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Abstract: We study the mass and scattering cross section of SU(2) glueballs as dark matter candidates using lat-
tice simulations. We employ both naive and improved SU(2) gauge actions in 3+ 1 dimensions with several f val-
ues, and we adopt both the traditional Monte Carlo method and flow-based model based on machine learning tech-
niques to generate lattice configurations. The mass of a dark scalar glueball with JPC = 0** and the Nambu-Bethe-
Salpeter wave function are calculated. Using a coupling constant of 8 =2.2 as an illustration, we compare the dark
glueball mass calculated from the configurations generated from the two methods. While consistent results can be
achieved, the two methods demonstrate distinct advantages. Using the Runge-Kutta method, we extract the glueball
interaction potential and two-body scattering cross section. From the observational constraints, we obtain the lower
bound of the mass of scalar glueballs as candidates of dark matter.
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I. INTRODUCTION

Dark matter (DM), which comprises about a quarter
of the universe's mass, remains one of the most mysteri-
ous objects in particle physics. Primarily recognized
through its gravitational influence on galaxies and cos-
mic structures, it might also be undetectable through elec-
tromagnetic means. The weakly interacting massive
particle (WIMP) miracle, the suggestive coincidence of
the weak coupling DM with a proper density that would
have been thermally generated, motivated experimental
tests through direct scattering of WIMPs, decay of
WIMPs to visible cosmic rays, and DM production at col-
lider experiments. However, no positive result has been
reported thus far (for an incomplete list on this topic,
please see Refs. [1-15]).

In addition to the WIMP, several other interesting
DM models exist. An interesting scenario suggests that
DM is likely glueballs, particles composed of strongly in-
teracting dark gluons bound together without fermions.

Received 13 March 2024; Accepted 21 May 2024; Published online 22 May 2024

This scenario results from a confining dark SU(N) gauge
theory extrapolated from Quantum Chromodynamics
(QCD). These glueballs in the dark sector are hypothes-
ized to interact with standard model particle primarily
through gravitational forces and may contribute signific-
antly to the DM content [16—21].

Glueballs within QCD are bound states of gluons,
characterized by the absence of quark constituents. These
entities emerge from non-Abelian gauge theories, not-
ably SU(N) lattice gauge theories, where non-perturbat-
ive effects support the formation of such composite
particles [22—24]. This characteristic surprisingly bridges
the gap between the domain of strong interactions and
cosmological phenomena, suggesting a novel perspective
where the dynamics of the strong force support the mys-
terious nature of DM. The similarities underscore the ap-
pealing hypothesis that glueballs may constitute the DM
component in these scenarios [20]. Theoretical studies
and simulations within this framework have been import-
ant in substantiating the glueball DM hypothesis and of-
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fering a robust statement that integrates the microcosmic
interactions of particle physics with the large-scale struc-
tures and dynamics observed in the universe.

Lattice QCD calculations are essential in non-perturb-
ative studies of QCD glueballs [25—32]. This non-per-
turbative method offers detailed insights into key proper-
ties of glueballs, including the spectrum and decay prop-
erties. Consequently, it reveals their potential signific-
ance across a spectrum of physical phenomena. In the lat-
tice investigation of self-interacting DM, the ratio of two-
body scattering cross section to the mass of DM, denoted
as o/m is of significant interest. It is not only a crucial
quantity for experimental physicists seeking to constrain
the characteristics of DM [33—35] but is also important in
understanding cosmic phenomena, as highlighted in pre-
vious research [36]. Recent advances in lattice calcula-
tions [37, 38] have been also crucial in determining the
scattering cross section of dark glueballs within the lat-
tice SU(2) Yang-Mills theory.

Traditional Monte Carlo (MC) methods for lattice
simulations encounter challenges such as critical slowing
down [39] and topological freezing [40]. Owing to the
chain-like nature of the Markov process, configurations
generated by traditional methods are not strictly inde-
pendent unless a very long Markov chain is achieved.
Many improvements have been developed over the past
decades, but another potentially promising method, in-
spired by machine learning (ML) concepts and tech-
niques, is the flow-based model [41—44] (for a review,
see Refs. [45, 46]). A flow-based model is a type of neur-
al network that can learn a complicated probability distri-
bution from data and generate new samples from it
without using Markov chain MC methods. Moreover,
flow-based models can also learn the potential features
and correlations of the data, and provide insights into the
structure and dynamics of the system. Flow-based mod-
els impose an invertible transformation constructed by
neural networks transforming a simple distribution to a
complex one to perform the maximum likelihood estima-
tion.

In the remainder of this paper, we use the traditional
MC method and an ML approach comparatively to gener-
ate lattice configurations for the SU(2) gauge theory with
zero fermion flavors (N; =0) and several coupling con-
stants . Subsequently, we compare the results for the
dark glueball obtained from these distinct simulations.
Furthermore, we calculate the interaction potential for
dark glueballs and determine the interaction coupling
constants in effective Lagrangian. Finally, we obtain the
relation between the dark glueball mass and scattering
cross section. By comparing theoretical results with ex-
perimental data, we extract the lower bound on the mass
of scalar glueballs as candidates of DM. Some details are
presented in the appendix.

II. METHODOLOGY

In this section, we exlpain the theoretical basis of our
lattice simulations. This comprises the application of the
SU(N) gauge theory action within both the MC method
and ML approach. We elaborate on the specific ML
methodology, particularly the flow-based model. Addi-
tionally, this section includes the strategy to investigate
the dark glueball, demonstrating how to determine its
mass, coupling constants of effective Lagrangian, and
scattering cross section.

A. SU(N) lattice gauge theory

The SU(N) gauge theory was established for describ-
ing interactions of non-Abelian gauge bosons, with SU(3)
gauge theory being crucial for modeling strong interac-
tions. Explicitly, we can discretize the spacetime to simu-
late QCD in continuum with gauge links U, (n) in the path
integral approach [49]. Standard simulations of SU(N)
gauge theory utilize plaquettes U, (n), defined as

U(n) = U,(mU,(n+ DU (n+ 9 U (n), (1

where n represents the lattice coordinates, and u, v repres-
ents gauge link directions. The discretized action is con-
structed as

S[U] = %ZRe tr[1-U,m)], Q)

nu<v

where B is related to the coupling constant: 8 =2N/g>. N
signifies the color degree of freedom within the SU(N)
gauge field, which is set to 2 in this study. The action de-
scribed previously is referred to as the naive action.

The Liischer-Weisz (improved) action is frequently
employed to reduce lattice spacing discretization effects,
[50], in which both plaquettes U, (n) and rectangles
R,,(n) are considered:

R,(n) =U,(m)U,(n+)U,(n+202)
Ul(n+p+ 90U+ MU (n). 3)

The corresponding action is constructed as

S[U] :%Re[ZCOtr(l ~U,(n))

nu<v

+3 ertr (1-Ry(m) | 4)

UNTRY

where the coefficients for plaquettes and rectangles are
co=5/3 and ¢; = —1/12, respectively.
Our study aims to apply self-interacting gauge fields
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to explore DM, where we opt for simplicity by setting
N =2. We plan to employ both naive and improved ac-
tions for MC simulations, and the naive action in combin-
ation with ML simulations, as detailed in Section III.

B. Flow-based model

In the flow-based model [41—44], the process begins
with a basic prior distribution r(z) that is easy to sample.
With this, a collection of samples z; can be produced and
subjected to a reversible one-to-one transformation f(z).

Consequently, the transformed samples x; = f(z;) inher-
ently conform to a new distribution g(x):
q(x) = r()[J(2)"'] = r(z) |det f(z) =f'x). ()

The objective is to align the new distribution g(x)
more closely with the target distribution p(x), which
takes the form p(x) = e W /Z under lattice gauge theory.
To assess this alignment, we can make utilize the Kull-
back-Leibler (KL) divergence [47]. The KL divergence
between two distributions ¢(x) and p(x), denoted as
Dx(qlp), is defined as

Dxi(qlp) = /dxq(x)log (qi ;) > 0. (6)

A low KL divergence suggests a close similarity
between the two distributions, and Dg;(glp) =0 only
when ¢(x) = p(x). In this context, we can construct the
transformation as a sequence of neural networks and em-
ploy the KL divergence between the resultant distribu-
tion g(x) and the target distribution p(x) as a loss func-
tion for network training. Throughout the training phase,
the KL divergence can be approximated using the sample
mean value:

N
g Lx)) ~ L Zlog 9(x) . @)

=E, (1
oss= 4 1 P/ "N &% b

Within the flow-based model, the design of the invert-
ible transformation f(z) demands careful consideration
because the Jacobian determinant of f(z) influences the
resulting distribution ¢(x). For optimized efficiency, the
transformation is structured to yield an upper or lower tri-
angular matrix for the Jacobian. More explicitly, we can
first select certain components of z to transform, such as
7!,7%,...,7* (where upper indices denote different compon-
ents of the variable) and keep the remaining components
270 frozen, de., f(z))=z/,k+1<j<n. The
overall transformation, which is composed of many
single transformations with different frozen freedoms,
can transform the samples completely, such that every

component of z is transformed at least once. Next, we can
define a set of invertible one-to-one mappings F(z;a;) for
1 <1<k with the g;s being parameters. For example, if
7 €R, we can set the one-to-one maps as F(Z;a;) =
a7’ +a, with a; >0. Subsequently, we can construct
neural networks that utilize the fixed components as in-
puts and output the parameters of the mappings, i.e., the
networks map the fixed components to the parameters:

{ai} = FNN(Zk+1,Zk+2-.-Z"§wA)- (®)
Here, Fyy denotes the neural network transformation,
which is typically non-invertible or difficult to invert,
whereas the transformation applied to the samples re-
mains invertible. The neural network parameters, de-
noted as w,, must be optimized. Incorporating fixed com-
ponents as inputs to the neural networks enhances the
overall expressiveness of the transformation and enables
correlations among the various components.

Under the above transformation, the Jacobian is struc-
tured as follows:

ax oo
J=|0z" 07 |,1<i,j<k k+1<l<n.  (9)
0 In—k

This results in an upper triangular matrix whose determ-
inant can be efficiently computed.

By following these steps, we can illustrate the imple-
mentation of the flow-based model in 4-dimensional
SU(2) lattice gauge theory. For further insights, refer to
[52]. The prior distribution is established as a uniform
distribution with respect to the Haar measure of the
SU(2) group owing to its numerical sampling conveni-
ence.

First, the fixed components of the gauge fields should
be selected. For a 4-dimensional lattice with coordinates
n,i=0,1,2,3,n,€Z, a translational phase is defined
based on a translation vector t, where ¢, € Z:

¢(n) =Y mt; mod4. (10)

This method divides the entire lattice into four seg-
ments based on their respective phase values. During a
single transformation, one direction of the link variables
within a segment is designated as the actively trans-
formed component, and the others are fixed. By combin-
ing a minimum of 16 individual transformations, we
achieve a comprehensive transformation. In our numeric-
al experiments, we set the translation vector to (0,1,2,1)
and designate Uy(n) as the active transformed link direc-
tion.
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Second, one-to-one mappings are designed. In gauge
theory, the gauge invariance of the theory must be pre-
served. Therefore, as link variables are not gauge covari-
ant, they are not directly transformed. Instead, the
plaquettes containing the actively transformed links are
transformed. Describing the one-to-one mapping on
plaquettes or in SU(2) group space directly in numerical
terms is challenging. However, by considering the theory’
s requirement for gauge covariance, we can confine the
mapping to f(XPX™') = Xf(P)X~!, where P and X belong
to SU(2). We can prove that, given the diagonalization of
P, P=SUS"! the requirement is equivalent to

f(P)=SfW)S™", U = diag(e”,e'). (11)

In other words, only the eigenvalues must be trans-
formed. The two eigenvalues are not independent of each
other owing to the constraint detP =1, which results in
6,+6,=0. We can design diagonalization procedure to
make 0, > 0,6, < 0; subsequently,

el 0

e—i(?

P=s

15‘1, 0<6<n (12)

The one-to-one mapping can now be simplified as

0
Q)

[eif(m ] .
fP)=S 0 S, 0<f(O) <n. (13)

The requirement now reduce to that f(6) should be a one-
to-one map on interval [0,7z]. In our numerical simula-
tions, we opt for the rational-quadratic neural spline flow
method with five nodes as the one-to-one mapping on the
interval [0,7] owing to its high flexibility. This choice is
based on Ref. [53].

In constructing the neural network, maintaining gauge
covariance necessitates that inputs consist solely of
plaquettes containing frozen link variables. To ensure the
translation invariance and cyclic boundary conditions in-
herent in lattice theory, the optimal architecture involves
convolutional neural networks (CNNs) with cyclic pad-
ding. In our simulations, we used a four-dimensional
CNN with a kernel size of 3 and 48 hidden channels, em-
ploying LeakyReLU as the activation function and the
Adam optimizer for training. A mask, shaped to match
the lattice plaquettes, was applied to select the frozen
plaquettes before they are inputted.

Although the flow-based model has been proven to be
effective, it encounters the mode collapse problem when
p increases [54]. A quenched method was proposed in
Ref. [55] to solve this problem. The quenched method in-
volves first training a model to generate samples that ad-

here to the distribution e#5®/Z, where 8, is small. Sub-
sequently, this distribution with a small B; is utilized as
the prior distribution to train a second model that gener-
ates samples following e#5®/Z, with a larger 8,. This
process is iterated until the value of § reaches the desired
level. In this study, we begin with 8=0 and increment-
ally vary f by 0.1 or 0.2 every 10 or 20 rounds of train-
ing until f reaches the target value. Thus, the total train-
ing time is reduced compared with the original method,
and an advantage is that only one model needs to be
saved. The overall training time increases approximately
linearly with § and the lattice volume (the number of
training parameters increases approximately linearly with
the lattice volume), whereas the time required for gener-
ating configurations is dependent only on the lattice
volume. At this point, note that the flow-based model is
inefficient in generating configurations with a very large
volume. For a comparative analysis in this study, we set
up to 2.2 and the lattice volume up to 10*.

C. Dark glueballs and scattering

1. Dark Glueball Spectrum

In lattice simulations, the operator for dark glueball
with J7€ = 0** is given:

O(t. %) =Re try Uy (1, ). (14)

u<v

To account for the vacuum state sharing the quantum
numbers of the glueball J*¢ = 0**, we subtract the vacu-
um expectation value, reformulating the operator as
0'(t,%) = O(t,%) — (O(1,%)). We can use two-point correla-
tion functions to determine the mass of dark glueball:

Ca(0) =Y 0101, D00, )0). (15)

zy

When the time slice ¢ is sufficiently large, the two-point
correlation function is reduced to

Cy(t) ~ CoeiEot. (16)

The effective energy E, represents the energy of the
lowest dark glueball state (ground state), and when the
momentum is zero, it is reduced to the mass m,.

In contrast to the naive action, the operator formula-
tion for the dark glueball in the context of the improved
action incorporates an additional rectangular term, as
defined in Eq. (3). Thus, the operator becomes
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A 1
Oumt.9 = Retr Y. Ut 9+ 2ot 0] (17

u<v

For subsequent analyses, we employ this refined operator
representation for the dark glueball within the framework
of configurations derived from the improved action.

2. Two body scattering cross section

In the following, we determine the two-body dark
glueball scattering cross section using various methods.

The cross section of dark glueballs scattering can be
inferred from the interaction glueball potential in a non-
relativistic limit. In this approach, we can employ the
Bonn approximation to determine the cross section from
the interaction glueball potential. This potential is
modeled in this study, for instance, as a spherically sym-
metric Yukawa and Gaussian potential:

VYukawa(r) =Y 4 P (18)
r
mgr)? mgr)?
VGaussian(r) = Z(I)ei( 8) +Z(2)Ci( 2) . (19)

where m, represents the mass of the dark glueball, and
Y, ZW, Z® are the parameters. For both Yukawa and
Gaussian potentials, we can consider the differential cross
section in the nonreltivistic limit with k — 0, which is de-
rived as follows:

2

/ rV(r)sin(K|r)dr| . (20)
0

2
doo  m,

0 |Rp

Here, K = P> — P represents the momentum transfer, and

|K| = 2ksin 5» with k and 6 being the magnitude and scat-

tering angle of the relative momentum K between two in-
teracting particles, respectively. V(r) denotes either the
Yukawa or Gaussian potential.

Alternatively, using an effective theory for scalar
particles, and considering the ¢* and ¢* interaction, we
can construct the Lagrangian for dark glueballs as

1 1 Lo, A
L= 30u9) = 5mg’ = 370"~ 10" @1

Corresponding to the contributions in the potential, the ¢*
interaction term yields a delta function, but it is difficult
to obtain numerically. Therefore, only the ¢* term is con-
sidered for the scattering. Perturbative theory yields the
differential cross section for two-body elastic scattering

d(PP(P2) — ¢(P3)p(Py). The Feynman diagram in Fig. 1
provides the iM matrix element:

2
143

RP+m?
8

iM=(—ids)? — (22)

(Bs—P)>—m2
Setting K| = 0, we obtain the differential cross section as

do  IMP A
dQ ~ 64m2(2m,)>  256m7mS’

(23)

The ¢* interaction generates a Yukawa potential in the
coordinate space in non-relativistic limit. If Vyywa(r) is
inserted to Eq. (20), the differential cross section is ex-
pressed as

Y2

Yukawa 167r2m§ '

do

10 24)

Comparing Egs. (23) and (24), we find that the value of
A3 is determined by the coefficient Y-

A3 = 2my /1Y, (25)

The s-wave scattering cross section can also be dir-
ectly extracted from the wave function. This method is
grounded in the radial Schrédinger equation, in which the
wave function asymptotically approaches the asymptotic
form as r — oo:

wr) S % sin[kr+6,(k)] . (26)

By solving the radial Schrodinger equation, we can ex-
tract the wave function W(r) and determine the phase shift
0,(k). This enables the calculation of both the differential
and total cross sections for the s-wave scattering in the
k — 0 limit:

do
dQ

N S
_}(Ln(}ﬁsm [6(k)], (27)

P2 P4
Fig. 1. Feynman diagram of the ¢ channel for elastic scatter-
ing of scalar field particles.

083108-5



Min-Huan Chu, Jun-Hui Lai, Wei Wang et al.

Chin. Phys. C 48, 083108 (2024)

do
dQ’

o~0y=4n (28)

3. Nambu-Bethe-Salpeter wave function

To calculate the coefficient Y in the Yukawa poten-
tial or Z» and Z® in the Gaussian potential, we use the
Nambu-Bethe-Salpeter (NBS) wave function derived
from lattice calculations. The NBS wave function was
initially developed for hadrons [57, 58] and is also suit-
able for analyzing glueballs. It is defined as

W (A= (0]00,2+PH0'(0,%)|GG), (29)

where O’ is a glueball operator, and |GG) represents a
hadron state comprising two glueballs.

The NBS wave function is related to the Schrodinger
equation with the interaction dark glueball potential. The
spatial Schrodinger equation with a non-local potential is
expressed as

Loy, - / Er UG DY), (30)
8

where U(7,7) approximates a local, central potential
U7 = V(@6 —7). The relation between V(r) and
Y, (P) is

1V

V(r)= W) .

G1)

Replacing V(r) with Eq. (18) or (19) enables us to de-
termine the coefficient ¥ or Z(V, Z® from ¥, (7).

In lattice simulations, correlation functions to extract
the NBS wave function are constructed as

Co(t,7) =Y (0|01, +70'(1,5(0,0|0), (32)

where § is the glueball operator source. Subsequently,
the wave function is given as

. C(t,7)
¥ =lim —&———.
«(7) S C,(t,7=0)

(33)

In principle, a two-body state could serve as the
source S. However for the dark glueball with J€ = 0"+,
|GG) and |G) share the same quantum numbers. Addition-
ally, we cannot split one-body source into spatially separ-
ated correlators, unlike two- and three-body sources.
Hence, we use S = 0.

III. NUMERICAL SIMULATIONS AND RESULTS

In this section, we present our numerical results ob-
tained from lattice simulations. This includes an in-depth
overview of the configuration generation process, the res-
ults for dark glueball mass, and the determination of the
coupling coefficient for the effective Lagrangian and dark
glueball scattering cross section.

A. Lattice setup

When generating lattice configurations, we varied the
coupling constant £ in the set {2.0, 2.2, 2.4, 2.6} for naive
actions in SU(2) simulations. In contrast, for the im-
proved actions, we specifically employed B=3.5 for
comparative purposes.

Table 1 delineates the setup of configurations em-
ployed in our study. During the generation process, we
used both heatbath and overelaxation updates for the
SU(2) gauge field. To enhance signal clarity, we imple-
mented Array Processor with Emulator (APE) smearing
for the gauge links, as described in [26],

V) = U+ @y UmUn+ DU+, (34)

v#U

Uzmear(n) — Vﬂ(n)/ \/W (35)

In our simulations, we selected a smearing parameter of
a=0.1, and a total of 20 APE smearing iterations were
uniformly applied across all configurations. Employing
the established relation between the string tension ¢ and
the scale parameter A as documented in [59], we determ-
ined the lattice spacing in terms of A~! for each simula-
tion setting [60]. Detailed information is given in Ap-
pendix A, and the results are listed in Table 2.

In contrast, for the ML approach, we restricted our
simulations to the naive action at g =2.2 with a lattice
volume of 10*. While ML yields configurations that
closely resemble SU(2) gauge configurations, they are

Table 1.
figurations were random SU(2) matrices, followed by warm-

Setup for SU(2) lattice simulations: The initial con-

up process with heatbath updates and a production process
employing combinations of one heatbath update and multiple
overrelaxation updates.

action g Volume heat+over Warm up Conf
naive 2.0 10% 1+1 500 4608
naive 2.2 104 1+2 700 4608
naive(ML) 22 104 / / 4608
naive 2.4 164 1+3 700 2304
naive 2.6 244 1+5 1000 1536
improved 3.5 16* 1+5 1000 1536

083108-6



A comparative lattice analysis of SU(2) dark glueballs

Chin. Phys. C 48, 083108 (2024)

Table 2.

Lattice spacings in string tension ¢ unit and SU(2)

scale A for configurations of several § based on naive and im-

proved actions.

action B a~o alA™"]
naive 2.0 0.6365(66) 0.3727(39)
naive 22 0.4857(30) 0.2844(17)
naive 2.4 0.2868(24) 0.1621(14)
naive 2.6 0.1669(96) 0.0977(56)
improved 3.5 0.3246(17) 0.1900(10)

not precise. Therefore, we used the heatbath method to
update the gauge links from ML. Figure 2 compares the
plaquette values from MC and ML with heatbath updates.
This comparison reveals that MC configurations aligned
with the ML ones after 25 heatbath updates. Eventually,
we performed 40 times. Furthermore, we compared the
static potentials aV(n,) derived from large Wilson loops
(see Eq. (A1)), as shown in Fig. 3. In this figure, the stat-
ic potential displays a positive value of B for the B/r
term, which is attributed to APE smearing. Further de-
tails are discussed in Appendix A. This comparison sup-
ports our conclusion that ML with heatbath updates can
generate reasonable results as the traditional MC method.

In this investigation, we also comparatively analyze
the computational time consumptions of the MC and ML
approaches. Note that this comparison is qualitative be-
cause, owing to the lack of GPU nodes, we used the CPU
resources across six DCU nodes for the ML method. In
the MC calculation for 10* lattice configurations, the pro-
cessing time was approximately 0.17 s per configuration.
This implied that the initial warm-up process required ap-
proximately 120 s, and the total time for generation, in-
cluding both warm-up and production, was calculated as
(Confx0.17+120) s. In contrast, the ML method in-
volved distinct training and production phases, consum-
ing 21 h for training and Confx0.12 s for production.

o plaquette/N,

0.6
0.5 1
0.4

0.3
MC

T ML

0.2 T T T T T T
0 10 20 30 40 50

heatbath time
Fig. 2. (color online) Comparison of plaquette based on con-
figurations from the Monte Carlo (MC) and machine learning
(ML) methods refined using the heatbath method.

Figure 4 shows a cost comparison of the MC and ML
methods. Based on this analysis, we can infer that the MC
method is more efficient for small-scale computations,
whereas ML demonstrates greater suitability for extens-
ive-scale simulations. Therefore, in this example, config-
urations derived from ML exhibit reduced correlation and
demand less computational time. From this perspective,
ML may become an efficient method for generation.

Moreover, note that the implementation of ML is still
limited. A significant problem is the large memory re-
quirement during the training process, which may exceed
the capacity of limited-core systems. Additionally, the
persistent problem of mode-collapse in ML necessitates
the continued use of the MC method for configuration fil-
tering. With these considerations, our primary simula-
tions employed the MC approach, whereas ML was util-
ized only for a comparative analysis at this stage.

B. Dark glueball mass

The mass of the dark glueball in the framework of
SU(2) gauge theory can be ascertained through the ana-
lysis of the two-point correlation function C,(), as delin-

aV(ng)
1.4
B naive 8 =22 @
124 & MLp=22
10 &
0.8 s
0.6 1
®
0.4
®
0.2 B
B
UO b T T T T T
1 2 3 4 5 6 7
Ny
Fig. 3. (color online) Comparison of static potentials from

MC and ML methods with 40 times heatbath updates.

100

—— Monte Carlo

“ machine learning
T
£ 60
g=)
-
<]
=
=
2 401
g
(o]
@)

20

0 T T T T T T T

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Conf[10°]
Fig. 4. (color online) Comparison of computation costs of

MC and ML methods.
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eated in Eq. (15). Utilizing the dark glueball operator
provided in Eq. (14), we select u and v along the spatial
directions to characterize the dark glueball. Considering
the ground state contribution, C,(r) exponentially decays
with respect to time slice 7. Based on the periodic bound-
ary conditions applied during the configuration genera-
tion, C,(¢) is modeled as

Cy(t) ~ Coe™™" + Coe e Wi (36)
To clearly demonstrate the value of the dark glueball
mass, we present the effective mass plots in Fig. 5. Here,
we calculated the effective mass m*™ using the following

formula:

Cy(t=1)+Cy(t+1)
2C5(1)

m®™ = arccosh

(37

Despite considerable uncertainties in each case, the trend
suggests that as ¢ increased, m*® tended to stabilize
roughly towards a plateau. To enhance the stability and
clarity of our fitting process, we performed a constant fit
for m*®. The results are shown in Fig. 5 as red bands,
whose lengths represent the ranges of used data in fitting.
The results are also listed in Table 3, which indicates that
as f increased, the dark glueball mass exhibited a gradual
increase.

7 fit B fit
12 f  naive =20 129 §  naive =22
10 4 10
8T 8T
= =
& 6 £ 6
g (2
S 1 = E 1 = }
24 24
R e e E L P L PP - O mmmmmm e e
9 —2 4
0 1 2 3 1 0 1 2 3 1
tla] t[a]
b fit " fit
12 §  naive g =24 121 §  naive 5=26
10 4 10
8T 8T
= = {
& 6 & & 61 & ]
S = f 3 -
44 - } 1
24 24
B mmm e e e - o i mmm e e e - o
—924 —21
0 1 2 3 5 6 7 0 2 3 1 5 6 7 8
t[a] t[a]
14 fit 144 fit
124 §  improved 8 =35 124 § MLB=22
10 10
8 8
= =
g9 2 2. 9
g g
44 = 44 = L 1
24 24
0 4T e e E O s mmm e m e
—24 -2
0 1 2 3 1 5 6 0 1 2 3 1
t[a] t[a]

Fig. 5.

plots represent the fitting results, with their lengths corresponding to the fitting ranges.
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Table 3. Results of effective masses of 0** glueball in lattice

units and A.

action B amg mg[A]
naive 2.0 1.69(25) 4.53(68)
naive 22 1.373(89) 4.83(32)

naive(ML) 22 1.293(77) 4.56(27)
naive 24 0.853(54) 5.26(34)
naive 2.6 0.593(17) 6.06(39)
naive continuum limit / 6.35(51)

improved 3.5 1.087(58) 5.72(31)

Moreover, we extrapolated the dark glueball mass to
the continuum limit by using the equation

m;ﬂ(a) = mz,ﬁ(a — 0)+cra+ crd, (38)

and determined the results m,(a — 0) =6.35(51)A. Be-
cause only the naive action was employed in the extrapol-
ation, we retained the O(a) term, which should be neg-
lected with improved action. In parallel, our simulations
using the improved action suggested an effective glue-
ball mass of m, =5.72(31)A. Comparing this result with
those obtained using the naive action, we found that the
improved action configurations at such a large lattice spa-
cing a =0.1900(10)A~" had a smaller discrete effect than
naive action. We have compiled all these results in Table
3, which also shows very similar values for the naive ac-
tion at 8 =2.2, achieved through both ML and MC meth-
ods. This comparison confirms that traditional MC meth-
ods and ML techniques were consistent with each other.
These results from different methods underline the use-
fulness of ML in particle physics, particularly for com-
plicated tasks such as calculating the dark glueball mass.

C. Scattering cross section

In this subsection, we address the determination of in-
teraction dark glueball potentials using the NBS wave
function [57, 58], as outlined in Eq. (31). Addressing the
numerical second partial derivative in this context is chal-
lenging. If the potential is spherically symmetric, we can
approach it by solving a radial partial differential equa-
tion:

ER(r) 2 dR()
dr? r dr

—mgV(r)R(r) =0, (39)

here, R(r) is the radial part of W,(#). The angular com-
ponent of the solution is expressed as spherical harmon-
ics with quantum numbers [,m, leading to W¥,(7) =
R(r)Y,,,(6,¢). Averaging ¥,(7) over a spherical shell sim-
plifies Y;,.(0,¢) to 1, effectively reducing the NBS wave

function W, (#) to R(r) times a constant.

To proceed, we calculate the two-body correlation
function as stated in Eq. (32) and average it over spheric-
al shells, approximating it as R(r). However, it is derived
under the condition ¢t — oo, which cannot be achieved in
lattice simulations. Therefore, we examine R(r) at a fixed
time separation, denoted as 73, and the results are shown
in Fig. 6. We observe that R(r) exhibits a modest vari-
ation with increasing ¢, prompting us to utilize the aver-
aged results from several g, (s). Our findings for R(r)
from different lattice setups are presented in Fig. 7.

Considering Yukawa and Gaussian forms of potential
energy, we set boundary conditions and adjust the coeffi-
cient Y or coefficients Z" and Z® to determine solutions
for R(r), denoted as R(r,Y) or R(r,Z",Z?®) , using the
fourth-order Runge-Kutta method. We then measure the
differences between the R(r,Y) or R(r,Z",Z®) curves and
the data of R(r), selecting the curve that most closely
matches our data to determine the coefficients.

Figure 8 compares the solutions with Yukawa and
Gaussian potentials to our lattice data. This shows that
solving the differential equation Eq. (39) using the
Runge-Kutta method corresponds well with our simula-
tions, indicating reliable results. Thus, we obtained the
values for Y in the Yukawa potential as well as ZV and
Z® in the Gaussian potential. In addition, we also invest-
igated the y?/d.o.f values of both Yukawa and Gaussian
fits, finding them to be 2.915 and 0.764, respectively,
over the fitting range of r€[0.4,0.9]A~!. This indicates
that the Yukawa form only partially captures the data.
Consequently, we decided to increase the uncertainty of
the fit parameters by a factor of 4/x2/d.o.f. For clarity,
we reformulate these equations as follows:

—mgr

VYukawa(r) == 176(26) ¢ s
4nr

(40)

radial NBS wave function R(r)

0.5

0.0 +====~ ---
—0.5

—1.0 4

naive =2.4: tg =la

—2.0 naive =2.4: tg =2a
s - naive =2.4: tg =3a
I naive =2.4: tg =4a
~3.0 = . : :
1 2 3 4 5 6
r/a
Fig. 6. (color online) Radial NBS wave function R(r) at dif-

ferent time separations.
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radial NBS wave function R(r)

radial NBS wave function R(r)

=
0.0 F====mmm—mmm oo E— - Ee o e e N R { 'E“'E'}ITETI']I
—0.5 ~0.5
—L07 { average t in [la,2d] 107 average t in [2a,3a]
~1.5 1 ~1.5 1
¥ naive § =20 ¥ naive =22
~2.0 . . . . . ~2.0 . . . . .
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radial NBS wave function R(r)

radial NBS wave function R(r)

—101 average t in [2a,4d] 101 average t in [3a,5d]
~1.5 ~15
§  naive § =24 §  naive 5 =26
~2.0 . . . . . ~2.0 . . . . ;
0.2 0.4 0.6 0.8 10 12 0.2 0.4 0.6 0.8 10 12
A A
radial NBS wave function R(r) radial NBS wave function R(r)
ZE
e Hﬁﬁ%ﬁimm e e &
—0.5 { ~0.5 {
—101 average t in [2a,3a] —101 average t in [2a,3a]
—15 1 ~15 1
§  improved 8 =3.5 [ § MLpB=22
~2.0 . . . . . ~2.0 . . . . .
0.2 0.4 0.6 0.8 10 12 0.2 0.4 0.6 0.8 10 12
(AT (AT

Fig. 7.

(color online) Radial part of the NBS wave function derived from various lattice setups. We normalize all data at r = 0.3727A

and show the selected ¢ range in the middle of each panel. As noted in the main text, the results labeled "naive" and "improved" are
based on configurations with naive and improved gauge action, and "ML" represents results obtained with machine learning methods.

Illgf 2
—40.0(4.3)Ae "
(41)

Our current analysis shows that the Gaussian poten-

(mgr)?

Viaussian () = 12.46(0.35)Ae™ 3

for each potential, helping us to determine the final coef-
ficients in these potentials. Through the relation between
the Yukawa potential coefficient ¥ and the coupling coef-
ficient A5 in the scalar glueball Lagrangian (see Eq. (25)),
we find A; = 2m, VY = 53.3(5.8)A.

Because of these findings, we decide to use both po-

tial better matches the original data, as observed in Fig. 8.
We use a combination of bands from several lattice sets
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radial NBS wave function R(r)

0.0 1

~1.0 1

Yukawa O MLS=22
)4

Gaussian naive § = 2.4

1v T naive =20

naive 3 = 2.6

T naive f =22 improved 3 = 3.5

—2.0

02 0.4 06 08 10 1.2
r[ATY]
Fig. 8. (color online) Results of solving the differential

equation with Yukawa and Gaussian potentials.

tentials in our cross section results. We treat the differ-
ence between these two types of potential to estimate the
systematic uncertainties.

Having established the values of ¥, Z(, and Z®, we
are now equipped to formulate the Schrodinger equation
for the radial wave function W(r), which is related to
r¥,(r), in the presence of a non-zero relative momentum
k. This equation is expressed as

e
(@ +K - mgV(r)) ¥(r) = 0. (42)

When r— co, V(r)—> 0. This suggests that W¥(r) ap-
proaches an asymptotic form W(r) « sin(kr + 6(k)) at large
distances. Using the Runge-Kutta method, we can accur-
ately solve for W(r). Applying the parameters derived
from the Yukawa and Gaussian potentials, we calculate
the s-wave total cross sections separately. The results
with only statistic uncertainties are as follows:

T yukawa = 1.110(15)A 72, (43)

O Gaussian = 3.716(52)A 2. (44)
Our final result for the cross section is given as

o =(1.09 ~3.77)A2, (45)

which contains both statistic and systematic uncertainties.

Given our finding that both ¢ and m, vary with A, we
can use m, instead of A when representing o-/m. This en-
ables us to match our o/m result with experimental data
and assign an appropriate value to m. Figure 9 presents
our findings alongside data from experimental studies
[61—64]. Our analysis shows that the ratio o/m, tends to

decrease as m, increases. Additionally, according to the
current constraint, we estimate that the value of m, is
likely 0.3 GeV.

IV. SUMMARY AND OUTLOOK

In this study, we analyze 0™ glueballs within the
SU(2) gauge theory using both Monte Carlo simulations
and machine learning techniques. We use these two ap-
proaches to generate various lattice configurations and
extract the dark glueball mass using these configurations
based on naive and improved actions. Using a coupling
constant of 8 =2.2 as an illustration, we compare the dark
glueball mass calculated from the configurations gener-
ated from the two methods. While consistent results are
achieved, the two methods demonstrate distinct advant-
ages. Given these considerations, our primary simula-
tions have employed the Monte Carlo approach, whereas
machine learning is utilized only for a comparative ana-
lysis.

Subsequently, we obtain the glueball interaction po-
tential, which is crucial for extracting the interaction
coupling constant in effective quantum field theory and
determining the glueball scattering cross section. We then
establish a connection between the scattering cross sec-
tion and the dark glueball mass, which is a vital aspect for
understanding dark glueball behavior in various physical
scenarios. Our findings show that the ratio o/m, de-
creases with increasing m,, aligning with values determ-
ined in experimental studies. This correlation, along with
estimated dark glueball mass m, ~ 0.3 GeV from experi-

o /mg[cm?/g]

2.5
9.0 4B 1
1.5 - This work
—-+= Randall 2008
—— Peter 2012
1.0 === Harvey 2015
----- Wittman 2017
(IR T
0.0
0.2 03 04 05 06 07 08 09 10
my[GeV]
Fig. 9. (color online) Ratio o/m, against the dark glueball

mass m,. It incorporates the constraints from several research-
ers who have reported on the cross section of self-interacting
DM. The band in the graph represents the range encompassed
by our calculations. For context and comparison, the graph
also includes results from established literature: o/m=0.7
cm?/g from Ref. [61], o/m =0.1 cm?/g from Ref. [62], o/m =
0.47 cm?/g from Ref. [63], and o/m = 2.0 cm?/g from Ref. [64].
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mental data, has significant implications for dark matter
research.

The application of lattice simulations to dark glueball
not only reveals the potential of computational advance-
ments in theoretical physics but also lays the foundation
for more refined and efficient research methodologies in
the future. Our results can contribute to the broader un-
derstanding of dark glueball dynamics and their interac-
tions in the universe [65], particularly in relation to dark
matter. This study encourages further exploration into
complex particle systems and their interactions, which
can be pivotal in understanding the mysteries of dark
matter and its fundamental forces.
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APPENDIX A: LATTICE SPACING FROM
WILSON LOOP

In the realm of lattice gauge theory, the expectation
value of the Wilson loop is crucial. We use this value to
set the lattice spacing for each lattice configuration. The
static potential for the SU(2) gauge field is determined as
described in [60]:

W(nr’ n[)

1
V(n,)=lim—-Iln ———,
(n,) = lim nW(n,,n,+1)

t—oo

(A1)

where W(n,,n,) represents the Wilson loop's expectation
value with length n, and width », in lattice units. At short
distances, this potential behaves as 1/n,, and at larger dis-
tances, it exhibits a linear growth, represented by the
string tension oy,.

In our study, we focus on the space-space Wilson
loop in the x—y plane. To represent aV(n,), we use the
average value of In[W(n,,n,)/W(n,,n,+1)] over a large
range of ¢ values. As an illustration, we consider a basic
setup with B8=2.4, depicted in Fig. Al. Here, we calcu-
late aV(n,) as follows:

1] W(,,8)
=—1
aV(ny) > nW(nx,9)

L W@.9)
Wi, 10))°

(A2)

As shown in the figure, when n, > 6, the term In[W(n,,n,)/
W(n,,n, + 1)] stabilizes, forming a plateau. This supports

the fact that our approach is conservative.
One can express aV(n,) as a function of n,:

B
aV(n) =A+ — +d*oyn,. (A3)

X

For each lattice setup, we fit the Wilson loop data to this
formula to obtain the string tension a?c;. The outcomes
of our fitting process are illustrated in Fig. A2, where we
have selected examples with naive 8= 2.2 and 2.4, in ad-
dition to an improved B = 3.5 for demonstration. Fig. A2
reveals that the formula in Eq. (48) effectively captures
the string tension derived from our Wilson loop data. It
should be noted that, in the small spatial separation re-
gion, the term B will be influenced by APE smearing, res-
ulting in the modification of the sign of B. However, the
string tension is not significantly affected by smearing.
The comparison of static potential without and with 10/20
times APE smearing is shown in Fig. A3, supporting the
above observation. The effect on the lattice spacing is ap-
proximately (1 ~2)o.

Using the relationship between string tension and the
energy scale A for SU(2) gauge theory [66],

A =0.586(45) \Joy, (A4)

we finally determine the lattice spacing in units of A. The
results are listed in Table 2.

APPENDIX B: DETERMINING WAVE FUNCTION
FROM A SPECIFIED POTENTIAL

In Sec. III.C, we outline our method to determine
coefficients for a specific potential using the radial wave

In [W(ng, ny) /W (ng,ny + 1)]

- &
05 s & * & ¥ 3 § {
N
0.4
g ¥ ¥ F % ¥ 3 3 =z ¥
031 ¢ = i n,=2a ¥ n,=6a
n, =4a I n, =8a
024 ¥
0.1
g B B 8 8 8 8 8 8 8 8
=]
0-0- T T T T T T
2 4 6 8 10 12
Ny
. . 1n V)
Fig. Al. (color online) Plot of nm based on na-

ive action with g =2.4.
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0.8 1
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0.6 0]
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@
=
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=] = &
- =
021 5 2 &
V
é 3 4 5 ('3 7 8 9
Ny
Fig. A2. (color online) Fitting results for aV(n,). The string

tension values a?c; for cases of naive =22 and 2.4 and im-
proved g=3.5 are 0.2359(29), 0.0766(13), and 0.1053(11) re-
spectively.

aV(ng) at =24

141 smear 0, a =0.1667(57) A~
1.4 smear_10, a =0.1585(15) A~* %
smear_20, a =0.1621(14) A~
1.0
il
o
0.8 =
a8 o
0.6 1 & ¥
B ° -
4 d *?
044 g ° =
e 7
0.2 g ¥
€
001 ®
0.2 — . . . : . : . .
1 2 3 4 5 6 7 8 9
Ny
Fig. A3. (color online) Static potentials from configurations

with or without APE smearing at g =2.4. The number in the
label after "smear " represents times of smearing.

function R(r), satisfying

ER(r) 2 dR()
dr? r dr

—~mgV(r)R(r) = 0. (B1)

Here, V(r) may represent Yukawa or Gaussian potentials,
each requiring one or two coefficients. Our approach is to
use a test coefficient in V(r) and solve the differential
equation via the Runge-Kutta method, starting from

R(rin) and R'(riy). The initial condition is derived from
the NBS wave function of lattice data, replacing differen-
tiation with difference.

Applying the fourth-order Runge-Kutta method, we
rewrite the above equation as

2
R’(r)= f(r,R,R) = ;R’(r) —mgR(r)V(r). (B2)

Then, we can obtain the solution R(r) by iterating the
following equations with step length 4:

kiR = hr, kR = hf(r,R,R’), (B3)
’ 1 4
kR = h(R" + EklR ), (B4)
1 1 s L,
kR’ :hf(r+§h,R+§k1R,R +§k|R )» (BS)
/ 1 /
kR =h(R + 5kR), (B6)
) 1 1 N
kR = hf(r+ Sh,R+ SRR + JkoR), B7)
kiR = h(R' +ksR'), (BS)
kiR = hf(r+h,R+kRR +KR), (B9)
ri=r+h, (B10)

1
R, =R+ 8(k1R+2k2R+2k3R+k4R), (Bll)

1
R, =R+ (bR + 2R +2k:R +kR), (B12)

where ri, R;, and R} are the iteratively updated values at
r+h. Using test coefficients in V(r), we approximate the
corresponding solution, denoted as R, (r). We then as-
sess the distance between this test solution and our lattice
data. Then, by varying the coefficients within a certain
range and finding the minimal distance, we eventually
identify the corresponding coefficients for V(r).
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