D
∣∣

tασ′ ( p⃗ ′)

+

∫
d3 p′

∑
σ′

⟨U p⃗,σ,AVp⃗ ′ ,σ′⟩D
∣∣

t β
∗
σ′ ( p⃗ ′) ,

(102)
 

(Ãcβ)σ( p⃗)
∣∣

t =

∫
d3 p′

∑
σ′

⟨U p⃗ ′ ,σ′ ,AV p⃗,σ⟩D
∣∣

tα
∗
σ′ ( p⃗ ′)

+

∫
d3 p′

∑
σ′

⟨V p⃗ ′ ,σ′ ,AVp⃗,σ⟩D
∣∣

t βσ′ ( p⃗ ′) ,

(103)

A⇔ (Ã, Ãc)

E[t] ⊂ Aut(F ) Ẽ[t]⊕ Ẽc[t] ⊂ Aut(F̃ )

Ẽ[t] Ẽ[t]c

12×2

through kernels that are the matrix elements of the operat-
or A in the basis of mode spinors. Thus, we obtain the as-
sociation  defined through Eq. (100), which is
a bijective mapping between two isomorphic operator al-
gebras,  and , pre-
serving the  linear  and  multiplication  properties.  Obvi-
ously, the identity operator of the algebras  and 
is the matrix . To analyze the actions of these operat-
ors, we rewrite Eqs. (102) and (103) as
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(Ãα)σ(p⃗)
∣∣

t = (Ã(+)α)σ( p⃗)
∣∣

t + (Ã(±)β∗)σ( p⃗)
∣∣

t , (104)

 

(Ãcβ)σ( p⃗)
∣∣

t = (Ã(∓)α∗)σ( p⃗)
∣∣

t + (Ã(−)β)σ(p⃗)
∣∣

t
(105)

in terms of the new associated operators,
 

Ã(+) ∈ Aut(F̃ +) , Ã(−) ∈ Aut(F̃ −)
Ã(±) ∈ Lin(F̃ +, F̃ −∗) , Ã(∓) ∈ Lin(F̃ −, F̃ +∗) ,

A(+), A(−), A(±) A(∓)

A ∈ E[t]

which are integral operators in MR whose kernels are the
matrix  elements  of  the  operators ,  and 
defined by the expansion (61). Therefore, if  is re-
ducible, then we have
 

A(±) = A(∓) = 0 ⇒ Ã(±) = Ã(∓) = 0 ⇒
{

Ã = Ã(+) ,

Ãc = Ã(−) .
(106)

A ∈ E[t]
Ãc = ±Ã

Anticipating this, we specify that all the Hermitian redu-
cible operators  we study here have associated op-
erators related through charge parity, .

A ∈ F[t]
Â(t, p⃗)

In  the  particular  case  of  Fourier  operators, ,
having  time-dependent  Fourier  transforms ,  the
matrix elements can be calculated easier as
 

⟨U p⃗,σ,AU p⃗ ′ ,σ′⟩D
∣∣

t = ⟨U p⃗,σ, Â(t, p⃗ ′)U p⃗ ′ ,σ′⟩D
∣∣

t

= δ3( p⃗− p⃗ ′)
m

E(p)
ů+σ( p⃗)lp⃗Â(t, p⃗)lp⃗ ůσ′ ( p⃗) ,

(107)

 

⟨U p⃗,σ,AV p⃗ ′ ,σ′⟩D
∣∣

t = ⟨U p⃗,σ, Â(t,−p⃗ ′)V p⃗ ′ ,σ′⟩D
∣∣

t

= δ3(p⃗+ p⃗ ′)
m

E(p)
ů+σ( p⃗)lp⃗Â(t, p⃗)l−p⃗ v̊σ′ (−p⃗)e2iE(p)t , (108)

 

⟨V p⃗ ′ ,σ′ ,AU p⃗,σ⟩D
∣∣

t = ⟨V p⃗ ′ ,σ′ , Â(t, p⃗)U p⃗,σ⟩D
∣∣

t

= δ3(p⃗+ p⃗ ′)
m

E(p)
v̊+σ′ (− p⃗)l−p⃗Â(t, p⃗)lp⃗ ůσ( p⃗)e−2iE(p)t , (109)

 

⟨V p⃗,σ,AV p⃗ ′ ,σ′⟩D
∣∣

t = ⟨Vp⃗,σ, Â(t,− p⃗ ′)V p⃗ ′ ,σ′⟩D
∣∣

t

= δ3( p⃗− p⃗ ′)
m

E(p)
v̊+σ(p⃗)l p⃗Â(t,−p⃗)l p⃗ v̊σ′ (p⃗) ,

(110)

2×2 F̃ +

F̃ −

observing  that  in  this  case,  the  associated  operators  are
simple  matrix operators acting on the spaces  and

. Hereby, we deduce the matrix elements of the associ-
ated diagonal operators
 

Ã(+)
σσ′ (t, p⃗) =

m
E(p)

ů+σ( p⃗)l p⃗Â(t, p⃗)lp⃗ ůσ′ ( p⃗) , (111)

 

Ã(−)
σσ′ (t, p⃗) =

m
E(p)

ů+σ( p⃗)l p⃗ CÂ(t,− p⃗)TCl p⃗ ůσ′ ( p⃗) ,

(112)

and those of the off-diagonal ones 

Ã(±)
σσ′ (t, p⃗) =

m
E(p)

ů+σ( p⃗)l p⃗Â(t, p⃗)l−p⃗ v̊σ′ (−p⃗)e2iE(p)t ,

(113)
 

Ã(∓)
σσ′ (t, p⃗) =

m
E(p)

v̊+σ′ (− p⃗)l−p⃗Â(t, p⃗)lp⃗ ůσ( p⃗)e−2iE(p)t ,

(114)

which oscillate with frequency 2E(p). 

B.    Associated spin, polarization, and position operators

I, N ∈ F[0]

The simplest examples of reducible Fourier operators
are  the  projection  operators  related  to  the  operators

, for  which  we  have  to  substitute  the  expres-
sions  (57)  and  (58)  in  Eqs.  (111)  and  (112)  using  the
identities (A.15) to obtain the associated operators, 

Π+ ⇒ Π̃+ = 12×2 , Π̃
c
+ = 0 ,

Π− ⇒ Π̃− = 0 , Π̃c
− = 12×2 ,

I = Π++Π− ⇒ Ĩ = Ĩc = 12×2 ,

N = Π+−Π− ⇒ Ñ = −Ñc = 12×2 ,

12×2 F̃[0] ≃ F̃c[0]depending  on  the  identity  operator  of 
algebras. More interesting are the operators associated to
the  new  observables  of  our  approach,  namely,  the  spin,
fermion  polarization,  and  position  operators,  which  we
study in this section.

S⃗

S⃗ = S⃗ diag

S⃗

To  derive  the  operators  associated  to  the  Pryce  (e)
spin ,  we  substitute  its  Fourier  transform  (70)  in  Eqs.
(111) and (112),  taking into account  that  these operators
are  reducible, .  By  again  using  the  identity
(A.15),  we  find  that  the  associated  operators  of  have
the components [18] 

S i ⇒ S̃ i = −S̃ c
i =

1
2
Σi( p⃗) , (115)

2×2 Σi(p⃗)where the  matrices  have the matrix elements 

Σiσσ′ ( p⃗) = 2ů+σ(p⃗)siůσ′ ( p⃗) = ξ+σ( p⃗)σi ξσ′ ( p⃗) , (116)

depending  on  the  polarization  spinors  and  having  the
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same  algebraic  properties  as  the  Pauli  matrices.  Similar
procedures give the operators 

S (+)
i ⇒ S̃ (+)

i = −S̃ (+)c
i =

1
2
Θi j(p⃗)Σ j( p⃗) , (117)

 

S (−)
i ⇒ S̃ (−)

i = −S̃ (−)c
i =

1
2
Θ−1

i j ( p⃗)Σ j( p⃗) , (118)

associated  to  those  defined  by  Eq.  (75),  as  well  as  the
simple  associated  operators  of  the  polarization  operator
(78), 

Ws ⇒ W̃ s = −W̃c
s =

1
2
σ3 , (119)

according  to  the  definition  of  the  polarization  spinors
(77).

X⃗
δX⃗

The position operator, , is reducible but is no longer
a  Fourier  operator  even  though  the  correction  of  the
Pryce (e)  version  is  of  this  type  with  the  Fourier  trans-
form given by Eqs. (81) and (82). To extract the action of
this operator,  we apply the Green theorem after  deriving
the identities [18] (

δXiU p⃗,ξσ

)
(t, x⃗) = δX̃i( p⃗)U p⃗,ξσ (t, x⃗)

= − i∂pi U p⃗,ξσ (t, x⃗)− xiU p⃗,ξσ (t, x⃗)+
tpi

E(p)
U p⃗,ξσ (t, x⃗)

+
∑
σ′

U p⃗,ξσ′ (t, x⃗)Ωiσ′σ(p⃗) , (120)

 (
δXiV p⃗,ησ

)
(t, x⃗) = δX̃i(−p⃗)V p⃗,ησ (t, x⃗)

= i∂pi V p⃗,ησ (t, x⃗)− xiV p⃗,ησ (t, x⃗)+
tpi

E(p)
Vp⃗,ησ (t, x⃗)

−
∑
σ′

V p⃗,ησ′ (t, x⃗)Ω∗iσ′σ( p⃗) . (121)

X⃗(t) = X⃗+ tV⃗
We  find  that  this  operator  depends  linearly  on  time,

, and its components have simple and intuit-
ive associated operators [18], 

Xi ⇒ X̃i
= X̃c i

= i∂̃i , (122)

 

V i ⇒ Ṽ i
= Ṽc i

=
pi

E(p)
, (123)

where the covariant derivatives [18], 

∂̃i = ∂pi 12×2+Ωi( p⃗) , (124)

∂̃i[ξσ(p⃗)ασ( p⃗)] = ξσ( p⃗)∂̃iασ( p⃗)are  defined  such  that .
Therefore, the connections 

Ωiσσ′ ( p⃗) = ξ+σ(p⃗)
[
∂piξσ′ ( p⃗)

]
=
{
η+σ( p⃗)

[
∂piησ′ (p⃗)

]}∗ (125)

Ωiσσ′ ( p⃗) = −Ω∗iσ′σ( p⃗)
i∂̃i

[∂̃i, S̃ j] = 0
Ωi(p⃗)

Ωi = 0 S̃ i

p⃗

are  anti-Hermitian, ,  which  means
that  the  operators  are  Hermitian.  We must  stress  that
the principal property of the covariant derivatives is their
commuting with the spin components, .  In the
case of peculiar polarization, the connections  guar-
antee  this  property,  which becomes trivial  in  the  case  of
common  polarization  when  and  are independ-
ent of .

X⃗

V⃗

X⃗MC(t) = X⃗MC + tV⃗ MC

Initially, Pryce proposed the operator  as the relativ-
istic mass-center operator of RQM. However, we showed
in  Ref.  [18]  that  after  quantization,  this  in  fact  becomes
the operator of center of charges, or simply the dipole op-
erator,  while  the  velocity  operator  becomes  just  the
corresponding  conserved  vector  current.  For  this  reason,
we defined another mass-center operator by changing the
sign of  the  antiparticle  term by hand.  Now,  we have the
ability to use the operator N to define the mass-center op-
erator from the  beginning,  at  the  level  of  RQM.  We  as-
sume that this has the form , where
 

X⃗MC(t) = NX⃗(t) ⇒ Xi
MC = NXi , V i

MC = NV i , (126)

X̃i
MC = −X̃c i

MC = X̃i

Ṽ i
MC = −Ṽc i

MC = Ṽ i
such  that  the  associated  operators  and

 guarantee the  desired  sign  of  the  anti-
particle term after quantization.

Other position operators are the Pryce (c) and (d) ones
depending  on  the  principal  position  operator  (e),  as  in
Eqs.  (97)−(99). As  these  operators  are  of  marginal  in-
terest, we restrict ourselves to briefly present their associ-
ated operators  and  some  algebraic  properties  in  Ap-
pendix C. 

C.    Associated isometry generators

T̃ ∈ Aut(F̃ +) T̃ c ∈ Aut(F̃ −)

Let us now demonstrate how the Pryce (e) spin oper-
ator is  related  to  the  generators  of  the  Poincaré  isomet-
ries.  In  our  approach,  we  may  explicitly  establish  the
equivalence  between  the  covariant  representation  and  a
pair  of  Wigner's  induced  ones  transforming  the  Pauli
wave  spinors.  The  covariant  representation T defined  by
Eq. (5) may be associated to a pair of Wigner's represent-
ations  whose  operators  and 
satisfy [1, 26, 30] 

(Tλ,aψ)(x) =
∫

d3 p
∑
σ

[
U p⃗,σ(x)(T̃ λ,aα)σ( p⃗)

 

Ion I. Cotăescu Chin. Phys. C 48, 123106 (2024)

123106-14



+V p⃗,σ(x)(T̃ c
λ,a β)∗σ( p⃗)

]
. (127)

(Λx) · p =
x · (Λ−1 p)
In  other  respects,  by  using  the  identity 

 and the invariant measure (20), we expand Eq.
(5) by changing the integration variable as 

(Tλ,aψ)(x) = λψ
(
Λ(λ)−1(x−a)

)
=

∫
d3 p

E(pλ)
E(p)

∑
σ

[
λU ′p⃗,σ(x)ασ(p⃗λ)e

ia·p

+λV ′p⃗,σ(x)β∗σ( p⃗λ)e
−ia·p] , (128)

a · p = aµpµ = E(p)a0− p⃗ · a⃗where  we  denote ,  while  the
new mode spinors, 

U ′p⃗,σ(x) = uσ( p⃗λ)
1

(2π) 3
2

e−iE(p)t+i p⃗·x⃗ , (129)

 

V ′p⃗,σ(x) = vσ( p⃗λ)
1

(2π) 3
2

eiE(p)t−i p⃗·x⃗ , (130)

depend on the transformed momentum of components, 

pµλ =
⟨
Λ(λ)−1

⟩µ ·
·ν pν , (131)

T̃ λ,a ≃ T̃ c
λ,a F̃ + F̃ −

through the spinors (26) and (27). Hereby, we deduce that
 acts alike on the spaces  and , as [1, 23,

30] 

(T̃ λ,aα)σ( p⃗) =

 
E(pλ)
E(p)

eia·p
∑
σ′

Dσσ′ (λ, p⃗)ασ′ ( p⃗λ) , (132)

βand similarly, for , because of their related matrices, 

Dσσ′ (λ, p⃗) = ů+σ( p⃗)w(λ, p⃗)ůσ′ (p⃗λ)

=
[
v̊+σ(p⃗)w(λ, p⃗)v̊σ′ ( p⃗λ)

]∗
. (133)

These depend on the well-known Wigner transforma-
tions 

w(λ, p⃗) = l−1
p⃗ λ l p⃗λ ∈ ρD , (134)

whose  corresponding  Lorentz  transformations  leave  the
representative momentum invariant, 

Λ[w(λ, p⃗)]p̊ = L−1
p⃗ Λ(λ)pλ = L−1

p⃗ p = p̊ ,

Λ[w(λ, p⃗)] ∈ SO(3)which  means  that  is  a  rotation,  and

w(λ, p⃗) ∈ ρD[SU(2)]
ρD

consequently . Furthermore, bearing in
mind that  the SU(2)  rotations of  have the form (A7),
we obtain  the  definitive  expression  of  the  matrix  ele-
ments (133) as 

Dσσ′ (λ, p⃗) = ξ+σ( p⃗)l̂−1
p⃗ λ̂ l̂p⃗λξσ′ ( p⃗λ) , (135)

s = 1
2

T̃ ≃ T̃ c

T (4)ⓈSU(2)
λ = r ∈ ρD[SU(2)]

E(pλ) = E(p) r̂l̂p⃗λ r̂
−1 = l̂ p⃗⇒ l̂−1

p⃗ r̂ l̂p⃗λ =

r̂⇒ D(r, p⃗) = D(r̂)

observing that these depend explicitly on the polarization
spinors. As these matrices form the representation of spin

 of the little group SU(2), one can say that the equi-
valent  Wigner  representation  is induced by  the
subgroup  [1, 23, 30]. Note  that,  for  rota-
tions, , we obtain the usual SU(2) linear
representation as  and 

, where 

Dσσ′ (r̂) = ξ+σ′ r̂ξσ =
(
η+σ′ r̂ησ

)∗
. (136)

λ ∈ ρD[S L(2,C)/SU(2)]

Thus,  we  understand  that  the  specific  mechanism  of  the
induced representations acts only for the Lorentz boosts,

.
The  Wigner-induced  representations  are  unitary  with

respect to the scalar product (39) [23, 25], 

⟨T̃ λ,aα, T̃ λ,aα
′⟩ = ⟨α,α′⟩ , (137)

β

T = T̃ ⊕ T̃
orthogonal

X̃ ∈ Lie(T̃ )

and  similarly  for .  Bearing  in  mind  that  the  covariant
representations  are  unitary  with  respect  to  the  scalar
product (4), which can be decomposed as in Eq. (40), we
conclude  that  the  expansion  (23)  establishes  the  unitary
equivalence  of  the  covariant  representation
with  the  sum  of  Wigner's  unitary  irreducible
ones  [25].  Under  such  circumstances,  the  self-adjoint
generators  defined as 

P̃µ = − i
∂T̃ 1,a

∂aµ

∣∣∣∣
a=0

, J̃µν = i
∂T̃ λ(ω),0

∂ωµν

∣∣∣∣
ω=0

(138)

X ∈ Lie(T )
are  just  the  associated  operators  of  the  generators

 such that 

(Xψ)(x) =
∫

d3 p
∑
σ

[
U p⃗,σ(x)(X̃α)σ( p⃗)

−V p⃗,σ(x)(X̃ β)∗σ( p⃗)
]
, (139)

ζ ∈ (ω,a) ζ = 0

X̃c
= −X̃

T̃ c ≃ T̃

as  we  deduce  by  deriving  Eq.  (127)  with  respect  to  the
corresponding  group  parameter  in .  Thus,
we  find  that  the  isometry  generators,  whose  associated
operators  obey ,  are  reducible  as  a  consequence
of the fact that  [18].

The  associated  Abelian  generators  are  trivial,  being
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diagonal in the momentum basis, 

H̃ = −H̃c = E(p) , P̃i = −P̃c i = pi . (140)

For rotations, we use the Cayley-Klein parameters as
in Eq. (A.7), recovering the natural splitting (14), 

Ji = Li+S i ⇒ J̃i = −J̃c
i = L̃i+ S̃ i , (141)

laying out the components of the Pryce (e) spin operator
(115) and intuitive components of the orbital angular mo-
mentum operator, 

Li ⇒ L̃i = −L̃c
i = −iϵi jk p j∂̃k . (142)

{L̃1, L̃2, L̃3}
{S̃ 1, S̃ 2, S̃ 3}

T̃ o T̃ s

The  sets  of  conserved  operators  and
 satisfying Eq.  (B.5)  generate  the  representa-

tions  and  of the associated factorization, 

T r = T o⊗T s ⇒ T̃ r
= T̃ o⊗ T̃ s

, (143)

T̃ r ≡ T̃
∣∣

S U(2)

T̃
of the SU(2) restriction  of the representation

.

λ = l(τ)
For the Lorentz boosts, we perform a similar calcula-

tion with  as in Eq. (A9), obtaining a similar split-
ting, 

Ki ⇒ K̃i = −K̃c
i = K̃o

i + K̃ s
i , (144)

where the orbital and spin components, 

K̃o
i = −K̃o

i
c
= iE(p)∂̃i+ i

pi

2E(p)
=

1
2

¶
X̃i
,E(p)

©
,

(145)

 

K̃ s
i = −K̃ s

i
c
=

1
E(p)+m

ϵi jk p jS̃ k , (146)

S L(2,C)
Ko

i

(T̃ o) {E(p), pi, L̃i, K̃o
i }

X̃i Ṽ i

no  longer  commute  among  themselves,  as  we  can  see
from  Eq.  (D6).  This  means  that  the  factorization  (143)
cannot be extended to the entire  group. Note that
the form (145) guarantees that the operators  are Her-
mitian  with  respect  to  the  scalar  product  (39). 1) The al-
gebraic properties of these operators are presented in Ap-
pendix B, where we show how an algebra of orbital oper-
ators in MR can be selected. This is formed by the orbital
subalgebra  Lie  generated  by  the  set 
and  the  kinetic  operators  and ,  which  do  not  have

spin parts.
Finally, let us turn back to the Pauli-Lubanski operat-

or whose  components  are  formed  by  products  of  iso-
metry generators as in Eq. (76). After a few manipulation,
we find the associated operators 

W0⇒ W̃0
= W̃c0

= piS̃ i , (147)

 

W i⇒ W̃ i
= W̃c i

= E(p)J̃i+ ϵi jk p jK̃ s
k = mS̃ (+)

i , (148)

PµWµ = E(p)W̃0− piW̃ i
= 0

W̃µW̃µ = − 3
4 m212×2

W̃µ

S̃ i X̃i

expressed in terms of operators (115) and (117). Hereby,
we recover the identity  and the
well-known invariant .  In Appendix B,
we give the commutation relations of the components 
with our new operators  and  that complete the algeb-
raic properties we already know [1, 30]. 

D.    Spectral representations
A⇔ (Ã, Ãc)

Ã Ãc

Ã Ãc

The correspondence  defined by Eq. (100)
is bijective. We have seen how A generates the operators

 and ,  so  we  now have  to  face  the  inverse  problem,
which we try to solve by resorting to spectral representa-
tions, such as those defined in Ref. [18], in the particular
case when  and  are matrix operators.  In the follow-
ing,  we  generalize  these  spectral  representations  to  any
equal-time associated operators whose action on the wave
spinors is given by arbitrary kernels.

A

Let us start with the equal-time integral operator (46),
whose  action  in  CR  is  given  by  the  time-dependent  bi-
local kernel . In addition, we assume that A is reducible
with its associated operators acting as 

(Ãα)σ(t, p⃗) =
∫

d3 p′
∑
σ′

Ãσσ ′ (t, p⃗, p⃗ ′)ασ′ ( p⃗ ′) , (149)

 

(Ãcβ)σ(t, p⃗) =
∫

d3 p′
∑
σ′

Ã
c
σσ′ (t, p⃗, p⃗

′)βσ ′ (p⃗′) . (150)

In  this  case,  we  may  exploit  the  orthonormalization  and
completeness  properties  of  the  mode  spinors,  given  by
Eqs. (34), (35), and (36), to relate the kernels of the asso-
ciated operators through the spectral representation 

A(t, x⃗, x⃗ ′)

=

∫
d3 pd3 p′

∑
σσ′

[
U p⃗,σ(t, x⃗)Ãσσ′ (t, p⃗, p⃗

′)U+p⃗ ′ ,σ′ (t, x⃗
′)

+Vp⃗,σ(t, x⃗)Ãc∗
σσ′ (t, p⃗, p⃗

′)V+p⃗ ′ ,σ′ (t, x⃗
′)
]
, (151)

Ion I. Cotăescu Chin. Phys. C 48, 123106 (2024)
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Ã Ãc
giving the action of the operator A in CR when we know
the actions of the associated operators  and .

Tλ,a

Tλ,a(t, x⃗, x⃗ ′)

This  mechanism  is  useful  for  taking  over  to  CR  the
principal  properties  of  our  operators  we  defined  in  MR,
where we studied the induced Wigner representations and
their generators. In spite of their manifest covariance, the
operators  can  be  seen  as  equal-time  operators  after
the  transformation  (128).  Their  kernels  in  CR,

, may be derived according to the spectral rep-
resentation (151),  where  we  have  to  substitute  the  ker-
nels in MR that are time-independent with the form 

T̃λ,a(p⃗, p⃗ ′) = T̃c
λ,a(p⃗, p⃗ ′)

= δ3
(

p⃗λ− p⃗ ′
)

eia·p

 
E(p′)
E(p)

D(λ, p⃗) , (152)

L̃i K̃o
i X̃i

depending on the momentum (131) and matrix (135). In a
similar manner,  we  may  write  the  spectral  representa-
tions of the kernels of the basis generators for which we
separated the orbital  parts, , ,  and ,  depending on
momentum  derivatives.  According  to  the  results  of  Sec.
IV.B, we may write the kernels of these operators in MR: 

L̃i(p⃗, p⃗ ′) = −L̃c
i ( p⃗, p⃗ ′)

= −iϵi jk p j∂̃kδ
3( p⃗− p⃗ ′)12×2 , (153)

 

K̃
o
i ( p⃗, p⃗ ′) = − K̃o

i
c
( p⃗, p⃗ ′) =

ï
δ3( p⃗− p⃗ ′)

ipi

2E(p)

+ iE(p)∂̃iδ
3( p⃗− p⃗′)

ò
12×2 , (154)

 

X̃
i(p⃗, p⃗ ′) = X̃i c

( p⃗, p⃗ ′) = i∂̃iδ
3( p⃗− p⃗ ′)12×2 . (155)

Li Ko
i Xi

Substituting  this  into  Eq.  (151)  will  give  the  kernels  of
the operators , , and  acting in CR as integral oper-
ators that may depend on time.

A ∈ F[t]In the particular case when  is a Fourier oper-
ator, the associated operators have the kernels 

Ã(t, p⃗, p⃗ ′) = δ3( p⃗− p⃗ ′)Ã(t, p⃗) , (156)

 

Ã
c(t, p⃗, p⃗ ′) = δ3(p⃗− p⃗ ′)Ãc(t, p⃗) , (157)

which solve one of the integrals of the spectral represent-
ation (151), leaving the simpler form 

A(t, x⃗− x⃗ ′) =
∫

d3 p
∑
σσ′

[
U p⃗,σ(t, x⃗)Ãσσ′ (t, p⃗)U+p⃗,σ′ (t, x⃗

′)
 

+V p⃗,σ(t, x⃗)Ãc
σσ′ (t, p⃗)∗V+p⃗,σ′ (t, x⃗

′)
]
, (158)

which can be applied to all the spin parts of our operators.
In Ref. [18], we used this type of spectral representa-

tion to  study  the  transformations  (15)  of  the  spin  sym-
metry starting with the identities 

r̂ξσ =
∑
σ′

ξσ′Dσ′σ(r̂)

⇒ U p⃗,r̂ξσ (x) =
∑
σ′

U p⃗,ξσ′ (x)Dσ′σ(r̂) , (159)

 

r̂ησ =
∑
σ′

ησ′D∗σ′σ(r̂)

⇒ V p⃗,r̂ησ (x) =
∑
σ′

V p⃗,ησ′ (x)D∗σ′σ(r̂) , (160)

ρD

D(r̂)
T s

r̂

where r are  the  rotations  (A4)  of ,  while  the  matrices
 are defined by Eq. (136). Under such circumstances,

the operator  can be defined as the integral Fourier op-
erator with the local time-independent kernel 

T
s
r̂(x⃗− x⃗ ′) =

∫
d3 p

ei(p⃗−p⃗ ′)·x⃗

(2π)3
T s

r̂ ( p⃗) (161)

given by Eq. (158), where we substitute 

Ãσσ′ (t, p⃗) = Ãc
σσ′ (t, p⃗) = Dσσ′ (r̂) . (162)

T s
r̂ ( p⃗)The  Fourier  transform  of  can  be  derived  by

now  considering  the  form  of  the  mode  spinors  (26)  and
(27)  and  using  the  identities  (159),  (160),  and  (A15).
After some calculation, we obtain 

T s
r̂ ( p⃗) =

m
E(p)

ï
lp⃗ r

1+γ0

2
lp⃗+ l−1

p⃗ r
1−γ0

2
l−1

p⃗

ò
= lp⃗ r l−1

p⃗ Π̃+( p⃗)+ l−1
p⃗ r l p⃗Π̃−( p⃗) . (163)

r̂ = r̂(θ)

This spectral  representation was crucial  for showing that
the  spin  components  defined  by  Eq.  (16)  have  just  the
Fourier  transforms  (68)  proposed  by  Pryce  (e).  In  Ref.
[18],  we started with  the  Fourier  transform (163),  where
we  substituted  given by  Eq.  (A7).  Then,  by  ap-
plying the  definition  (16),  we  found  the  Fourier  trans-
forms (70),  which  fortunately  coincide  with  those  pro-
posed by Pryce, as we deduced after using suitable com-
puter code.

T o
r̂

We  now  have  all  the  elements  required  to  write  the
kernels of the operators  of the orbital representation of
the SO(3)  group,  which  are  no  longer  Fourier  operators,
for the first time. These operators are defined by Eq. (17),
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Tr,0 T s
r̂which combines the actions of  and  such that,  ac-

cording to Eqs. (152) and (161), we may write the associ-
ated kernels in MR, 

T̃
o
r̂ (p⃗, p⃗ ′) = T̃oc

r̂ ( p⃗, p⃗ ′) = δ3
(

p⃗r̂ − p⃗ ′
)

D−1(r̂)D(r̂, p⃗) ,

= δ3
(

p⃗r̂ − p⃗ ′
)

12×2 , pr̂ = R(r̂)−1 p , (164)

T o
r̂

r̂→ r̂(θ) T o
r̂

as  a  result  of  Eq.  (136).  Substituting  these  kernels  into
Eq. (151), we obtain the kernels of the operators  of the
orbital representation acting on the free fields in CR. Fi-
nally, substituting again  into  and applying the
definition (18), we obtain the kernels (153) giving the ac-
tion of the operators (142) in MR directly, without resort-
ing to Wigner's theory as in Sec. III.C.

We  conclude  that  the  action  of  the  operators  of  the
spin  and  orbital  symmetries  can  be  properly  defined
thanks  to  our  spectral  representations  outlined  in  Ref.
[18]  for  Fourier  operators  and  generalized  here  to  any
equal-time integral operators. 

V.  QUANTUM THEORY

The quantization reveals the physical meaning of the
quantum  observables  of  RQM,  transforming  them  into
operators  of  QFT.  The principal  benefit  of  our  approach
is the association between the operator actions in CR and
MR,  allowing  us  to  derive  the  expectation  values  of  the
operators  defined  in  MR  according  to  the  general  rule
(101) at any time. Thus, we are able to apply the Bogoly-
ubov method for quantizing the operators of RQM. 

A.    Quantization

t = 0

In special relativistic QFT, each observer has its own
measurement apparatus formed by the set of observables
defined in its  proper frame at  a fixed initial  time. As we
already adopted the point of view of an observer staying
at rest at the origin preparing the free fields in initial time

, we assume that this observer keeps the same initial
condition for quantization.

(α,α∗)→ (a,a†) (β,β∗)→ (b,b†)

Applying  the  Bogolyubov  method  of  quantization
[27],  we first  replace the wave spinors of  MR with field
operators,  and ,  satisfying
canonical  anti-commutation  relations;  among  them,  the
non-vanishing ones are 

{
aσ(p⃗),a†σ′ (p⃗ ′)

}
=
{
bσ( p⃗),b†σ′ ( p⃗ ′)

}
= δσσ′δ

3( p⃗− p⃗ ′) . (165)

The Dirac free field thus becomes the field operator 

ψ(x) =
∫

d3 p
∑
σ

[
U p⃗,σ(x)aσ( p⃗)+V p⃗,σ(x)b†σ(p⃗)

]
, (166)

denoted  with  the  same  symbol  but  acting  on  the  Fock

⟨ | ⟩
|0⟩

state  space  equipped  with  the  scalar  product  and  a
normalized vacuum state  accomplishing 

aσ( p⃗)|0⟩ = bσ( p⃗)|0⟩ = 0 , ⟨0|a†σ( p⃗) = ⟨0|b†σ( p⃗) = 0 . (167)

The  sectors  with  different  numbers  of  particles  must  be
constructed by  applying  the  standard  method  for  con-
structing generalized momentum bases of various polariz-
ations.

Through  quantization,  the  expectation  value  of  any
time-dependent operator A(t) of RQM becomes an operat-
or, 

A(t) ⇒ A = : ⟨ψ,A(t)ψ⟩D :|t=0 , (168)

t = 0
A

A = A(t)|t=0

calculated respecting the normal ordering of the operator
products  [20]  at  the initial  time . This  procedure al-
lows  us  to  write  any  operator  directly  in  terms  of  the
operators  associated to  the  operator .  We first
consider the reducible operators complying with the con-
dition (106), for which we obtain the general formula 

A =
∫

d3 p
[
a
†(p⃗)(Ãa)(p⃗)− b†( p⃗)(Ãc+

b)(p⃗)
]
, (169)

written with the compact notation 

a
†( p⃗)(Ãa)( p⃗) ≡

∑
σ

a
†
σ( p⃗)(Ãa)σ( p⃗) , (170)

A⇔ (Ã, Ãc) A

Ãc = −Ã

Ãc = Ã

[Aodd,Bodd] =Ceven, [Aodd,Beven] =Codd, ...

and similarly for the second term. To shorten the termino-
logy,  we  say  here  that  the  associated  operators

 are the parent operators of . We specify that
the bracket in (168) is calculated according to Eq. (101),
where the last term changes its sign after introducing the
normal ordering of the operator products. When ,
we  say  that  the  one-particle  operator  (169)  is  even  (of
positive  charge  parity),  describing  an  additive  property
that is  similar  for  particles  and  antiparticles  as,  for  ex-
ample, the energy, momentum, spin, etc. The odd operat-
ors  (with  negative  charge  parity),  for  which , de-
scribe  electrical  properties  depending  on  the  opposite
charges of particles and antiparticles. Thus, we introduce
the operator signature, which behaves in commutation re-
lations as the usual algebraic signs in multiplication, e.g.,

, etc.
A ∈ Aut(F )

A+

A

Given  an  arbitrary  operator  and its  Her-
mitian  conjugated ,  we  define  the  adjoint  operator  of

, 

A+(t)⇒ A† = : ⟨ψ,A(t)+ψ⟩D :
∣∣

t=0 = : ⟨A(t)ψ,ψ⟩D :|t=0 , (171)
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⟨α|A†β⟩ = ⟨Aα|β⟩complying  with  the  standard  definition 
on  the  Fock  space.  In  to  following,  we  shall  meet  only
self-adjoint one-particle operators as all their parent oper-
ators of RQM are reducible and Hermitian with respect to
the scalar products of the spaces in which they act. Thus,
we obtain an operator algebra formed by fields and self-
adjoint  one-particle  operators,  which  have  the  obvious
properties 

[
A,ψ(x)

]
= −(Aψ)(x) , (172)

 

[A,B] =: ⟨ψ, [A,B]ψ⟩D : , (173)

preserving the structures of Lie algebras but without car-
rying over other algebraic properties of their parent oper-
ators from RQM, as the product of two one-particle oper-
ators is no longer an operator of the same type. Therefore,
we must  restrict  ourselves  to  the  Lie  algebras  of  sym-
metry generators  and  unitary  transformations  whose  ac-
tions reduce to sums of successive commutations accord-
ing to the well-known rule 

eXYe−X = Y+ [X,Y]+
1
2

[X, [X,Y]]+
1
3!

[X, [X, [X,Y]]]...,

(174)

which use in the following.
The  Poincaré  generators  (6)  give  rise  to  the  self-ad-

joint  one-particle  operators  calculated  at  the  initial  time
t=0, 

Pµ =: ⟨ψ,Pµψ⟩D : , Jµν = : ⟨ψ, Jµνψ⟩D :
∣∣

t=0 . (175)

Pµ Si j

S0i

S L(2,C)

The  brackets  corresponding  to  the  operators  and 
are  independent  of  time,  but  for  the  operators ,  we
must impose the initial condition to show later how these
operators evolve in time. With these generators,  we may
construct unitary  transformations  with  various  paramet-
rizations, among which we choose those of the first kind,
defining the unitary operators of translations and 
transformations as 

U(a) = exp
(
−iaµPµ

)
, a ∈ T (4) , (176)

 

U(ω) = exp
Å

i
2
ωµνJµν

ã
, λ(ω) ∈ ρD[S L(2,C)] ,

(177)

in accordance with our definition (6) of the isometry gen-
erators  and  the  rule  (172).  This  construction  guarantees

the expected isometry transformations of the field operat-
ors, 

U(a)aσ( p⃗)U†(a) =
(
T̃ 1,a a

)
σ

( p⃗) = eia·p
aσ( p⃗) , (178)

 

U(ω)aσ(p⃗)U†(ω) =
(
T̃ λ(ω),0 a

)
σ

(p⃗)

=

 
E(pλ)
E(p)

∑
σ′

Dσσ′
(
λ(ω), p⃗

)
aσ′ ( p⃗λ) ,

(179)

p⃗λ
aσ bσ

where the matrix D is given by Eq. (135) and  by Eq.
(131).  As  the  operators  and  transform alike  under
isometries, from Eq. (128), we obtain the transformations
of the quantum field 

U(a)ψ(x)U†(a) =
(
T1,aψ

)
(x) = ψ(x−a) , (180)

 

U(ω)ψ(x)U†(ω) =
(
Tλ(ω),0ψ

)
(x)

= λ(ω)ψ
(
Λ−1(λ(ω))x

)
.

(181)

λ(ω) ∈ ρD[S L(2,C)]

Moreover,  the  isometry  generators  usually  transform
according  to  the  adjoint  representation  of  the  Poincaré
group  [30],  thus  assuring  the  relativistic  covariance.  In
the  case  of  Lorentz  transformations ,
we have 

U(ω)PµU†(ω) = Λ·αµ ·(ω)Pα , (182)

 

U(ω)JµνU†(ω) = Λ·αµ ·(ω)Λ·βν ·(ω)Jαβ , (183)

Λ(ω)
U(a) U(ω)

where  is defined in Appendix A. Thus, we may say
that  the unitary operators  and  encapsulate the
entire theory of the relativistic covariance under Poincaré
isometries. More specifically, the transformations 

U(ω,a) = U(ω)U(a) : A → A′ = U(ω,a)AU†(ω,a) (184)

of an  operator  expressed  in  terms  of  particle  and  anti-
particle operators can be derived by Eqs. (178) and (179).
In general, these transformations are not manifest covari-
ant  because  of  their  momentum-dependent transforma-
tion matrices remaining under the integral over momenta.

t = 0

H = P0

We have seen that the quantization is performed at the
initial  time  when  one  obtains  a  set  of  one-particle
operators, among  which  we  may  find  conserved  operat-
ors that commute with the energy one  or dynamic-
al  operators  whose  time  evolution  is  governed  by  the
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Htranslation operator generated by , 

U(t) = exp(−itH) : A → A(t) = U†(t)AU(t) . (185)

t = 0

Thus,  the  observer  staying  at  rest  at  the  origin  recovers
the  time  evolution  of  the  observables  obtained  through
quantization in initial time . 

B.    Reducible operators

Q = N+−N−
N = N++N−

The reducible operators of RQM give rise to the one-
particle  operators  of  QFT.  There  are  two  such  operators
commuting  with  the  entire  algebra  of  observables,
namely,  the  charge  operator  and  that  of  the
total  number  of  particles ,  formed  by  the
particle and antiparticle number operators 

N+ =: ⟨ψ,Π+ψ⟩D :=
∫

d3 pa†( p⃗)a( p⃗) , (186)

 

N− =: −⟨ψ,Π−ψ⟩D :=
∫

d3 pb†(p⃗)b( p⃗) , (187)

±Π±coming from the parent operators  of RQM. Other di-
agonal operators  in  the  momentum basis  are  the  transla-
tions generators, energy and momentum, 

H =: ⟨ψ,Hψ⟩D :

=

∫
d3 p E(p)

[
a
†( p⃗)a(p⃗)+ b†(p⃗)b( p⃗)

]
, (188)

 

Pi =: ⟨ψ,Piψ⟩D :

=

∫
d3 p pi

[
a
†(p⃗)a( p⃗)+ b†( p⃗)b( p⃗)

]
, (189)

as well as our new operator of fermion polarization 1), 

Ws =: ⟨ψ,Wsψ⟩D :=
1
2

∫
d3 p

[
a
†(p⃗)σ3a( p⃗)+ b†( p⃗)σ3b( p⃗)

]
,

(190)

{H,P1,P2,P3,Ws,Q}which completes  the  set  of commut-
ing operators determining the momentum bases of the Fo-
ck state space.

Applying the general rule (169) to the associated rota-
tion generators (141), we find the splitting of the total an-
gular momentum 

Ji =: ⟨ψ, Jiψ⟩D :=: ⟨ψ,Liψ⟩D : + : ⟨ψ,S iψ⟩D := Li+Si , (191)

where the components of the orbital angular momentum,

Li Si, and spin operator, , can be written as
 

Li = −
i
2

∫
d3 pϵi jk p j

ï
a
†( p⃗)

↔
∂̃ia(p⃗)+ b†( p⃗)

↔
∂̃ib(p⃗)

ò
, (192)

 

Si =
1
2

∫
d3 p
[
a
†( p⃗)Σi( p⃗)a( p⃗)+ b†( p⃗)Σi( p⃗)b( p⃗)

]
, (193)

according to Eqs.  (142) and (115).  Here we use the spe-
cial notation
 

α+
↔
∂̃i β = α

+(∂piβ)− (∂piα+)β+2α+Ωi(p⃗)β, (194)

Li Li

Si

su(2) ∼ so(3)
[
Li,S j

]
= 0

H

inspired  by  Green's  theorem,  which  points  out  explicitly
that  are self-adjoint operators. The components  and

 form the bases of two independent unitary representa-
tions  of  the  algebra, ,  generating
the orbital and spin symmetries, respectively. These oper-
ators  are conserved as  they  commute  with ,  while  the
commutation relations
 

[
Li,P j

]
= iϵi jkPk ,

[
Si,P j

]
= 0 , (195)

p⃗λ→ p⃗

λ(ω) ∈ S L(2,C)

show that only the spin operator is invariant under space
translations.  Moreover,  using  Eqs.  (179)  and  (A10)  and
then changing the integration variable, , we obtain
the  transformation  of  the  spin  operator  under  arbitrary
transformations  as
 

Λ(ω) : Si→ S′i = U(ω)SiU†(ω)

=
1
2

∫
d3 p

[
a
†( p⃗)Σ′i(p⃗)a( p⃗)+ b†( p⃗)Σ′i( p⃗)b( p⃗)

]
, (196)

Σ′i( p⃗) = Ri j(ω, p⃗)Σ j(p⃗) Σwhere  are  the  transformed -
matrices under the Wigner rotations
 

R(ω, p⃗) = Λ
(
w[λ(ω),Λ(ω) p⃗]

)
= L−1

Λ(ω)p⃗Λ(ω)L p⃗ . (197)

λ(ω) = r ∈ ρD[S U(2)]
R(r)

Si→
Ri j(r)S j

S⃗

For  genuine  rotations, ,  the  matrix
 is independent of momentum such that the spin oper-

ator  transforms  as  a SO(3)  vector-operator, 
.  We  may  conclude  that  the  quantum  version  of

the Pryce (e) spin operator  transforms covariantly only
under rotations.

The generators of the Lorentz boosts have the general
form (169) depending on the operators (144), which have
orbital and spin terms suggesting the splitting
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Ki =: ⟨ψ,Kiψ⟩D := Ko
i +Ks

i , (198)

in orbital and spin parts that read
 

Ko
i =

i
2

∫
d3 p E(p)

ï
a
†(p⃗)

↔
∂̃ia( p⃗)+ b†(p⃗)

↔
∂̃ib( p⃗)

ò
, (199)

 

Ks
i =

∫
d3 p
[
a
†( p⃗)K̃ s

i a( p⃗)+ b†( p⃗)K̃ s
i b(p⃗)

]
, (200)

as results of Eqs. (145) and (146). The commutation rela-
tions
 

[
H,Ko

i

]
= −iPi ,

[
Pi,Ko

j

]
= −iδi

jH , (201)

 [
H,Ks

i

]
= 0 ,

[
Pi,Ks

j

]
= 0 (202)

Ks
i

Ko
i

show that only the operators  are conserved and invari-
ant  under  translations  while  satisfy  the  usual  orbital
commutation relations evolving as
 

Ko
i (t) = U†(t)Ko

i U(t) = Ko
i +Pi t , (203)

which  means  that  the  generators  (198)  are  time-depend-
ent,
 

Ki(t) = U†(t)KiU(t) = Ko
i (t)+Ks

i = Ki+Pi t , (204)

evolving linearly in time.

{H,Pi,Ji,Ki}
(P̃↑+)

{H,Pi,Li,Ko
i }

Si Ks
i

The  operators  discussed  above  satisfy  commutation
relations  similar  to  those  given  in  Appendix  B  for  their
associated parent operators of RQM. The set 
generates  the  representation  of  the  Lie  algebra  with
values in one-particle operators, which includes the orbit-
al  subalgebra  generated  by .  In  contrast,  the
operators  and  do  not  close  an  algebra,  with  each
commutator giving rise to a new operator thus generating
an infinite Lie algebra.

The operators (147) and (148) associated to the com-
ponents  of  the  Pauli-Lubanski  operator  give  rise  to  the
odd one-particle operators
 

W0 =
1
2

∫
d3 p pi

[
a
†( p⃗)Σi( p⃗)a( p⃗) −b†( p⃗)Σi( p⃗)b(p⃗)

]
,

(205)
 

Wi = m
1
2

∫
d3 pΘi j( p⃗)

[
a
†( p⃗)Σ j(p⃗)a( p⃗) −b†( p⃗)Σ j(p⃗)b( p⃗)

]
,

(206)

Θ

W0
where the tensor  is defined in Eq. (A.13). The operator

 is  known  as  the helicity operator; as  in  the  mo-
mentum-helicity  basis  (presented  in  Appendix  D),  this
takes the form 

W0 =
1
2

∫
d3 p p

[
a
†( p⃗)σ3a(p⃗)− b†(p⃗)σ3b( p⃗)

]
, (207)

resulting from the identity (D8). A dimensionless version
of this operator called the helical operator was defined re-
cently for any peculiar polarization as [32, 33] 

Wh =
1
2

∫
d3 p

pi

p
[
a
†( p⃗)Σi(p⃗)a( p⃗)− b†( p⃗)Σi(p⃗)b( p⃗)

]
, (208)

becoming  the  odd  replica  of  our  polarization  operator
(190)  in  the  momentum-helicity  basis,  which  is  even  by
definition.

A special  set  of  operators,  whose  quantization  de-
serves to be briefly examined, is formed by the operators
(75)  related  to  the  historical  Frankel  and  Pryce  (c)-Czo-
chor proposals. The associated operators (117) and (118)
give the corresponding even one-particle operators 

S(+)
i =

1
2

∫
d3 pΘi j( p⃗)

[
a
†(p⃗)Σi( p⃗)a(p⃗)

+b†( p⃗)Σi( p⃗)b( p⃗)
]
, (209)

 

S(−)
i =

1
2

∫
d3 pΘ−1

i j (p⃗)
[
a
†( p⃗)Σi( p⃗)a( p⃗)

+b†( p⃗)Σi( p⃗)b( p⃗)
]
. (210)

Similarly,  the  parent  operators  (83),  (87),  (89),  and  (93)
give rise to the one-particle operators 

SFr i =
1
2

∫
d3 p

E(p)
m
Θ−1

i j ( p⃗)
[
a
†(p⃗)Σ j( p⃗)a( p⃗

+b†( p⃗)Σ j( p⃗)b( p⃗)
]
, (211)

 

CFr i =
1
2

∫
d3 p

E(p)
m
Θi j( p⃗)

[
a
†(p⃗)Σ j( p⃗)a( p⃗)

+b†( p⃗)Σ j( p⃗)b( p⃗)
]
, (212)

 

SPC i =
1
2

∫
d3 p

m
E(p)

Θi j( p⃗)
[
a
†( p⃗)Σ j(p⃗)a( p⃗)

+b†( p⃗)Σ j( p⃗)b( p⃗)
]
, (213)
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CPC i =
1
2

∫
d3 p

m
E(p)

Θ−1
i j ( p⃗)

[
a
†( p⃗)Σ j(p⃗)a( p⃗)

+b†( p⃗)Σ j( p⃗)b( p⃗)
]
, (214)

which  are  conserved  and  translation  invariant,  behaving
as SO(3) vectors. They satisfy similar commutation rela-
tions as in Eqs. (85), (86), (91), and (92) but cannot close
an algebra as each new commutator defines a new operat-
or. Note that after quantization, the Fradkin-Good operat-
or (95) becomes the odd version of the Pryce (e) one such
that this brings nothing new.

t0 = 0

An important set of kinetic observables is formed by
the  components  of  position  and  velocity  operators.  In
Ref. [18], we showed that the original Pryce (e) operator
proposed as a mass-center one becomes the dipole operat-
or  after  quantization,  which  can  be  transformed  into  the
mass-center  one  by  changing  the  sign  of  the  antiparticle
term by  hand.  To  improve  this  apparently  arbitrary  pro-
cedure, we define the mass-center operator (126) in RQM
before quantization. Bearing in mind all these results, we
now  define  the  particle  and  antiparticle  center  operators
at  the initial  time  and the corresponding velocities
as 

Xi
+ =: ⟨ψ,Π+Xiψ⟩D :=

i
2

∫
d3 pa†(p⃗)

↔
∂̃i a( p⃗) , (215)

 

Vi
+ =: ⟨ψ,Π+V iψ⟩D :=

∫
d3 p

pi

E(p)
a
†( p⃗)a( p⃗) , (216)

 

Xi
− = − : ⟨ψ,Π−Xiψ⟩D :=

i
2

∫
d3 pb†(p⃗)

↔
∂̃i b( p⃗) , (217)

 

Vi
− = − : ⟨ψ,Π−V iψ⟩D :=

∫
d3 p

pi

E(p)
b
†( p⃗)b( p⃗) , (218)

using the derivative (194). These operators satisfy 

[H,Xi
±] = −iVi

± , [H,Vi
±] = 0 , (219)

Vi
±showing  that  the  velocity  components  are  conserved

operators, while the position ones evolve as 

Xi
±(t) = U†(t)Xi

±U(t) = Xi
±+ t Vi

± . (220)

Xi
±(t)Moreover,  we  can  verify  that  satisfy  canonical

coordinate-momentum relations, 

[
Xi
±(t),X

j
±(t)
]
= 0 ,

[
Xi
±(t),P

j
]
= iδi jN± , (221)

as  was  expected  according  to  the  Pryce  (e)  hypothesis,

N±but with  instead of the identity operator.  These posi-
tion  operators  transform under  rotations  as SO(3)  vector
operators satisfying 

[
Li,X j

±(t)
]
= iϵi jkXk

±(t) ,
[
Si,X j

±(t)
]
= 0 . (222)

The transformations  under  Lorentz  boosts  are  relat-
ively complicated because of the transformation matrices,
which depend on the  momentum remaining under  integ-
ration, as in Eq. (196). For this reason, the relativistic co-
variance of the position and other orbital operators will be
studied elsewhere.

The above results allow us to bring the components of
the dipole and mass-center operators into intuitive forms: 

Xi(t) = Xi
+(t)−Xi

−(t) , Xi
MC(t) = Xi

+(t)+Xi
−(t) , (223)

whose velocities 

Vi = Vi
+−Vi

− , Vi
MC = Vi

++Vi
− , (224)

Vi

t′ , t

have conserved components. The dipole velocity of com-
ponents ,  known  as  the  classical  current  [21], is  re-
ferred to here as the conserved current. Note that the posi-
tion operators at different instants  do not commute, 

[
Xi(t),X j(t′)

]
=
î
Xi

MC(t),X j
MC(t′)

ó
= i(t′− t)Gi j , (225)

giving rise to the new even one-particle operator 

Gi j =

∫
d3 p
E(p)

Å
δi j−

pi p j

E(p)2

ã
×
[
a
†( p⃗)a( p⃗)+ b†( p⃗)b( p⃗)

]
,

(226)

derived according to Eq. (B15).

H

x⃗ s⃗

The  principal  observables  of  QFT  we  studied  above
are Hermitian one-particle operators,  whose parent  oper-
ators are  reducible.  These  observables  are  either  con-
served, commuting with , or evolve linearly in time, as
the boost  generators  and  position  operators.  The  con-
served  spin  operator  of  components  (193)  associated  to
position operators  (223)  whose  velocities  (224)  are  con-
served  may  describe  a  smooth  inertial  motion  without
Zitterbewegung. However, it is not forbidden to measure
the traditional observables  and  whose components are
no longer  reducible  operators,  generated  after  quantiza-
tion oscillating terms. 

C.    Irreducible operators

A =
To analyze the behaviour of the irreducible operators,

it  is  convenient  to  split  each  Hermitian  operator 
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Adiag+Aosc

A = Adiag+Aosc

 in its  diagonal  and  oscillating  parts,  as  de-
scribed  in  Sec.  III.B.  After  quantization,  we  obtain  the
operator ,  whose  diagonal  part  is  a  one-
particle operator expressed in terms of associated operat-
ors as 

Adiag =

∫
d3 p
[
a
†( p⃗)

(
Ã(+)
a
)

( p⃗)− b†( p⃗)
(
Ã(−)
b
)

( p⃗)
]
, (227)

while the oscillating term, 

Aosc =

∫
d3 p
[
a
†( p⃗)
î(

Ãz
b
)† (−p⃗)

óT
+[b(−p⃗)]T

(
Ãz+
a
)

( p⃗)
]
, (228)

Ãz = Ã(±) = [Ã(∓)]+depends only on the operator . This may
be written either in compact notation, 

a
†(p⃗)
î(

Ãz
b
)† (− p⃗)

óT
=
∑
σσ′

a
†
σ( p⃗)Ãz

σσ′ ( p⃗)b†σ′ (− p⃗) , (229)

or by explicitly using the matrix elements (113).

ρD

[Adiag,Bdiag] =
Cdiag [Aosc,Bosc] = Cdiag [Aosc,Bdiag] =Cosc

We focus  here  on  the  operators  of  QFT  whose  par-
ents are either Fourier operators or simple momentum-in-
dependent matrix operators of  that can be seen as par-
ticular Fourier operators for which the Fourier transform
is the operator  itself.  Therefore,  we may derive the mat-
rix elements of the associated operators according to Eqs.
(111)−(114),  where  we  have  to  substitute  the  operators
under  consideration.  Thus,  we  obtain  the  diagonal  terms
that  are  one-particle  operators  and  oscillating  parts  with
the specific form (228). All these operators form an open
algebra  with  obvious  commutation  rules, 

, ,  and ,  showing
that only the diagonal terms may form a sub-algebra.

x⃗ = X⃗−δX⃗

δX⃗

Let us  first  consider  the  quantization  of  the  coordin-
ate  operator ,  which  can  be  done  as  we  have
already derived  the  Pryce  (e)  dipole  operator  with  com-
ponents (223), and we know that  is a Fourier operator.
Applying the canonical quantization procedure at the ini-
tial  time t=0 and translating the  result  at  an  arbitrary  in-
stant t, we obtain the operators 

δXi(t) = δXi
diag+δX

i
osc(t) , (230)

with conserved odd diagonal parts 

δXi
diag = −

1
2

∫
d3 p

ϵi jk p j

E(p)(E(p)+m)
[
a
†( p⃗)Σk( p⃗)a( p⃗)

−b†( p⃗)Σk(p⃗)b( p⃗)
]

(231)

and oscillating terms of the form 

δXi
osc(t) =

∫
d3 p
∑
σ,σ′

î
δX̃z i

σσ′ (t, p⃗)a†σ( p⃗)b†σ′ (−p⃗)+H.c.
ó
,

(232)

where, according to Eq. (A.13), we have 

δX̃z i
σσ′ (t, p⃗) = − ie2iE(p)t

2E(p)
Θ−1

i j (p⃗)ξ+σ(p⃗)σ jησ′ (− p⃗) . (233)

Hereby,  we  obtain  the  components  of  the  coordinate
operator of QFT, 

xi(t) = Xi(t)−δXi(t) = xi
0+ tVi−δXi

osc(t) , (234)

with the static terms 

xi
0 = Xi−δXi

diag ≡ Xi
Pr(c) , (235)

t = 0

which  we  interpret  as  the  components  of  the initial co-
ordinate operator  as  this  is  just  the  diagonal  part  of  the
coordinate  operator  (234)  at  the  instant .  This  one-
particle operator,  corresponding  to  the  Pryce  (c)  hypo-
thesis [5], has components that satisfy canonical coordin-
ate-momentum commutation  relations  but  do  not  com-
mute among themselves, as we verify in Appendix C.

jµ(x) =:
ψ̄(x)γµψ(x) :

The oscillating term of Eq. (234) produces the Zitter-
bewegung  discovered  studying  the  vector  current  [2, 3]
produced  by  the  Dirac  current  density, 

.  Its  time-like  component  gives  rise  to  the
conserved charge operator 

Q =
∫

d3x : ψ̄(t, x⃗)γ0ψ(t, x⃗) :=: ⟨ψ,ψ⟩D := N+−N− , (236)

expressed in terms of the operators (186) and (187), while
its space  part  produces  the  vector  current  with  compon-
ents 

IiV (t) =
∫

d3x : ψ̄(t, x⃗)γiψ(t, x⃗) := : ⟨ψ,γ0γiψ⟩D :
∣∣

t

= 2i : ⟨ψ, s0iψ⟩D :|t = 2is0i(t) , (237)

proportional to the generators (A8) we split as 

IiV (t) = IiV diag+ IiV osc(t) ⇒ s0i(t) = sdiag0i+sosc0i(t) . (238)

Calculating  these  components,  we  recover  the  well-
known result 

IiV (t) =
d
dt

xi(t)⇒ IiV diag = Vi , IiV osc(t) = −
d
dt
δXi

osc(t) , (239)
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which was discussed in Refs.  [21, 22] but  using particu-
lar polarization spinors.

jµA(x) = − :
ψ̄(x)γ5γµψ(x) :

Besides,  the  conserved  Dirac  current  density  one
component  the  axial  current  density 

,  which  is  conserved  only  in  the  massless
case. This gives rise to the axial charge 

QA(t) =
∫

d3x j0
A = : ⟨ψ,γ5ψ⟩D :

∣∣
t = QAdiag+QAosc(t) , (240)

with a conserved diagonal part 

QAdiag =

∫
d3 p

pi

E(p)
[
a
†( p⃗)Σi(p⃗)a( p⃗) +b†( p⃗)Σi( p⃗)b( p⃗)

]
,

(241)

which  is  an  even  one-particle  operator,  in  contrast  with
the charge operator, which is odd. In addition, this has the
oscillating term 

QAosc(t) = −
∫

d3 p
m

E(p)

î
e2iE(p)t

a
†( p⃗)

(
b
†(− p⃗)

)T
+H.c.] .

(242)

The corresponding components of axial current, 

IiA(t) = −
∫

d3x : ψ̄(t, x⃗)γ5γiψ(t, x⃗) :

= − : ⟨ψ,γ0γ5γiψ⟩D :
∣∣

t

= 2 : ⟨ψ, siψ⟩D :|t = 2si(t) , (243)

are proportional with the generators (A.6), which we split
again as 

IiA(t) = IiAdiag+ IiAosc(t) ⇒ si(t) = sdiag i+sosc i(t) . (244)

IiAdiag = 2SPC iNote that  the conserved diagonal  terms  de-
pend  on  the  components  (213)  of  the  Pryce  (c)-Czochor
operator,  which,  by  definition,  is  the  diagonal  part  of
Pauli's one. The oscillating parts read 

IiAosc(t) =
∫

d3 p
∑
σ,σ′

[
Ĩz i

Aσσ′ (t, p⃗)a†σ( p⃗)b†σ′ (−p⃗)+H.c.
]
, (245)

where 

Ĩz i
Aσσ′ (t, p⃗) = ie2iE(p)tϵi jk

p j

E(p)
ξ+σ(p⃗)σkησ′ (−p⃗) . (246)

sµν(t)

Thus, we  have  a  complete  image  of  the  time  evolu-
tion of  the  principal  currents  of  Dirac's  theory related  to
the operators  defined by Eqs.  (243)  and (237)  that

ρD[S L(2,C)]
represent the generators of the operator-valued represent-
ation of QFT equivalent to .

F̃

ρD

−iγi

Other matrix operators of RQM, irreducible on , are
the  generators  of  various  transformations  that  can  be
defined in . For example, the Foldy-Wouthuysen trans-
formation (A17), which relates the Pauli-Dirac and Pryce
spin operators as in Eq. (A19), are generated by the Her-
mitian matrices , which are the parents of the operat-
ors 

Fi(t) = −i : ⟨ψ,γiψ⟩D :
∣∣

t = Fi
diag+Fi

osc(t) , (247)

with diagonal parts 

Fi
diag =

∫
d3 pϵi jk p j

[
a
†( p⃗)Σk(p⃗)a( p⃗) −b†( p⃗)Σk( p⃗)b( p⃗)

]
,

(248)

which  are  now  odd  one-particle operators.  The  oscillat-
ing terms read 

Fi
osc(t) =

∫
d3 p
∑
σ,σ′

[
F̃z i
σσ′ (t, p⃗)a†σ( p⃗)b†σ′ (− p⃗)+H.c.

]
, (249)

where, by using the tensor (A.13) again, we may write 

F̃z i
σσ′ (t, p⃗) = ie2iE(p)t m

E(p)
Θi j( p⃗)ξ+σ( p⃗)σ jησ′ (−p⃗) . (250)

This  behaviour  explains  why  the  particular  Foldy-
Wouthuysen transformation  (A17)  can  relate  the  con-
served  Pryce  (e)  spin  operator  to  the  non-conserved
Pauli-Dirac one, as in Eq. (A19).

S⃗ ChThe  Chakrabarti  spin  operator  can  be  quantized
starting with its Fourier transform (71), deriving the asso-
ciated operators, and applying the quantization procedure.
Thus, we find that the components of this operator, 

SChi(t) = Si+Sosc i(t) , (251)

are  formed  by  those  of  the  Pryce  (e)  spin  operator  with
supplemental oscillating terms of the form 

Sosc i(t) =
∫

d3 p
∑
σ,σ′

î
S̃ z i
σσ′ (t, p⃗)a†σ( p⃗)b†σ′ (−p⃗)+H.c.

ó
, (252)

where 

S̃ z i
σσ′ (t, p⃗) =

ie2iE(p)t

m
ϵi jk p jξ+σ( p⃗)σkησ′ (−p⃗) . (253)

This result was expected as we know that the parent oper-
ator (71) is not conserved.

Finally,  let  us  focus  on  the  scalar  and  pseudo-scalar
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charges. Starting with the scalar one, we may split it as 

Qsc(t) =
∫

d3x : ψ̄(t, x⃗)ψ(t, x⃗) :=: ⟨ψ,γ0ψ⟩D :

= Qsc
diag+Qsc

osc(t) , (254)

where the conserved diagonal term 

Qsc
diag = m

∫
d3 p
E(p)

[
a
†( p⃗)a( p⃗)+ b†( p⃗)b(p⃗)

]
(255)

is an even one-particle operator, while the oscillating part
can be written as 

Qsc
osc(t) =

∫
d3 p
E(p)

∑
σ,σ′

[
Q̃scz
σσ′ (t, p⃗)a†σ(p⃗)b†σ′ (−p⃗)+H.c.

]
,

Q̃scz
σσ′ (t, p⃗) = −e2iE(p)t p jξ+σ( p⃗)σ jησ′ (−p⃗) .

(256)

It is interesting that the pseudoscalar charge does not
have diagonal terms, reducing to the oscillating form 

Qps(t) =
∫

d3x : ψ̄(t, x⃗)γ5ψ(t, x⃗) :=: ⟨ψ,γ0γ5ψ⟩D :

= −
∫

d3 p
∑
σ,σ′

[
e2iE(p)tξ+σ( p⃗)ησ′ (−p⃗)a†σ( p⃗)b†σ′ (− p⃗)

+H.c.] ,

(257)
which could be of some interest in QFT.

To conclude,  we may say that  our method of  associ-
ated operators allows us to quantize all  the operators we
need in QFT, including the irreducible ones. The oscillat-
ing  terms  of  these  operators  give  vanishing  expectation
values and real-valued contributions to dispersion in pure
states, but  they  may  present  significant  observable  ef-
fects when measured in mixed states. 

VI.  PROPAGATION

In applications,  we  may  turn  back  to  RQM but  con-
sidered now as the one-particle restriction of QFT. Thus,
we  have  the  advantages  of  the  mathematical  rigor  and
correct physical  interpretations  offered  by  QFT.  We  as-
sume that the quantum states are prepared or measured by
an ideal apparatus represented by a set of one-particle op-
erators  without  oscillating  parts,  including  the  Pryce  (e)
spin and position operators. 

A.    Preparing and detecting wave packets
In  the  following,  we  study  the  propagation  of  the

plane wave packets generated by the one-particle physic-
al states 

|α⟩ =
∫

d3 p
∑
σ

ασ( p⃗)a†σ( p⃗)|0⟩ , (258)

α ∈ F̃ +defined by normalized wave spinors, , which satis-
fy the normalization condition 

⟨α|α⟩ = ⟨α,α⟩ =
∫

d3 pα+( p⃗)α(p⃗) = 1 . (259)

The corresponding wave spinors in CR, 

Ψα(x) = ⟨0|ψ(x)|α⟩ =
∫

d3 p
∑
σ

U p⃗,σ(x)ασ( p⃗) , (260)

⟨Ψα,Ψα⟩D = 1are  normalized, ,  with  respect  to  the  scalar
product  (4).  This  is  a  particular  case  of  local  relativistic
wave function that can be obtained from the one-particle
restriction of QFT. In general, one can directly construct
such  functions  as  Fourier  transforms  of  momentum-de-
pendent wave  functions  obtained  by  the  recently  pro-
posed  generalized  Bargmann-Wigner  approach  [24]  (see
Ref.  [34]  and  references  therein).  In  this  framework,
wave functions for massive and massless particles of dif-
ferent discrete or even continuous spins may be construc-
ted  and  studied  without  resorting  explicitly  to  the  field
operators of QFT.

The wave functions are not measurable quantities but
are often studied using numerical and graphical methods
for  extracting  intuitive  information  about  propagation  in
the presence  of  Zitterbewegung  and  spin  dynamics  pro-
duced  by  the  traditional  observables  of  Dirac's  RQM.
Such methods were used for the first time in Ref. [35].

A
|α⟩

In our  approach,  we avoid these effects  by assuming
that our  apparatus  measures  only  the  reducible  observ-
ables  as  the  energy,  momentum,  position,  velocity,  spin,
and  polarization,  which  are  one-particle  operators.  The
physical  meaning  is  then  given  only  by  the  statistical
quantities generated by these operators, which can be de-
rived easily using our previous results. More specifically,
for any one-particle operator , the expectation value and
dispersion in the state , denoted as 

⟨A⟩ ≡ ⟨α|A|α⟩ = ⟨α, Ãα⟩ , (261)

 

disp(A) ≡ ⟨A2⟩− ⟨A⟩2 = ⟨Ãα, Ãα⟩− ⟨α, Ãα⟩2 , (262)

may be written in terms of associated operators acting in
MR of RQM. Once we have the dispersion, we may write
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∆A =
√

disp(A)the uncertainty .

ασ
|α⟩

x⃗0

|α⟩ → U(0,−x⃗0) |α⟩ = e−ix⃗0 ·p⃗ |α⟩

Σi = σi Ωi = 0

To  exploit  these  formulas,  we  need  to  specify  the
structure  of  the  functions .  We  observe  first  that  it  is
important to know where the state  is prepared, trans-
lating the state to that point. If the state was prepared ini-
tially at the origin, then for a state prepared by the same
apparatus at the point of position vector , we must per-
form  the  back  translation 
defined  by  Eq.  (178).  Meanwhile,  we  know the  position
operator defined  with  the  help  of  the  covariant  derivat-
ives (124), which can be quite complicated in the case of
peculiar polarization. Therefore, for a rapid inspection of
a  relevant  example,  it  is  convenient  to  choose  the
simplest polarization  spinors  (D6)  of  the  standard  mo-
mentum-spin basis, where  and .

x⃗0

Starting  with  these  arguments,  we  assume  that  the
wave packet with the mentioned polarization is prepared
at the initial time t=0 by an observer O at the initial point

. Therefore, we may consider the wave spinor
 

α(p⃗) =

(
α 1

2
(p⃗)

α− 1
2
( p⃗)

)
= ϕ( p⃗)e−ix⃗0 · p⃗

Ö
cos

θs

2

sin
θs

2

è
, (263)

θs ϕ : R3
p⃗→ Rwhere  is  the  polarization  angle,  while  is  a

real-valued scalar function that is normalized as
 

⟨α|α⟩ = 1 ⇒
∫

d3 pϕ(p⃗)2 = 1 . (264)

With this function, we may calculate the expectation val-
ues  and  dispersions  of  the  operators  without  spin  terms,
as in the scalar theory. For example, in the case of the en-
ergy operator (188), we may write
 

⟨H⟩ =
∫

d3 p E(p)ϕ( p⃗)2 , (265)

 

disp(H) =
∫

d3 p E(p)2ϕ( p⃗)2−⟨H⟩2 , (266)

and similarly for the momentum components (189).

Ws = S3

S̃ i = 1/2σi

The  polarization  angle  helps  us  to  rapidly  find  the
measurable  quantities  related  to  the  spin  components
(193)  and  polarization .  Considering  that  now

,  we  obtain  from  Eqs.  (261)  and  (262)  the
quantities
 

⟨S1⟩ =
1
2

sinθs ,disp(S1) =
1
4

cos2 θs ,
 

⟨S2⟩ = 0 , disp(S2) =
1
4
,

⟨S3⟩ =
1
2

cosθs , disp(S3) =
1
4

sin2 θs ,

[0,π] θs = 0

σ =
1
2 ↑ θs = π σ = −1

2
↓

disp(Ws) = disp(S3) = 0

with  an  obvious  physical  meaning  as  the  polarization
angle is defined on the interval  such that for ,
the polarization is  ( ), while for  it is 
( ). In both these cases of total polarization, the measure-
ments are exact with .

Xi
+(t) = Xi

++ tV i
+

Ω = 0

∂̃i→ ∂pi

The  propagation  of  the  wave  packet  is  described  by
the  position  operator  of  components 
defined  by  Eqs.  (215)  and (216).  In  the  momentum-spin
basis we use here, we have the advantage of , which
means  that  the  covariant  derivatives  (124)  become  the
usual ones, . Thus, we find the quantities
 

⟨Xi
+⟩ =

i
2

∫
d3 pα+(p⃗)

↔
∂pi α( p⃗) = xi

0

∫
d3 pϕ( p⃗)2 = xi

0 ,

(267)

 

disp(Xi
+) =

∫
d3 p∂piα+(p⃗)∂piα(p⃗) (no sum)− (xi

0)2

=

∫
d3 p

(
∂piϕ( p⃗)

)2
,

(268)
 

⟨Vi
+⟩ =

∫
d3 p

pi

E(p)
ϕ( p⃗)2 , (269)

 

disp(Vi
+) =

∫
d3 p
Å

pi

E(p)

ã2

ϕ( p⃗)2−⟨Vi
+⟩2 , (270)

ϕwhich depend only on the scalar  function .  Finally,  we
obtain the remarkable but expected result 

disp(Xi
+(t)) = disp(Xi

+)+ t2disp(Vi
+) , (271)

which  lays  out  the  dispersive  character  of  this  type  of
wave packets that spread as other scalar or non-relativist-
ic  wave  packets  [28]. A  similar  calculation  can  be  per-
formed for the angular momentum, which is conserved in
our  approach  but  less  relevant  in  analyzing  the  inertial
motion.

O′

x⃗′0
x⃗0− x⃗′0 = n⃗d

Let us imagine now that another observer, , detects
the above  prepared  wave  packet,  performing  measure-
ment with a similar apparatus at the point . We denote
by  the relative position vector  assuming that
the  observers O and O' use  the  same  Cartesian  coordin-
ates  and  therefore  same  observables.  The  wave  packet
evolves  causally  until  the  detector  measures  some  of  its
parameters,  selecting  (or  filtering)  only  the  fermions
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∆ ⊂ R3
p⃗ n⃗

|α′⟩
Λ∆

coming from the source O whose momenta are in a nar-
row domain  along the direction .  Therefore, the
measured  state  is  given  now  by  the  corresponding
projection operator  as
 

|α′⟩ = Λ∆|α⟩ =
∫
∆

d3 pα(p⃗)a†( p⃗)|0⟩ . (272)

∆

n⃗ ∆Ω

This  state  is  strongly  dependent  on  the  domain  of
measured momenta.  Here,  we assume that  this  is  a  cone
of  axis  and  a  very  small  solid  angle  such  that  we
may apply the mean value theorem,
 ∫

∆

d3 pF( p⃗) ≃ ∆Ω
∫ ∞

0
dpp2F(n⃗p) , (273)

p⃗ = (p,ϑ,φ)
∆

in  spherical  coordinates  to  all  the  integrals
over . We first evaluate the quantity
 

⟨α|Λ∆|α⟩ =
∫
∆

d3 pα+( p⃗)α( p⃗) =
∫
∆

d3 pϕ( p⃗)2

≃ ∆Ω
∫ ∞

0
dp p2ϕ(n⃗p)2 = ∆Ωκ , (274)

P∆ = |⟨α|Λ∆|α⟩|2
p⃗ ∈ ∆

∆ = R3
k Λ∆

P∆ = 1

giving  the  probability  of  measuring  any
momentum .  Obviously,  when  one  measures  the
whole continuous spectrum, , then  becomes the
identity operator and .

O′Under such circumstances,  the observer  measures
new expectation values
 

⟨A⟩′ = ⟨α′|A|α′⟩ = ⟨α|Λ∆A|α⟩⟨α|Λ∆|α⟩
(275)

for all  the common observables of O and O'  that depend
on momentum. Applying the above calculation rules, we
obtain the expectation values
 

⟨H⟩′ = 1
κ

∫ ∞
0

p2dp E(p)ϕ(n⃗p)2 , (276)

 

⟨Pi⟩′ = ni 1
κ

∫ ∞
0

p2dp pϕ(n⃗p)2 = ni⟨P⟩′ , (277)

 

⟨Vi
+⟩′ = ni 1

κ

∫ ∞
0

p2dp
p

E(p)
ϕ(n⃗p)2 = ni⟨V+⟩′ , (278)

O′

n⃗
which  show  that in  fact  observes  a  one-dimensional
motion along the direction  measuring the new observ-
ables
 

P =
∫

d3 p p
[
a
†( p⃗)a( p⃗)+ b†(p⃗)b( p⃗)

]
, (279)

 

V+ =
∫

d3 p
p

E(p)
a
†( p⃗)a(p⃗) , (280)

V−
whose  expectation  values  result  from  Eqs.  (277)  and
(278). We say that these operators and , defined simil-
arly  for  antiparticles,  are  the radial observables  of  the
common list of observables of O and O'.

O′

|α′⟩
Therefore,  measures  a  one-dimensional  wave

packet  whose wave spinors  depend now on the new
normalized scalar function 

ϕ′(p) =
1√
κ

pϕ(n⃗p) , (281)

O′
allowing us to write the statistical quantities of the radial
operators measured by  as 

⟨H⟩′ =
∫ ∞

0
dp E(p)ϕ′(p)2 , (282)

 

disp(H)′ =
∫ ∞

0
dp E(p)2ϕ′(p)2−⟨P⟩′ 2 , (283)

 

⟨P⟩′ =
∫ ∞

0
dp pϕ′(p)2 , (284)

 

disp(P)′ =
∫ ∞

0
dp p2ϕ′(p)2−⟨P⟩′ 2 , (285)

 

⟨V+⟩′ =
∫ ∞

0
dp

p
E(p)

ϕ′(p)2 , (286)

 

disp(V+)′ =
∫ ∞

0
dp
Å

p
E(p)

ã2

ϕ′(p)2−⟨V+⟩′ 2 .

(287)

Xi
+

∆ ⟨Xi
+⟩′ = ⟨Xi

+⟩ =
xi

0 O′

The expectation values of the operators  are not af-
fected by the projection on the domain , 

, but the dispersions may be different as  measures 

disp(Xi
+)
′ =

1
κ

∫ ∞
0

dp p2
(
∂piϕ(p⃗)

)2
∣∣∣

p⃗=n⃗p
. (288)

The only operators whose measurement is independent of
the  momentum  filtering  are  the  spin  components,  for

Operators of quantum theory of Dirac's free field Chin. Phys. C 48, 123106 (2024)

123106-27



⟨Si⟩′ = ⟨Si⟩ disp(S i)′ = disp(S i)which we have  and .
In  this  manner,  we  have  derived  all  the  statistical

quantities  of  prepared  or  detected  wave  packets  using
only  analytical  methods  without  resorting  to  a  visual
study of the packet profile in CR, which might be intuit-
ive but is sterile from the perspective of QFT. 

B.    Isotropic wave packet

p⃗ = pn⃗p

As  a  simple  example,  we  consider  now  an  isotropic
wave-packet  for  which  it  is  convenient  to  use  spherical
coordinates in momentum space with  and 

n⃗p = (sinϑcosφ,sinϑsinφ,cosϑ) . (289)

t0 = 0We assume that at the initial time , the observer
O prepares  the  wave  packet  (258)  whose  wave  spinor
(263) is equipped with the isotropic function 

ϕ(p⃗)→ ϕ(p) = N pγ p̄− 3
2 e−γp , γ, p̄ > 0 , (290)

γ p̄depending  on  the  real  parameters  and  and the  nor-
malization factor 

N =
(2γ)γ p̄

2
√
πΓ(2γ p̄)

, (291)

which guarantees that ∫
d3 pϕ(p)2 = 4π

∫ ∞
0

dp p2ϕ(p)2 = 1 . (292)

p̄The  parameter  is  just  the  expectation  value  of  the
radial momentum (279) such that 

⟨P⟩ = 4π
∫ ∞

0
dp p3ϕ(p)2 = p̄ , (293)

 

disp(P) = 4π
∫ ∞

0
dk p4ϕ(k)2− p̄2 =

p̄
2γ

. (294)

⟨Pi⟩ = 0 ⟨Vi
+⟩ = 0

In this isotropic case, the Cartesian momentum and velo-
city components measured by O have vanishing expecta-
tion  values,  and , but  relevant  disper-
sions that read 

disp(Pi) =
4π
3
⟨P2⟩ = 4π

3

Å
p̄2+

p̄
2γ

ã
, (295)

 

disp(Vi
+) =

4π
3
⟨V2
+⟩ , (296)

∫
(ni

p)2dΩ =
4π
3as  the  angular  integrals  give .  Moreover,

the observer O measures the components of the initial po-
sition operator with expectation values (267) and disper-
sions (268) that now read 

disp(Xi
+) =

1
6

γ2

γ p̄−1
⇒ γ p̄ > 1 , (297)

imposing a mandatory condition for our parameters.
O′The  observer  detects  the  one-dimensional  wave

packet with 

κ =
1

4π
⇒ ϕ′(p) =

√
4π pϕ(p) , (298)

which means  that  the  statistical  quantities  of  the  operat-
ors  (283)−(288)  coincide  with  those  given  by  Eqs.
(265)−(271)  measured  by  the  observer O.  To  write  the
expressions  of  these  quantities,  we  consider  integrals  of
general form 

G(ν,ρ;µ) =
∫ ∞

0
dp p2ν−1

(
p2+m2

)ρ−1 e−µp

=
m2ν+2ρ−2

2
√
πΓ(1−ρ)

G31
13

(
m2µ2

4

∣∣∣∣ 1− ν
1−ρ− ν,0, 1

2

)
,

(299)

which can be solved in terms of Meijer's G-functions ac-
cording  to  Eq.  (3.389)  of  Ref.  [36].  With  their  help,  we
may write 

⟨H⟩′ = ⟨H⟩ = 4πN2G
Å
γ p̄,

3
2

;2γ
ã
, (300)

 

⟨V+⟩′ = ⟨V+⟩ = 4πN2G
Å
γ p̄+

1
2
,
1
2

;2γ
ã
, (301)

 

⟨V2
+⟩′ = ⟨V2

+⟩ = 4πN2G (γ p̄+1,0;2γ) , (302)

H2while for , we find the closed expression 

⟨H2⟩′ = ⟨H2⟩ = p̄2+m2+
p̄

2γ
= E(p̄)2+

p̄
2γ

. (303)

H V+
We now have all  we need to write  the dispersions (296)
and those of the radial operators  and .

E( p̄) V( p̄) =
p̄

E( p̄)

The analytical results derived above are less intuitive
because of the functions G, which are relatively complic-
ated.  Therefore,  to  demonstrate  that  these  results  are
plausible,  we  must  resort  to  a  brief  graphical  analysis
comparing the above expectation values with the corres-

ponding  classical  quantities  and .  In
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⟨H⟩
E( p̄)

2γdisp(H)
p̄

q = γ p̄ > 1 ⟨H⟩

E( p̄) disp(H) <
p̄

2γ

⟨V+⟩
V( p̄) disp(V+) ⟨V+⟩

p̄

Fig.  1,  we  plot  the  ratios  and  as func-
tions  of ,  observing  that  is  very  close  to

,  while  the  dispersion  tends asymptot-

ically  to  its  maximal  value.  In Fig.  2,  we  plot  the  ratio

 and ,  observing  again  that  is  very
close  to  the  classical  velocity  with  a  small  dispersion.
Thus, we see that in the case of Dirac's massive fermions,
the quantum corrections to the classical motion are relat-
ively small but not negligible. Note that these corrections
diminish as  increases, vanishing in the ultra-relativistic
limit  when  the  velocity  approaches  the  speed  of  light.
This behaviour  convinces  us  that  the  above model  prop-
erly describes a plausible physical reality.
 
 
 

⟨H⟩
E( p̄)

→ 1+
2γdisp(H)

p̄
→ 1− q = γ p̄

1 < q ≤ 7 γm = 1

Fig.  1.    (color  online)  Ratios  (left  panel)  and

 (right panel) as functions of  in the do-

main  for .
 
 
 
 

⟨V+⟩
V( p̄)

→ 1−

disp(V+) q = γ p̄

1 < q ≤ 7 γm = 1

Fig. 2.    (color online) Ratio  (left panel) and velo-

city dispersion  (right panel) as functions of  in
the domain  for .

  

VII.  CONCLUDING REMARKS

Here, we improved the quantum theory of Dirac's free
field  focusing  on  the  spin  and  position  operators  of  the
Pryce (e) version as fundamental observables of QFT. We
succeeded in this by using the method of associated oper-

ators,  allowing  us  to  derive  the  principal  operators  of
QFT. The original results at the level of RQM, presented
in Secs. III.C, III.D, and IV.A−IV.D, prepare the quantiz-
ation  procedure,  leading  to  the  new  results  reported  in
Secs.  V.B  and  V.C.  A  study  of  the  wave  packet  was
presented here in Sec. VI for the first time.

In QFT, we have the benefit of a correct physical in-
terpretation that is not similar to the interpretations at the
level of RQM or even classical theory. An example is the
position operator of the Pryce (e) version, which was pro-
posed  as  a  mass-center  position  operator  satisfying  the
canonical  coordinate-momentum  commutation  relations
[5]. The  quantization  preserves  this  property  but  trans-
forms  the  would-be  mass-center  operator  into  the  dipole
one,  interpreting  the  antiparticle  term  correctly.  For  this
reason,  we  separately  defined  the  position  operators  of
particle and antiparticle centers, (215) and (217), respect-
ively, whose linear combinations give both the dipole and
mass-center  operators.  Besides  these  operators,  we
showed that the one-particle operator (235), interpreted as
the initial coordinate operator, complies with Pryce's hy-
pothesis  (c),  being related to the Pryce (c)-Czochor one-
particle operator (213). Similarly, the Frankel spin operat-
or (211) corresponding to the Pryce (d) hypothesis is re-
lated to a specific position operator that does not yet have
an  obvious  physical  meaning.  In  addition,  we  note  that
the  orbital  boost  generators  (200)  may  be  interpreted  as
components of a position operator with spin-induced non-
commutativity  [37]  but  with  orbital  angular  momentum
instead of spin.

S̃ i =
1
2σi L̃i =

−iϵi jk p j∂pk X̃i
= i∂pi

Released on QFT, we do not  abandon the RQM, but
we reconsider each particular system we investigate as a
restriction of  QFT,  thus  keeping  the  correct  physical  in-
terpretation.  An  example  is  the  Dirac  wave  packet  we
studied in Sec. V, where all the statistical quantities were
derived  using  associated  operators  in  MR  and  wave
spinors.  It  is  worth  noting  that  in  the  one-particle  RQM
derived  from  QFT,  the  associated  spin,  orbital  angular
momentum,  and  position  operators  in  MR  have  familiar
forms  such  that  in  momentum-spin  basis,  they  become
just  the  corresponding  operators, , 

,  and ,  of  the  original  non-relativistic
Pauli's  theory  but  now  describing  relativistic  systems,
such  as,  for  example,  the  spin-orbit  interactions  of
photons and electrons [38].

In  momentum bases  with  peculiar  polarization,  these
operators become  more  complicated,  depending  expli-
citly  on  polarization  through  the  matrices  (116)  and
(125), which can have non-trivial forms, as in the case of
the  momentum-helicity  basis  where  these  quantities  are
given by Eqs. (D7) and (D9). The matrices (116) are the
Pauli operators written in a new basis, but the role of the
matrices (125) defining the covariant derivatives remains
obscure for now until we study concrete examples of or-
bital operators in bases with peculiar polarization. Unfor-
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tunately, we do not have other momentum bases with pe-
culiar polarization, as the helicity is the only one used so
far. We hope that our approach will offer an opportunity
for defining new types of peculiar polarization that could
be observed in further experiments.

in

However,  one  may  ask  why  the  theory  of  quantum
free field deserves this effort based on its relatively com-
plicated mathematics. This is because we cannot analytic-
ally  solve  the  equations  of  interacting  fields  to  obtain
closed forms of interacting quantum fields or other oper-
ators  of  QFT.  Instead,  we may resort  to  perturbations  in
terms  of in and out fields,  which  are  just  free  fields  for
which  we  constructed  the  approach  presented  here.  For
example, using  perturbations,  we  can  calculate  the  ex-
pectation  values  of  the  new  position  operators  (223)  or
the traditional one (234) in out states if  we know the in-
cident wave packets in  states. In this manner, we may
better  understand  the  role  of  the  radiative  corrections  in
the fermion propagation affected by Zitterbewegung.

We conclude that our approach may present new dir-
ections for investigating traditional processes, such as the
QED processes involving polarized fermions, studied for
the  first  time  in  terms  of  momentum-spin  basis  a  long
time ago [39]. Moreover, we hope that by solving the in-
herent new technical problems and presenting various ex-
amples of systems of free or interacting polarized fermi-
ons, we may improve the theory, filling the gap between
the actual  notorious  successes  of  Dirac's  theory,  the  Hy-
drogen atom, and QED. 

APPENDX A: DIRAC REPRESENTATION

γ {γµ,γν} = 2ηµν

sµν =
i
4
[
γµ,γν

]
= sµν

ρD = (1/2,0)⊕ (0,1/2)
SL(2,C) VD =VP⊕
VP

SL(2,C)
sl(2,C)

σµν γµ γ5γµ iγ5

The  Dirac -matrices,  which  satisfy ,
give rise to the generators  of the Dir-
ac  reducible  representation  of  the

 group  in  the  four-dimensional  space 
 of  Dirac  spinors.  Remarkably,  this  space  hosts  the

fundamental  representation  of  the  group SU(2,2)  [40]  in
which  is  a subgroup. A basis of the Lie algebra
su(2,2) may be formed by those of the  subalgebra,

, and the matrices , , and .
SL(2,C)All  these  matrices,  including the  generators,

are Dirac self-adjoint such that the transformations 

λ(ω) = exp
Å
− i

2
ωαβsαβ

ã
∈ ρD[SL(2,C)] , (A1)

ωαβ = −ωβα

ψψ λ(ω) = λ−1(ω) = λ(−ω)
Λµ ··ν(ω) ≡

Λµ ··ν[λ(ω)] = δµν +ω
µ ·
·ν +

1
2
ωµ ·
·αω

α,·
·ν + · · ·

with  real-valued  parameters, , leave  the  Her-
mitian  form  invariant  as .  The
corresponding  Lorentz  transformations, 

 , satisfy the identities
 

λ−1(ω)γαλ(ω) = Λ(ω)α ··βγ
β , (A2)

which encapsulate the canonical homomorphism [30].

σi

1 = 12×2

In the chiral representation we consider here, the Dir-
ac matrices are expressed in terms of Pauli  matrices, ,
and  as 

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
,

γ5 =

(
−1 0

0 1

)
, (A3)

λ(ω)
sµν

VP

(1/2,0) (0,1/2) ρD

such  that  the  transformations  generated  by  the
matrices  are  reducible  to  the  subspaces  of  Pauli
spinors  carrying  the  irreducible  representations

 and  of  [1, 30]. We denote by 

r = diag(r̂, r̂) ∈ ρD [SU(2)] (A4)

the transformations we simply call rotations, and by 

l = diag(l̂, l̂−1) ∈ ρD [SL(2,C)/SU(2)] (A5)

the Lorentz boosts. For rotations, we use the generators 

si =
1
2
ϵi jk s jk = diag(ŝi, ŝi) = −

1
2
γ0γ5γi , ŝi =

1
2
σi , (A6)

θi =
1
2
ϵi jkω

jkand Cayley-Klein parameters  such that
 

r(θ) = diag(r̂(θ), r̂(θ)) , r̂(θ) = e−iθi ŝi = e−
i
2 θ

iσi . (A7)

τi = ω0iSimilarly, we choose the parameters  and gen-
erators 

si0 = s0i = diag(−iŝi, iŝi) =
i
2
γ0γi (A8)

for the Lorentz boosts that read 

l(τ) = diag(l̂(τ), l̂−1(τ)) , l̂(τ) = eτ
i ŝi = e

1
2 τ

iσi . (A9)

L↑+
R(r) ≡ R(r̂) = Λ(r) L(l) ≡ L(l̂) =

Λ(l) s⃗
⃗̂s

The  corresponding  transformations  of  the  group 
will  be  denoted  as  and 

. We say that  is the Pauli-Dirac spin operator redu-
cible to a pair  of Pauli  spin operators, .  Note that  these
operators satisfy the identities 

r̂−1σir̂ = Ri j(r̂)σ j ⇒ r−1σir = Ri j(r̂)σ j , (A10)
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resulting from the canonical homomorphism.
τi = − pi

p
tanh−1 p

E(p)The boosts  (A9)  with  parameters 
can be written as [1] 

lp⃗ =
E(p)+m+γ0γ⃗ · p⃗√

2m(E(p)+m)
= l+p⃗ , l−1

p⃗ = l− p⃗ = l̄ p⃗ . (A11)

L p⃗ = Λ(lp⃗)They  give  rise  to  the  Lorentz  boosts  with  the
matrix elements 

⟨
L p⃗
⟩0 ·
·0 =

E(p)
m

,
⟨
Lp⃗
⟩0 ·
· i =

⟨
L p⃗
⟩i ·
·0 =

pi

m
,

 

⟨
L p⃗
⟩i ·
· j = δi j+

pi p j

m(E(p)+m)
, (A12)

p̊ = (m,0,0,0) p⃗ = Lp⃗ p̊
which  transform  the  representative  momentum

 into  the  desired  momentum .
Hereby, it  is convenient to separate the three-dimension-
al tensor 

Θi j( p⃗) ≡< lp⃗ >
i ·
· j⇒ Θ−1

i j ( p⃗) = δi j−
pi p j

E(p)(E(p)+m)
(A13)

Θ−1

Θ R3

L−1
p⃗ = L−p⃗

we need when we study space components.  denotes
the inverse of  on , which is different from the space
part of .

In  Dirac's  theory,  there  are  applications  where  we
may use some properties such as 

l2
p⃗ =

E(p)+γ0γ⃗ · p⃗
m

, l2
−p⃗ =

E(p)−γ0γ⃗ · p⃗
m

, (A14)

giving rise to the following identities: 

1±γ0

2
l2

p⃗
1±γ0

2
=

1±γ0

2
l2
− p⃗

1±γ0

2
=

E(p)
m

1±γ0

2
, (A15)

which help us to recover the operators (57) and (58) and
to evaluate the quantities 

ů+σ( p⃗)l2
p⃗ůσ′ ( p⃗) = v̊+σ( p⃗)l2

p⃗v̊σ′ ( p⃗) =
E(p)

m
δσσ′ , (A16)

which we need to normalize the mode spinors.
(2,2)/

S L(2,C)
Among  the  transformations  of  the  set SU

,  notorious  ones  include  the  Foldy-Wouthuysen
unitary transformations [6]. In particular, 

UFW( p⃗) = U+FW(− p⃗) =
E(p)+m+ γ⃗ · p⃗√
2E(p)(E(p)+m)

(A17)

brings the Fourier transform of Dirac's Hamiltonian in di-
agonal form, 

UFW( p⃗)ĤD( p⃗)UFW(− p⃗) = γ0E(p) , (A18)

and transforms the Fourier transform of the Pryce (e) spin
operator into the Pauli-Dirac one [6], 

UFW( p⃗)⃗̂S ( p⃗)UFW(− p⃗) = s⃗ . (A19)

UPryce( p⃗) = γ0UFW( p⃗)

Note that  Pryce  previously  proposed  a  similar  trans-
formation  that  differs  from (A17)  only  through  a  parity,

 [5].
 

APPENDX B: ALGEBRAIC PROPERTIES OF
ASSOCIATED OPERATORS

{H,Pi, Ji,Ki}
sl(2,C)

The generators  form a basis of the Lie(T)
algebra. Among them, the  ones satisfy 

su(2) ∼ so(3) :
[
Ji, J j

]
= iϵi jk Jk ,[

Ji,K j
]
= iϵi jkKk , (B1)

 [
Ki,K j

]
= −iϵi jk Jk , (B2)

commuting with the Abelian generators as 

[H, Ji] = 0 ,
[
Pi, J j

]
= iϵi jk Jk , (B3)

 

[H,Ki] = −iPi ,
[
Pi,K j

]
= −iδi

jH . (B4)

x⃗∧ P⃗ s⃗
In CR, we cannot separate an orbital subalgebra as the

operators  and  are not conserved. For this reason,
it is convenient to analyze the algebraic properties in MR,
where  the  Abelian  generators  are  diagonal,  as  in  Eq.
(140).

{E(p), pi, J̃i, K̃i}
(T̃ )

su(2) ∼ so(3)

In  MR,  the  generators  of  the  algebra
Lie  associated  to  Lie(T)  satisfy  similar  commutation
rules, allowing the splittings (141) and (144), which sep-
arate  the  orbital  parts  from the  spin  ones.  In  the  case  of
rotations,  both  the  angular  momentum and spin  operator
are conserved separately, with their components forming
two independent  algebras, 

[
L̃i, L̃ j

]
= iϵi jk L̃k ,

[
S̃ i, S̃ j

]
= iϵi jkS̃ k ,

[
L̃i, S̃ j

]
= 0 . (B5)

K̃o K̃ sIn contrast, the operators  and  do not commute
among themselves, 
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[
K̃o

i , K̃
s
j

]
= − i

E(p)+m
[
E(p)ϵi jkS̃ k + piK̃ s

j

]
, (B6)

sl(2,C)
which means that the factorization (143) cannot be exten-
ded to the entire  algebra. Nevertheless,  the com-
mutation relations 

[
L̃i, K̃o

j

]
= iϵi jkK̃o

k ,
[
K̃o

i , K̃
o
j

]
= −iϵi jk L̃k , (B7) 

[
L̃i,E(p)

]
= 0 ,

[
L̃i, p j

]
= iϵi jk pk , (B8)

 [
K̃o

i ,E(p)
]
= ipi ,

[
K̃o

i , p
j
]
= iδi

jE(p) (B9)

{E(p), pi, L̃i, K̃o
i }

S̃ i

convince us that the operators  generate an
orbital  representation  of  the  Poincaré  algebra,  known  as
the natural  or  scalar  representation,  but  now  in  MR  in-
stead of the CR. Note that  commute with this entire al-
gebra. Other useful relations in the spin sector, 

[
S̃ i, K̃ s

j

]
=

i
E(p)+m

[
piS̃ j−δi j p⃗ · ˜⃗S

]
, (B10)

 [
K̃ s

i , K̃
s
j

]
=

i
(E(p)+m)2

ϵi jk pk p⃗ · ˜⃗S , (B11)

do not have an obvious physical meaning.
⃗̃X(t) = ˜⃗X+ t ˜⃗VThe  position  operator  in  MR at  time t, ,

whose components are given by Eqs. (122) and (123), do
not have spin terms that are genuine orbital operators sat-
isfying î

X̃i(t), X̃ j(t)
ó
= 0 ,

î
X̃i(t), p j

ó
= iδi j , (B12)

 î
X̃i(t),E(p)

ó
= iṼ i

,
î
Ṽ i
,E(p)

ó
= 0 , (B13)

 î
K̃o

i , X̃
j
ó
= δi j

1
2E(p)

− i
p j

E(p)
X̃i− pi p j

2E(p)3
, (B14)

 î
K̃o

i , Ṽ
j
ó
= E(p)

î
X̃i
, Ṽ j
ó
= i
ï
δi j−

pi p j

E(p)2

ò
. (B15)

⃗̃X(t)As  expected,  behaves  as  an SO(3) vector  commut-
ing as î

L̃i, X̃
j(t)
ó
= iϵi jkX̃k(t) ,

î
S̃ i, X̃

j(t)
ó
= 0 , (B16)

with the components of the angular momentum and spin
operators. In contrast, the commutators 

î
K̃ s

i , X̃
j
ó
=

i
E(p)+m

ï
−ϵi jkS̃ k +

p j

E(p)
K̃ s

i

ò
, (B17)

do not have an intuitive interpretation.

S̃ i X̃i

The  components  (147)  and  (148)  of  the  Pauli-
Lubanski  operator  have  well-known  algebraic  properties
that  we  complete  here  with  the  commutation  relations
with our new operators  and , which read as
 î

S̃ i,W̃
0
ó
= i(E(p)+m)K̃ s

i , , (B18)

 î
S̃ i,W̃

j
ó
= imϵi jkS̃ k + ip jK̃ s

i , (B19)

 î
X̃i
,W̃0
ó
= iS̃ i , (B20)

 î
X̃i
,W̃ j
ó
=

i
E(p)+m

î
δi jW̃

0
+ piS̃ (−)

j

ó
, (B21)

S̃ (−) Ṽ i

W̃µ
where  are defined by Eq. (118). The operators  are
multiplicative commuting with all the components .
 

APPENDX C: ASSOCIATED PRYCE'S (C) AND (D)
POSITION OPERATORS

The operators associated to the position operators (97)
can be derived by considering that the Pryce (e) position
operator is associated to the operators (122) and using the
Fourier transforms (98) and (99). Thus, we obtain the as-
sociated operators
 

Xi
Pr(c)⇒ X̃i

Pr(c) = X̃c i
Pr(c) = i∂̃i+

ϵi jk p jS̃ k

E(p)(E(p)+m)

=
1
2

ß
K̃i,

1
E(p)

™
, (C1)

 

Xi
Pr(d)⇒ X̃i

Pr(d) = X̃c i
Pr(d) = i∂̃i−

ϵi jk p jS̃ k

m(E(p)+m)
. (C2)

The  components  of  these  operators  do  not  commute
among themselves such that the commutators
 î

X̃i
Pr(c), X̃

j
Pr(c)

ó
= −iϵi jkỸk

Pr(c) , (C3)
 î

X̃i
Pr(d), X̃

j
Pr(d)

ó
= iϵi jkỸk

Pr(d) (C4)

generate new associated components
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Y i
Pr(c)⇒ Ỹ i

Pr(c) = −Ỹc i
Pr(c) =

m
E(p)3

S̃ (+)
=

1
E(p)3

W̃ i
, (C5)

 

Y i
Pr(d)⇒ Ỹ i

Pr(d) = −Ỹc i
Pr(d) =

1
mE(p)

S̃ (+)
i =

1
m2E(p)

W̃ i
, (C6)

proportional with those defined by Eqs. (117) and (148),
giving rise to new even one-particle operators.

E(p) pi SL(2,C)
J̃i K̃i

These operators have interesting algebraic properties,
but here, we restrict ourselves to derive the commutation
relations with the associated isometry generators, i.e., the
translation generators,  and , and the  ones,

 and , defined by Eqs. (141) and (144), whose terms
are given in Eqs.  (142),  (115),  (145),  and (146).  We ob-
tain  the  commutation  rules  with  the  components  of  the
Pryce (c) position operator, î

E(p), X̃ j
Pr(c)

ó
= − iṼ i

,î
pi, X̃

j
Pr(c)

ó
= − iδi j12×2 ,î

J̃i, X̃
j
Pr(c)

ó
= iϵi jkX̃k

Pr(c) ,î
K̃i, X̃

j
Pr(c)

ó
=

1
2E(p)

Å
δi j−

pi p j

E(p)2

ã
12×2

− i
E(p)2

piX̃ j
Pr(c)−

i
E(p)

ϵi jk J̃k , (C7)

and of those of the Pryce (d) ones, î
E(p), X̃ j

Pr(d)

ó
= − iṼ i

,î
pi, X̃

j
Pr(d)

ó
= − iδi j12×2 ,î

J̃i, X̃
j
Pr(d)

ó
= iϵi jkX̃k

Pr(d) ,î
K̃i, X̃

j
Pr(d)

ó
=

1
2E(p)

Å
δi j−

pi p j

E(p)2

ã
12×52

− i
E(p)

p jX̃i
Pr(d) , (C8)

drawing the conclusion that the components of these op-
erators satisfy canonical  momentum-coordinate commut-
ation relations and behave as SO(3)  vectors,  except  with
different commutation rules from the boost generators.

Xi
Pr(c) Xi

Pr(d) Yi
Pr(c) Yi

Pr(d)

The  corresponding  components  of  the  one-particle
operators, , , ,  and  mudt  be  derived
by  substituting  the  associated  operators  (C1)−(C6)  into
Eq. (169). 

APPENDX D: SPIN AND HELICITY MOMENTUM
BASES

ξσ( p⃗)
ησ(p⃗) = iσ2ξ

∗
σ( p⃗)

In  general,  the  Pauli  polarization  spinors, ,  and
, which may depend on momentum, form

related orthonormal systems,
 

ξ+σ( p⃗)ξσ′ ( p⃗) = η+σ(p⃗)ησ′ (p⃗) = δσσ′ , (D1)

which are complete,
 

∑
σ

ξσ( p⃗)ξ+σ( p⃗) =
∑
σ

ησ( p⃗)η+σ( p⃗) = 12×2 , (D2)

VP

VD =VP⊕VP

representing bases in the subspaces of Pauli spinors, ,
of the space of Dirac spinors, .

n⃗
ξσ(n⃗) ησ(n⃗) = iσ2ξσ(n⃗)∗

In the case of arbitrary common polarization, the spin
projection is measured along a unit vector . In this case,
the Pauli  polarization spinors  and 
satisfy the eigenvalues problems
 

(n⃗ · ˆ⃗s)ξσ(n⃗) = σξσ(n⃗) ⇒ (n⃗ · ˆ⃗s)ησ(n⃗) = −σησ(n⃗) , (D3)

ŝiwhere  the  matrices  are  defined  in  Eq.  (A6).  These
spinors have the form
 

ξ 1
2
(n⃗) =

…
1+n3

2

Ñ
1

n1+ in2

1+n3

é
,

 

ξ− 1
2
(n⃗) =

…
1+n3

2

Ñ −n1+ in2

1+n3

1

é
, (D4)

satisfy  the  normalization  and  completeness  conditions,
and have the property
 

∑
σ

σξσ(n⃗)ξ+σ(n⃗) =
∑
σ

σησ(n⃗)η+σ(n⃗) = niσi , (D5)

which we may use in concrete calculations.

n⃗ = e⃗3

A  well-known  example  is  the  momentum-spin  basis
[20] with  and
 

ξ 1
2
=

(
1

0

)
, ξ− 1

2
=

(
0

1

)
, (D6)

which is widely used in applications.

ξσ(n⃗p) n⃗ = n⃗p =
p⃗
p

The only peculiar polarization used so far is the heli-
city giving rise to the momentum-helicity basis in which
the  spinors  have  the  forms  (D4)  with .
To write the spin components (193) in this basis, we de-
rive the matrices (116) that read [18]
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Σ1(p⃗) =
p1

p
σ3− p1 p1σ1+ p2σ2

p(p+ p3)
+σ1 ,

Σ2(p⃗) =
p2

p
σ3− p2 p1σ1+ p2σ2

p(p+ p3)
+σ2 ,

Σ3(p⃗) =
p3

p
σ3−

p1σ1+ p2σ2

p
,

(D7)

verifying that these satisfy 

piΣi(p⃗) = pσ3 . (D8)

∂̃i = ∂pi 12×2+

Ωi(p⃗)
The  form  of  the  covariant  derivatives 

 is determined by the matrices (125) [18], 

Ω1( p⃗) =
−i

2p2(p+ p3)

î
p1 p2σ1+ pp2σ3

+ (pp3+ p22
+ p32)σ2

ó
,

Ω2( p⃗) =
i

2p2(p+ p3)

î
p1 p2σ2+ pp1σ3

+ (pp3+ p12
+ p32)σ1

ó
,

Ω3( p⃗) =
i

2p2

(
p1σ2− p2σ1

)
,

(D9)

piΩi(p⃗) = 0
Σi Ωi

Ωi = 0 Σi = σi

satisfying . Thus,  we  obtain  apparently  com-
plicated matrices  and  but whose algebra is the same
as in the momentum-spin basis where  and .
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