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Abstract: In this article, we present a dynamical system analysis of a Dirac-Born-Infeld scalar field in a modified

f(Q) gravity context. We considered a polynomial form of modified gravity, used two different types of scalar po-

tential, polynomial and exponential, and found a closed autonomous dynamical system of equations. We analyzed

the fixed points of such a system and evaluated the conditions under which deceleration to late-time acceleration oc-

curs in this model. We note the similarity of the two models and show that our result is consistent with a previous

study on Einstein's gravity. We also investigated the phenomenological implications of our models by plotting EoS

(w), energy density (Q2), and deceleration parameter (¢) w.r.t. to e-fold time and comparing to the present value. We

conclude the paper by observing how the dynamical system analysis differs in the modified f(Q) gravity, and

present the future scope of our research.
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I. INTRODUCTION

After the discovery of cosmic microwave back-
ground (CMB) in 1965 [1], it became clear that our uni-
verse started in a very hot dense state referred to as "Hot
Big Bang" [2] and has evolved in its current form. This is
known as standard Big Bang theory of cosmology. After
the discovery of late-time acceleration [3, 4] and observa-
tion by the galaxy rotation curve, it has been clear that
there are other objects in our universe in addition to ba-
ryonic matter [5]. In the standard dark energy plus cold
dark matter (ACDM) paradigm, which is probably the
most successful theory about the current state of the uni-
verse, dark energy (responsible for late-time acceleration)
is employed as a cosmological constant A, and the dark
matter is set to be cold (nonradiative). Even though the
ACDM model is very successful with phenomenological
predictions and observational evidence, it has some
severe problems. One of the main problems is the nature
of dark energy. If we assume that the cosmological con-
stant (A) is solely responsible for dark energy, calcula-
tions by quantum field theory (QFT) show a discrepancy
on the order of 10'?° [6]. A natural manner to explain this
is by introducing the scalar field (quintessence field) [7],
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which can explain the very low current value of the cos-
mological constant. The scalar field also appears quite
naturally in the early inflation scenarios, which can natur-
ally explain the horizon problem, flatness problem, etc.

Even though the scalar field can explain both early in-
flation and late-time acceleration, the exact form or ori-
gin of the scalar field is unknown. There are many can-
didates for the origin of the inflation or quintessence
fields. In this study, we consider the Dirac-Born-Infeld
(DBI) model as the origin of the scalar field, which natur-
ally stems from the string theory. We also carried out a
dynamical system analysis in the flat Friedmann-
Lemaitre-Robertson-Walker (FLRW) background and
provide phenomenological predictions (evolution graph
of ¢, Q, w) based on a fixed point analysis.

The Einstein's general theory of relativity is not renor-
malizable in the context of quantum field theory. There
have been several attempts to find a renormalizable the-
ory of quantum gravity. The string theory offers such uni-
fication. Even in bosonic string theory, the quantization
of the Polyakov action (conformal transformation of
Nambu-Goto action) yields tachyon as a field, which
soon decays via spontaneous symmetry breaking [8, 9].
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For the first time, Mazumdar et al. [10] observed that the
decay of non-BPS D4 branes to stable D3 branes can lead
to a tachyon field, which can act as an inflation field in
the cosmological context. In 2002, a series of three pa-
pers by Sen [11-13] showed how, in the string theory, as
well as in the string field theory, tachyons naturally oc-
cur. The effective field of such tachyons can be regarded
as DBI scalar field [13].

Soon after these proposals, Padmanabhan [14] and
Gibbons [15] showed how these DBI-type fields could be
used in the FLRW background to provide an inflation
field-like behaviour. Alternative manners to obtain the
DBI field from other forms of string theory have been re-
viewed by Gibbons [16]. A study on the DBI field in the
late-time acceleration context has been carried out by
Bhagla et al. [17], while Gorini et al. [18] proposed an al-
ternative approach of visualizing the DBI field as a modi-
fied Chaplygin gas. Notably, the DBI field has been pro-
posed as an alternative to dark matter by Padmanabhan
[19], which shows that the DBI field could indeed affect
the late-time cosmology.

Copeland [20] and Aguirregabiria [21] studied, for
the first time, the DBI field in the dynamical system set-
ting. In this study, we are closely following the treatment
in [20]. Soon after that, Fang and Lu [22] considered a
considerably more general type of potential beyond the
inverse square potential. The study was later extended by
Quiros et al. [23] to include considerably more general
potentials. They also presented an exact treatment of the
sinh(¢) potential. Guo [24] has chosen an exponential po-
tential for a dynamical system analysis. We used it here
to obtain an autonomous dynamical system. Notably, Sil-
verstein and Tong [25] demonstrated that, if a D3-brane
is considered to move toward the horizon of the anti-de
Sitter (AdS) space, a generalized DBI field can be ob-
tained in a strong coupling limit (as opposed to a weak
coupling limit with which the previous study has been
performed). In the strong coupling limit, the DBI field
has additional contributions from the movement of the
D3-brane, and the Lagrangian becomes
(V 1+ f($)ag*> = 1)/ f(¢) - V().

The conventional concept of relativity, particularly
the general relativity, which interprets gravity as the
curvature of spacetime, may not provide a definitive solu-
tion to elucidate dark energy. This encourages the explor-
ation of alternative theoretical frameworks in cosmology
that can effectively address cosmic acceleration while re-
maining consistent with observational data. General re-
lativity and its curvature-based extensions have been for-
mulated and thoroughly examined [26, 27]. Recently, al-
ternative theories of gravitation based on a flat spacetime
geometry, relying solely on nonmetricity, have been es-
tablished and extensively explored [28, 29]. The f(Q)
gravity, with its various astrophysical and cosmological
implications, has been widely investigated [30—41]. In

LGDBI =

this article, we show that, even with the modified f(Q)
gravity, we obtain a similar type of late-time accelerating
behavior where ¢ is —1 as expected from the de-Sitter-
like expansion. Notably, in our investigation, the present
value of the deceleration parameter is around —0.8, which
is quite consistent with the observed value of —0.55.

We initiate our exploration by introducing a set of di-
mensionless variables that encapsulate the complete evol-
ution of the system's phase space. These variables facilit-
ate the transformation of the system's dynamics into an
autonomous structure, thereby enhancing our comprehen-
sion of the system's behavior. Several noteworthy find-
ings within the context of modified gravity utilizing the
dynamical system techniques have been reported
[42—47]. In this study, we use both DBI scalar field (for
the quintessence field) and f(Q) gravity to discuss the
late-time acceleration phase. We use the DBI field as a
quintessence field to explain the late-time acceleration,
which is reasonable as the inflationary field could indeed
be responsible for late-time acceleration [48, 49]. In addi-
tion, on those energy scales, it is reasonable to expect that
the f(Q) gravity would emerge as an effective field of
higher-order correction to graviton-graviton interactions
[50]. The general criterion for the DBI field to yield a de-
Sitter-like later-time acceleration is defined by the theor-
em of Hao[51] and Chingangbam [52]. This manuscript is
organized as follows. In section II, we present funda-
mentals of the f(Q) gravity formalism in the presence of
a scalar field, whereas motion equations corresponding to
flat space-time are presented in section III. In section IV,
we invoke the phase-space variables and perform the
complete dynamical system analysis for the exponential
and power-law potentials under the f(Q) gravity formal-
ism in the presence of the DBI scalar field. In section V,
we present the outcomes of our investigation.

II. f(0) GRAVITY IN THE PRESENCE OF A
SCALAR FIELD

The original version of the Einstein's equation using
the Riemannian geometry was written using the Levi-
Civita connection. However, it soon became apparent that
the connection in the Riemannian manifold could be
more general than just the Levi-Civita connection. A gen-
eral connection can be broken down into three different
parts: Levi-Civita, antisymmetric, and nonmetric. We
refer to the review article by Heisenberg [53] for more
details. In the most general form, the affine connection
can be written in the following form [54]:

T"W :F"W+K{LV+L‘LV. (D)

The first term, I'?,, denotes the Levi-Civita connec-

uvo
tion,
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(02 _1
re, =

= Eg(m(g/l/l,v + vy — guv,/l)' (2)

The second term, K¢, is a contortion tensor. The for-
mula can be written in the form of a torsion tensor

(T[LV = T(Lv - ‘Y'uw):
(3 l (04 (o3 (o3
KquE(TwJFTwJFTw)' 3)

The last term is known as distortion tensor. The for-
mula in the form of nonmetricity tensor is

a -
L, =

Q%W —=0.,- 0 4

N =

The expression of the nonmetricity tensor is

Qoz;w = Vozgyv = aozg/lv - Tﬁzmgﬁ" - Tﬂozvg#ﬁ' (5)

We define the superpotential tensor as

4PAuv = _Q/lyv+2Q(u/lv)+(QA_Qﬂ)gyv_ééle)» (6)

where Q,=Q,", and Q, = Q",, are nonmetricity vec-
tors. If we contract the nonmetricity tensor with the su-
perpotential tensor, we can obtain the nonmetricity scalar

©O):

Q = _Q/vaxlpv. (7)

The Riemann curvature tensor is
o4 _ 101 1% A
R,B#v = 28“,va + ZT[Pl/HTV]ﬂ' (8)
Using the affine connection (1), we obtain

_ &

104
R Puv

= « > @ a vP a vP
@ +V, X% =V, X0+ X0 X0, — X0 X0, (9)

ot vB vp

k%yv and V are described in terms of the Levi-Civita
connection (2). X9, =K, +L%,.1f we use the contrac-
tion on the Riemann curvature tensor using the torsion-
free constraint 7, = 0 in Eq. (9), we obtain

R=R-Q+V,(0"-0"). (10)

R is the usual Ricci scalar evaluated regarding the
Levi-Civita connection. We further use the teleparallel
constraint, i.e., R = 0. Using the teleparallel constraint, re-
lation (10) becomes

R=0-V,(0"-0"). (1

According to Eq. (11), the form of the Ricci scalar
(using the Levi-Civita connection) differs from the non-
metricity scalar (Q) by a total derivative. Using the gener-
alized Stoke's theorem, we can transform this total deriv-
ative into a boundary term. Thus, the Lagrangian density
changes by a boundary term, and Q is equivalent to R. Q
provides a comparable description of GR. As we have set
the torsion to zero, the theory is known as a symmetric
teleparallel equivalent to GR (STEGR) [35].

We propose a general form of STEGR theory in the
presence of a scalar field using a general form of f(Q) in
the Lagrangian:

1
S=/§f(Q)\/—_gd4X+/£¢ V=gd'x, (12)

where g =det(g,,), f(Q) is a function of nonmetricity
scalar O, and £, denotes the Lagrangian density of a
scalar field ¢ [55]:

1
qu = _5 at y¢av¢_ V(¢) (13)

V(¢) is the potential for the scalar field. By varying
the above action (12) with respect to the metric, we ob-
tain the following field equation:

2 1
\/_—gv/l( V_ngP/lpv)"' Eg,uvf
+fQ(P/MﬁQV » zQﬂByP/w v) = _TZ)V' (14)

d
fo= é and T}, is the energy-momentum tensor of the

scalar field:

1
T;fv = au¢av¢ - Eguvgaﬁaa(ﬁaggb —8uv V(¢) (1 5)

The scalar field satisfies the Klein-Gordon equation,
which can be obtained by varying the action (13) with re-
spect to ¢. The Klein-Gordon equation for the scalar field
is

0¢—V,;=0. (16)

v
ioN

By varying the action (13) with respect to the connec-
tion (in the framework of Palatini formulation), we obtain

o denotes the d'Alembertian and V,g=
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Vuvv( \/:ngPHVﬂ) = O (17)

III. EQUATIONS OF MOTION

In this article, we assume that our universe is homo-
geneous and isotropic, which is evident from the large
galaxy survey [56]. An observation [5] suggests that the
universe is also flat to a very good approximation. Thus,
the line element of our interest is expressed by the FLRW
metric. For a homogeneous and isotropic Riemannian
manifold, the FLRW metric is a unique metric [57]. Thus,
we consider the standard FLRW metric expressed by

ds* = —dF* + a*(H[dx* + dy* +d2?]. (18)

a(t) is the scale factor of the universe's expansion. In the
teleparallel consideration, we employ the constraint cor-
responding to the flat geometry of a pure inertial connec-
tion. We use a gauge transformation expressed by A}
[32] to obtain

19, = (A™)%0N). (19)

We can also express the general affine connection as
a general element of GL(4,R) can be characterized by
transformation A, = d,{", where {“ is an arbitrary vector
field,

axa
o _ 77 P
1, = 5 0,0,0". (20)

Owing to gauge redundancy, we can eliminate the
connection (20) via a suitable coordinate transformation.
Such a coordinate transformation is often referred to as
"gauge coincident". Using the coincident gauge, we can
calculate the on-metricity scalar corresponding to the
metric (18), QO = 6H>.

The energy-momentum tensor for a perfect fluid dis-
tribution is

T,y = (o + pluyit, + pguy, 2D

where we set u* =(-1,0,0,0) as the components of the
four velocities. The comparison of Egs. (21) and (15)
shows that

1
P ==58x0"09 9+ V(®), (22)

1
P ==58p0"69$ = V(@). (23)

As GR does not depend on the coordinate choice, we
obtain the following expressions for the pressure (p4) and
energy density (p,) for the scalar field:

1.
Py = §¢2 +V(¢), (24)

1.
ps =54 =V(9), (25)

while the corresponding equation of state parameter can
be written as

1.,
_pe_ ¥V

: . (26)
be FH V@)

Wy

In the FLRW (18) background, the Klein-Gordon
equation (Eq. (16)) has the following form:

$+3Hp+V,=0. 27

According to the field equation (Eq. (14)) in the
FLRW background, in the presence of a scalar field, we
obtain the following Friendman-like equations:

(S
3H2_2fQ( p¢+2), (28)
i > fo,, 1 f

We set the f(Q) functional as f(Q)=-Q+¥(Q) (we
can obtain the ordinary GR by setting ¥ = 0). We can re-
write the Friedmann equations (Egs. (28) and (29)) as

3H = Py + Pues (30)

. 1
H=—§[P¢+P¢+,0de+l7¢1e]7 (€29)]

where p,. and p,. represent the energy density and pres-
sure of the dark energy component, respectively, which
contributes via the geometry of the spacetime,

¥
Pde = ) + 0¥, (32)

Pae = —pae—2H (Yo +20%00) - (33)
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IV. DYNAMICAL SYSTEM ANALYSIS

One of the main challenges of using string theory in
cosmology directly is the so-called no-go theorem [51,
52], for wrapped products by compactification of the ex-
tra dimensions. According to the equations below the dy-
namical system equations, it is not closed for the general-
ized DBI field but is closed for an ordinary DBI. We also
have compactified the phase space (4 axis) by Eq. (56).
By compactification, we have drawn the three-dimension-
al (3D) phase space in Fig. 1.

Sen [11-13] predicted tachyon fields in both open
and closed string theories. The open and closed string
theories are presented in [9]. Even though for the closed
string theory the tachyon fields are projected out in an
open string, they remain. Even though we can use a spon-
taneous symmetry-breaking argument to get rid of tachy-
on modes, we can still fully explain the reason for their
existence. In the bosonic string theory, if we use the
Nambu-Goto action, it is almost impossible to quantize.
To obtain meaningful quantization rules, we have to in-
voke the conformal invariant Polyakov action. Using the
conformal field theory techniques, we can quantize such
an action, which leads to the undesirable tachyon modes.
Even though they violate the casualty, it can be shown

that they are unstable. Thus, tachyon modes are typically
expressed by a DBI Lagrangian,

-[:Tachyon = V(¢) V 1 +3¢2’ (34)

where d¢* = 3¢9, ¢, V(¢) is a potential function for the
scalar field, and 3"¢d,¢ denotes the kinetic term for ta-
chyon fields.

Using the Lagrangian, we can find the field equation
for the tachyon field from the Euler-Lagrangian equation:

¢ by Vo _
1_¢2+3H¢+ v =0. (35

This is the modified Klein-Gordon equation for the
DBI field.

The Friedmann equations (Egs. (30) and (31)) be-
come

3H® = PpBI t Pde> (36)

. 1
H= _E[pDBI + PoBI + Pde + Pael- (37)

Fig. 1.

0.0
0.0
(color online) 3D phase-space trajectories plotted for a set of solutions to the autonomous system presented in Egs. (51)—(53)
corresponding to the exponential potential.
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Notably, for such cases, the energy density (ppg;) and
pressure (ppg;) are expressed by

Vv
PDBI = \/ﬁ’ (38)
pos ==V /1 -¢2, (39)
and thus the equation of state (wpg;) is
WpBI = Pret = fZ’Z - L (40)

PDBI

We construct the autonomous dynamical system as
follows. We can define the variables as x=¢ and y=

VvV 1%
2w 2 _ 7 2 _ _ Pde
7\/§H’ and thus x* =¢*, ¥ 3 and s*=Q = ik
Eq. (36) becomes
2
£=1- 1y—x2' (41)

To form the dynamical system, it is more convenient
to take the “e-folding” timing defined as N =1na. Thus,
d

d
in —=H—.
we obtain ar aN

) L, 9
As x=¢ we can write X' = q (where s denotes the

derivative with respect to the “e-folding” time and ‘de-
notes the derivative with respect to the ordinary time).
Utilizing this expressions in the Klein-Gordon equation
for the DBI field in Eq. (35), we obtain

$=(1-x)[AV? -3Hx]. (42)

Vv
We defined the variable 1 as 4= —7’5. Using Eq. (42)

v .
and y = BH in expression X’ = %, we obtain

X = (2= 1D)Bx— V3y). (43)

Further, by differentiating the variable y w.r.t e-fold-
ing time N, we obtain

, 1 H
y =—§y[\/§/lxy+2ﬁ]. (44)
By utilizing Egs. (32)—(33) and (38)—(39) in Eq. (37),

we obtain

H 3x%y?

— = . 45
H>  2\1—x2[Wy+20%p0 - 1] (5
Hence, Eq. (44) becomes
1 3x%y?
‘= ——y[V3Axy + 1. 46
YT Y VI—22[Wy+20%,p - 1] 9

To obtain the closed form of variable A, we define an-

V'V
Vs
able 4 w.r.t e-folding time N with the quantity I', we ob-

tain

other quantity " as I' = . By differentiating the vari-

A= \/gxy/lz[% -T1. (47)

In our analysis, we consider the cosmological model
f(OQ)=-0+¥Y(Q)=-0+aQ" thathas a high signific-
ance. A power-law correction to the STEGR leads to
branches of solution applicable either to the early uni-
verse or to late-time cosmic acceleration. The model
characterized by value n <1 can describe the late-time
cosmology, potentially influencing the emergence of dark
energy, whereas the model characterized by value n> 1
can describe the early universe phenomenon [32].
Moreover, case =0, ie,¥=0= f(Q)=-0 recovers
the GR.

Using W(Q)=aQ", we obtain (Pp+2Q%pp—1)=
@2n—-1anQ" ' -1.

Y
Moreover, s* = (—5 +0%) =(2n—-1aQ"" Thus,

3H?
[¥o+20%00 — 1] =ns*— 1. Therefore, Egs. (45) and (46)

become
. 2,2
= = Sy , (48)
H>  [(n-1)V1-x2-ny?]
1 3x%y?
==y | V3Axy+ : 49
Y==3y y DV -] (49)

A. Exponential potential

The exponential potential in the DBI field can arise
as, if we consider the dark matter with the phantom field
(which can naturally arise from the string theory) and ap-
ply the fact in the present epoch, the dark matter energy
density and phantom energy density are comparable (co-
incidence problem). This would lead to an exponential
potential [24].

Therefore, we consider the following form of the ex-
ponential potential,
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V() = Voe ™. (50)
, ‘ . . Vs
For this choice of potential, we obtain 4= 7] =
2
r=Wee _,
Ve P and I = vz oo

Therefore, the co’?nplete autonomous form of dynam-
ical equations (Egs. (43), (47), and (49)) can be ex-
pressed as

X = (- 1)Bx— V31y), (51)
1 3x%y?

F = ——y[V32 , 52

Y=l xy+[(n_l)m_ny2]] (52)

A= ?xy/lz. (53)

Utilizing Eq. (48) and definition of deceleration para-
H

meter ¢ =—1 we obtain the following expression

~
corresponding to model parameter n = —1,
3.X2y2
g=-1-——2 (54)
2Vl —x2+y?
and the effective equation of state parameter is
Deft _ PDBI * Pde
W =Wiotal = =
Peft  PDBI T Pde
2H 2x%y?
el e —— (55)
3H “2V1—-x2+y?

We present the critical points and their behaviour (Ta-
ble 1) for the autonomous system presented in Egs.
(51)—(53) corresponding to model parameter n = —1.

As A can have any value and is an even function (as
the equation remains the same when A — —1), we can
consider the physical region of the given dynamical sys-
tem as the positive half cylinder with infinite length from
A=0 to A =+c0. Hence, we compactify the variable by
defining phase-space variable z [55],

A z
-2 1= = 56
Lo v 1—z (56)

The evolutionary trajectories of the autonomous sys-
tem presented in Egs. (51)—(53) utilizing the above com-
pactified variable are presented in Fig. 1.

The evolutionary profiles of scalar field density, dark
energy density, deceleration, and equation of state para-
meter for the exponential potential are presented in Fig. 2.

We employed the entire plot in the In(a) axis (Fig. 2).
The present value of the scale factor is set to a=1, i.e.,
N=In(1)=0 is the present time. Further, a<1, ie,
N =1In(a) <0 represents distant past, whereas a > 1, i.e,
N =In(a) > 0 represents distant future.

1. Limit point analysis for (x1,0,1)

For the critical point A(1,0,1) (obtained in Table 1), ¢
exhibits an undefined form (see Eq. (54)). Thus, we are
circumventing the problem by employing the appropriate
limit of that fixed point.

We first set x=1-¢ and y=e in Eq. (48) (for the
n=-1 case) where €, >0 When we set €, — 0 we
recover the original fixed points,

H 3(1—¢)%€ 3(1-¢)?
2__ (I-€)e = (I-€) G
H> &-2.,/2¢ —€ 6 €
1-2 25 -—
6 &

€ 1-—x
If we set the limit such that ETI‘ -1 je., 7 —1,as
2

€ .
i 0 we obtain
2

H 3
= ~-1.64 < -1 (58)
H*> 1-242
Hence,
H
q=- —ﬁz.64. (59)

Notably, for a matter-dominated universe (a=17),
¢ =0.5. Our limit along that particular trajectory when
I-x
— — | leads to 0.64, which is quite consistent with the

observation from the matter-dominated to the late-time
acceleration phase.
In th limit, 0= —1— 20
n the same limit, w = - 1- —F——=—
) —2V1-x2+y?
The deceleration parameter has a crucial role to de-

~ 0.09.

Table 1. Critical points and their behaviour corresponding
to model parameter n = —1 and potential V(¢) = Voe#.

Critical points Eigenvalues Nature of
(XesYeZe) (A1, A, A3) critical point 1 @
0(0,0,0) (=3,0,0) Nonhyperbolic(stable) -1 -1
A(1,0,4) (6,0,0) Nonhyperbolic -1 -1
B(-1,0,2) (6,0,0) Nonhyperbolic -1 -1
C(0,y,0) (=3,0,0) Nonhyperbolic(stable) -1 -1
D(0,0,2) (=3,0,0) Nonhyperbolic(stable) -1 -1
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1.0- 1

0.8

0.6 1

0.4 1

0.2 1

0.0- i

N=In(a)

Fig. 2.
for the exponential potential in the DBI scalar field.

scribe the expansion phase of the universe. ¢ <0 depicts
the accelerating behaviour whereas the transition from the
acceleration phase to the deceleration phase corresponds
to ¢ > 0. Thus,

H 3
>0 == —<-1== —>1
H? €] Ez
2 25 -5~
& &
6 € € —x
— 2> -3 =225 =22 YL
€& & € y
(60)

In the above equations, we used x — 1 and y — 0. The
equality is valid when a « ¢.

1
Similarly, criterion (60) leads to w > 3 In addition,

for an arbitrary n, criterion (60) for the transition from the
acceleration phase to the deceleration phase becomes
1-x 8 H 3

¥ < (=np' H 1-2v3 leads tzo acctPF & 060
For a matter-dominated universe, a o 5 =~ (%% Similarly,
for the case of B(—1,0,1) we can obtain identical expres-
sions with similar expressions for g and w, as the previ-
ous, with ¢, = x+1 (x> —1 and near (-1,0,0)).

According to Fig. 3, we obtain a two-dimensional
(2D) phase portrait for x =1, according to the corres-
ponding eigenvalue for the critical point A(1,0,1). Ac-
cording to its nature, it is unstable, and g=-1 and
w = —1. Thus, it yields de Sitter-type solutions. There is a
general theorem [51] and [52] that the type of potential
with a well-defined minimum would always lead to de-
Sitter-type solutions. We can verify this to some extent,
as the assertion is valid even in a modified f(Q) gravity.

B. Power-law potential

In this subsection, we use the power-law potential, as
it most naturally provides global attractor solutions [20].
These solutions are stable under perturbation [22]. We as-

0.0/
~0.5) ]
1.0 ’

— Whtot. |

-4 -2 0 2 4 6
N=In(a)

(color online) Evolutionary profiles of scalar field density, dark energy density, deceleration, and equation of state parameter

sume the following form of power-law potential,

V(g) = Vop ™. (61)

\%
For this choice of potential, we obtain 4= —V—’f =
2
Voke ™! _k
Voot (Vop ™2 Vo

2
In particular, for k =2 we obtain 1= —.

¢7rs,

Further, the quantity I for the consideré)d power-law
Vi _kt1
V2 k
Therefore, the complete autonomous form of dynam-
ical equations (Egs. (43), (47), and (49)) for the power-
law potential becomes

potential becomes I' =

X = (2= 1DBx— V3ay), (62)
’ 1 2 \/_ 3x2y

=——y’[V34 , 63
yevd xy+[(n—l)M—ny2]] ©)
- VBk-2) .,
V===l (64)

We present the critical points and their behaviour (Ta-
ble 2) for the autonomous system presented in Egs.
(62)—(64) corresponding to the model parameter n = —1.

Notably, the dynamical equations presented for the
power-law case in Egs. (62)—(64) are identical to those
presented for the exponential case in Egs. (51)—(53).
They differ only by a constant in the A’ equation. Hence,
the further analyses, i.e., evolutionary trajectories, are
identical.

In particular, for case k=2, the power-law case in
Egs. (62)—(64) differs from the exponential as it reduces
to the following 2D dynamical system, as, for k=2 we
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Fig. 3. (color online) 2D phase portrait for the x=1,—1 and xy planes. Even though the critical points are nonhyperbolic, we can em-

ploy particular limits to observe the matter-dominated to de Sitter transition.

obtain A’ = 0.
X = (%= 1)(3x—2V3y), (65)
1, 3x%y
"= —y’[2V3 . 66
Yi==2yl w+[(n_l)m_ny2]] (66)

Notably, it is not surprising [22] that k =2 indeed has
a scale-invariant property, which forces a 2D dynamical
system of equations. Here, without loss of generality, we

assume V=1 and hence 4= =2, We present the

Wo
critical points and their behaviour (see Table 3) for the
autonomous system presented in Eqgs. (65) and (66) cor-
responding to model parameter n = —1.

The evolutionary trajectories of the autonomous sys-
tem presented in Eqs. (65) and (66) are presented in Fig.
4.

According to the phase-space trajectories obtained in
Fig. 4, the solution trajectory indicates the evolution from
the saddle point A” representing a matter-like behavior to
the stable point O” representing the de-Sitter-type accel-
erated expansion phase, which is consistent with the ana-
lysis by Copeland et al. [20].

Table 2.
to model parameter n=-1 and potential V(¢)= Vop~* with
k#2.

Critical points and their behaviour corresponding

Critical points

Eigenvalues

V. CONCLUSION

In this study, we investigated the DBI scalar field (the
corresponding Lagrangian density is presented in Eq.
(34)) and its effect on cosmology via a dynamical system
analysis. The corresponding Klein-Gordon equation with
Friedmann-like equations under the f(Q) gravity formal-
ism are presented in Egs. (35), (36), and (37). For our
analysis, we considered the cosmological model f(Q)=
-0+Y(Q)=-0+aQ" which is essentially a power-law
correction to the STEGR case, which leads to branches of
solution applicable either to the early universe or to late-
time cosmic acceleration. The model characterized by
n < 1 can describe late-time cosmology, potentially influ-
encing the emergence of dark energy, whereas the model
characterized by n>1 can describe the early universe
phenomenon [32]. We obtained a set of dynamical equa-
tions, i.e., Egs. (43), (47), and (49), corresponding to the
choice of our f(Q) function. Further, to obtain the closed
form (i.e., autonomous form) of the system, we investig-
ated two specific forms of the potential function, the ex-
ponential V(¢) = Voe? and power-law V(¢) = Voo %,
which have been extensively studied in the GR context.
We obtained the corresponding autonomous systems
presented in Egs. (51)—(53) and Egs. (62)—(64). Their sta-
bility analysis is presented in Table 1 and Table 2.
Moreover, the 3D phase-space trajectories of the
autonomous system corresponding to the exponential po-
tential are presented in Fig. 1. The behaviors of cosmolo-

Table 3. Critical points and their behaviour corresponding
to model parameter n=-1 with potential V(¢)=Vop~* with
k=2and Vo=1.

Nature of critical point q w
(XesYer2e) (A1, A2, A3)
Stable (NH) for A <0 and
0'(0,0,1) -3,432,0 -1 -1
(-3, V34,0 saddle for 1 >0
A’(x,y,0) (-3,0,0) Nonhyperbolic (stable) -1 -1
B’(0,y,0) (-3,0,0) Nonhyperbolic (stable) -1 -1

Critical points (x.,y.)  Nature of critical point q ®
0"(0,0) Stable -1 _1
A" (0.806,0.698) Saddle 0.362 —-0.092
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Fig. 4.
tential when k = 2.

(color online) 2D phase portrait for a polynomial po-

gical parameters such as deceleration, energy density, and
effective equation of state parameter are presented in Fig.
2. The autonomous system equations presented for the
power-law case in Eqs. (62)—(64) are identical to those
presented for the exponential case in Eqs. (51)—(53); they
differ only by a constant in the A’ equation. Hence, the
further analyses, i.e., the evolutionary trajectories, are
identical. Our fixed points have a late-time de-Sitter-type
solution, as expected from the general theorem by Hao et
al. [51] and Chingangbam et al. [52] about the sufficient
condition for a de-Sitter-type solution. Further, we ana-
lyzed the fixed point (+1,0, 1) to show the transition from
matter-dominated to de-Sitter-type solutions. In addition,

we found the necessary and sufficient condition for the

fixed points (£1,0,1) to show a matter-dominated phase

X
Qi < . o
to de-Sitter phase, v S{<np (in the limit x — 1 and

y — 0) corresponding to the generic model parameter, .
For the other fixed point (-1,0, 1), we obtain similar res-
ults. In addition, we plotted the 2D phase portrait in Fig.
3 for the x=1,-1 and xy planes, which shows that, even
though the critical points are nonhyperbolic, we can em-
ploy particular limits to observe the matter-dominated to
de-Sitter transition. In addition, in the current time
(N =0), we obtained g ~ —0.8 which is, to some extent,
consistent with the present observed value (—0.55). The
discrepancy in g occurs as there is no dark matter or or-
dinary matter in our calculations. Further, the power-law
potential case for k =2 is different from the exponential,
as k=2 yields A’ =0, which provides a 2D autonomous
system presented in Egs. (65) and (66). The correspond-
ing stability analysis and phase portrait are presented in
Table 3 and Fig. 4. Moreover, case k =2 matches those in
the previous detailed studies [17, 20]. Thus, we success-
fully described the late-time epochs of the universe, par-
ticularly the de-Sitter expansion, and observed a trans-
ition epoch along with effects of the DBI field under the
modified f(Q) cosmology.

DATA AVAILABILITY

There are no new data associated with this article.

ACKNOWLEDGMENTS

We thank the referee and editor for the valuable com-
ments, which significantly improved our manuscript in
terms of research quality and presentation.

References

[1T  A. A. Penzias, R. W. Wilson, ApJ 142, 419 (1965)
[2] R. A. Alpher, H. Bethe, and G. Gamow, Phys. Rev. 73, 803
(1948)
[31 A.G.Riess et al., Astron. J. 116, 1009 (1998)
[4]  S. Perlmutter et al., ApJ 517, 565 (1999)
[5] Planck Collaboration, A& A 641 A(6), 1 (2020)
[6] S. Weinberg, Rev. Mod. Phys. 61(1), 1 (1989)
[71 S.M. Carroll, Phys. Rev. Lett. 81, 3067 (1998)
[8] Green Schwarz, Superstring  Theory
Cambridge University Press, 1988)
[91 1. Polchinski, String Theory (Cambridge: Cambridge
University Press , 2005)
[10] A. Mazumdar, S. Panda and A. Perez-Lorenzana, Nuclear
Physics B 614, 101 (2001)
[11]  A. Sen, Modern Physics Letters A 17, 1797 (2002)
[12]  A. Sen, JHEP 04, 048 (2002)
[13] A. Sen, JHEP 07, 065 (2002)
[14] T.Padmanabhan ef al., Phys.Rev. D 66, 021301 (2002)

(Cambridge:

[25
[26

E. Silverstein, D. Tong, Phys.Rev. D 70, 103505 (2004)

CANTATA  collaboration, Modified Gravity and

Cosmology: An Update by the CANTATA Network,

arXiv:2105.12582

[27]  Timothy Clifton et al., Physics Reports 513, 1 (2012)

[28] J. M. Nester and H.-J. Yo, Chin. J. Phys. 37, 113 (1999)

[29] J.B. Jimenez, L. Heisenberg and T. Koivisto, Phys. Rev. D
98, 044048 (2018)

[30] M. Hohmann et al., Phys. Rev. D 99, 024009 (2019)

[31] F.D Ambrosio et al., Phys. Rev. D 105, 024042 (2022)

[15] G. W. Gibbons, Phys. Lett. B 537, 1 (2002)
[16] G. W. Gibbons, Class.Quant.Grav. 20, S321 (2003)
[17] J. Bhagla et al., Phys.Rev. D 67, 063504 (2003)
[18] V. Gorini et al., Phys.Rev. D 69, 123512 (2004)
[19] T. Padmanabhan et al., Phys.Rev. D 66, 081301 (2002)
[20] E.J. Copeland et al., Phys.Rev. D 71, 043003 (2005)
[21]  Aguirregabiria et al., Phys.Rev. D 69, 123502 (2004)
[22] W.Fang, H. Q. Lu, Eur. Phys. J C 68, 567 (2010)
[23]  Quiros et al., Class.Quant.Grav. 27, 215021 (2010)
[24] Z.K. Guo et al., Phys.Rev. D 71, 023501 (2005)

]

]

095102-10


https://doi.org/10.1086/148307
https://doi.org/10.1086/148307
https://doi.org/10.1086/148307
https://doi.org/10.1086/148307
https://doi.org/10.1086/148307
https://doi.org/10.1086/148307
https://doi.org/10.1086/148307
https://doi.org/10.1086/148307
https://doi.org/10.1086/148307
https://doi.org/10.1086/148307
https://doi.org/10.1103/PhysRev.73.803
https://doi.org/10.1103/PhysRev.73.803
https://doi.org/10.1103/PhysRev.73.803
https://doi.org/10.1103/PhysRev.73.803
https://doi.org/10.1103/PhysRev.73.803
https://doi.org/10.1103/PhysRev.73.803
https://doi.org/10.1103/PhysRev.73.803
https://doi.org/10.1103/PhysRev.73.803
https://doi.org/10.1103/PhysRev.73.803
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/PhysRevLett.81.3067
https://doi.org/10.1103/PhysRevLett.81.3067
https://doi.org/10.1103/PhysRevLett.81.3067
https://doi.org/10.1103/PhysRevLett.81.3067
https://doi.org/10.1103/PhysRevLett.81.3067
https://doi.org/10.1103/PhysRevLett.81.3067
https://doi.org/10.1103/PhysRevLett.81.3067
https://doi.org/10.1103/PhysRevLett.81.3067
https://doi.org/10.1103/PhysRevLett.81.3067
https://doi.org/10.1103/PhysRevLett.81.3067
https://doi.org/10.1016/S0550-3213(01)00410-2
https://doi.org/10.1016/S0550-3213(01)00410-2
https://doi.org/10.1016/S0550-3213(01)00410-2
https://doi.org/10.1016/S0550-3213(01)00410-2
https://doi.org/10.1016/S0550-3213(01)00410-2
https://doi.org/10.1016/S0550-3213(01)00410-2
https://doi.org/10.1016/S0550-3213(01)00410-2
https://doi.org/10.1016/S0550-3213(01)00410-2
https://doi.org/10.1016/S0550-3213(01)00410-2
https://doi.org/10.1016/S0550-3213(01)00410-2
https://doi.org/10.1016/S0550-3213(01)00410-2
https://doi.org/10.1142/S0217732302008071
https://doi.org/10.1142/S0217732302008071
https://doi.org/10.1142/S0217732302008071
https://doi.org/10.1142/S0217732302008071
https://doi.org/10.1142/S0217732302008071
https://doi.org/10.1142/S0217732302008071
https://doi.org/10.1142/S0217732302008071
https://doi.org/10.1142/S0217732302008071
https://doi.org/10.1142/S0217732302008071
https://doi.org/10.1142/S0217732302008071
https://doi.org/10.1088/1126-6708/2002/04/048
https://doi.org/10.1088/1126-6708/2002/04/048
https://doi.org/10.1088/1126-6708/2002/04/048
https://doi.org/10.1088/1126-6708/2002/04/048
https://doi.org/10.1088/1126-6708/2002/04/048
https://doi.org/10.1088/1126-6708/2002/04/048
https://doi.org/10.1088/1126-6708/2002/04/048
https://doi.org/10.1088/1126-6708/2002/04/048
https://doi.org/10.1088/1126-6708/2002/04/048
https://doi.org/10.1088/1126-6708/2002/04/048
https://doi.org/10.1088/1126-6708/2002/07/065
https://doi.org/10.1088/1126-6708/2002/07/065
https://doi.org/10.1088/1126-6708/2002/07/065
https://doi.org/10.1088/1126-6708/2002/07/065
https://doi.org/10.1088/1126-6708/2002/07/065
https://doi.org/10.1088/1126-6708/2002/07/065
https://doi.org/10.1088/1126-6708/2002/07/065
https://doi.org/10.1088/1126-6708/2002/07/065
https://doi.org/10.1088/1126-6708/2002/07/065
https://doi.org/10.1088/1126-6708/2002/07/065
https://doi.org/10.1103/PhysRevD.66.021301
https://doi.org/10.1103/PhysRevD.66.021301
https://doi.org/10.1103/PhysRevD.66.021301
https://doi.org/10.1103/PhysRevD.66.021301
https://doi.org/10.1103/PhysRevD.66.021301
https://doi.org/10.1103/PhysRevD.66.021301
https://doi.org/10.1103/PhysRevD.66.021301
https://doi.org/10.1103/PhysRevD.66.021301
https://doi.org/10.1103/PhysRevD.66.021301
https://doi.org/10.1103/PhysRevD.66.021301
https://doi.org/10.1016/S0370-2693(02)01881-6
https://doi.org/10.1016/S0370-2693(02)01881-6
https://doi.org/10.1016/S0370-2693(02)01881-6
https://doi.org/10.1016/S0370-2693(02)01881-6
https://doi.org/10.1016/S0370-2693(02)01881-6
https://doi.org/10.1016/S0370-2693(02)01881-6
https://doi.org/10.1016/S0370-2693(02)01881-6
https://doi.org/10.1016/S0370-2693(02)01881-6
https://doi.org/10.1016/S0370-2693(02)01881-6
https://doi.org/10.1016/S0370-2693(02)01881-6
https://doi.org/10.1088/0264-9381/20/12/301
https://doi.org/10.1088/0264-9381/20/12/301
https://doi.org/10.1088/0264-9381/20/12/301
https://doi.org/10.1088/0264-9381/20/12/301
https://doi.org/10.1088/0264-9381/20/12/301
https://doi.org/10.1088/0264-9381/20/12/301
https://doi.org/10.1088/0264-9381/20/12/301
https://doi.org/10.1088/0264-9381/20/12/301
https://doi.org/10.1088/0264-9381/20/12/301
https://doi.org/10.1088/0264-9381/20/12/301
https://doi.org/10.1103/PhysRevD.67.063504
https://doi.org/10.1103/PhysRevD.67.063504
https://doi.org/10.1103/PhysRevD.67.063504
https://doi.org/10.1103/PhysRevD.67.063504
https://doi.org/10.1103/PhysRevD.67.063504
https://doi.org/10.1103/PhysRevD.67.063504
https://doi.org/10.1103/PhysRevD.67.063504
https://doi.org/10.1103/PhysRevD.67.063504
https://doi.org/10.1103/PhysRevD.67.063504
https://doi.org/10.1103/PhysRevD.67.063504
https://doi.org/10.1103/PhysRevD.69.123512
https://doi.org/10.1103/PhysRevD.69.123512
https://doi.org/10.1103/PhysRevD.69.123512
https://doi.org/10.1103/PhysRevD.69.123512
https://doi.org/10.1103/PhysRevD.69.123512
https://doi.org/10.1103/PhysRevD.69.123512
https://doi.org/10.1103/PhysRevD.69.123512
https://doi.org/10.1103/PhysRevD.69.123512
https://doi.org/10.1103/PhysRevD.69.123512
https://doi.org/10.1103/PhysRevD.69.123512
https://doi.org/10.1103/PhysRevD.66.081301
https://doi.org/10.1103/PhysRevD.66.081301
https://doi.org/10.1103/PhysRevD.66.081301
https://doi.org/10.1103/PhysRevD.66.081301
https://doi.org/10.1103/PhysRevD.66.081301
https://doi.org/10.1103/PhysRevD.66.081301
https://doi.org/10.1103/PhysRevD.66.081301
https://doi.org/10.1103/PhysRevD.66.081301
https://doi.org/10.1103/PhysRevD.66.081301
https://doi.org/10.1103/PhysRevD.66.081301
https://doi.org/10.1103/PhysRevD.71.043003
https://doi.org/10.1103/PhysRevD.71.043003
https://doi.org/10.1103/PhysRevD.71.043003
https://doi.org/10.1103/PhysRevD.71.043003
https://doi.org/10.1103/PhysRevD.71.043003
https://doi.org/10.1103/PhysRevD.71.043003
https://doi.org/10.1103/PhysRevD.71.043003
https://doi.org/10.1103/PhysRevD.71.043003
https://doi.org/10.1103/PhysRevD.71.043003
https://doi.org/10.1103/PhysRevD.71.043003
https://doi.org/10.1103/PhysRevD.69.123502
https://doi.org/10.1103/PhysRevD.69.123502
https://doi.org/10.1103/PhysRevD.69.123502
https://doi.org/10.1103/PhysRevD.69.123502
https://doi.org/10.1103/PhysRevD.69.123502
https://doi.org/10.1103/PhysRevD.69.123502
https://doi.org/10.1103/PhysRevD.69.123502
https://doi.org/10.1103/PhysRevD.69.123502
https://doi.org/10.1103/PhysRevD.69.123502
https://doi.org/10.1103/PhysRevD.69.123502
https://doi.org/10.1140/epjc/s10052-010-1352-0
https://doi.org/10.1140/epjc/s10052-010-1352-0
https://doi.org/10.1140/epjc/s10052-010-1352-0
https://doi.org/10.1140/epjc/s10052-010-1352-0
https://doi.org/10.1140/epjc/s10052-010-1352-0
https://doi.org/10.1140/epjc/s10052-010-1352-0
https://doi.org/10.1140/epjc/s10052-010-1352-0
https://doi.org/10.1140/epjc/s10052-010-1352-0
https://doi.org/10.1140/epjc/s10052-010-1352-0
https://doi.org/10.1140/epjc/s10052-010-1352-0
https://doi.org/10.1088/0264-9381/27/21/215021
https://doi.org/10.1088/0264-9381/27/21/215021
https://doi.org/10.1088/0264-9381/27/21/215021
https://doi.org/10.1088/0264-9381/27/21/215021
https://doi.org/10.1088/0264-9381/27/21/215021
https://doi.org/10.1088/0264-9381/27/21/215021
https://doi.org/10.1088/0264-9381/27/21/215021
https://doi.org/10.1088/0264-9381/27/21/215021
https://doi.org/10.1088/0264-9381/27/21/215021
https://doi.org/10.1088/0264-9381/27/21/215021
https://doi.org/10.1103/PhysRevD.71.023501
https://doi.org/10.1103/PhysRevD.71.023501
https://doi.org/10.1103/PhysRevD.71.023501
https://doi.org/10.1103/PhysRevD.71.023501
https://doi.org/10.1103/PhysRevD.71.023501
https://doi.org/10.1103/PhysRevD.71.023501
https://doi.org/10.1103/PhysRevD.71.023501
https://doi.org/10.1103/PhysRevD.71.023501
https://doi.org/10.1103/PhysRevD.71.023501
https://doi.org/10.1103/PhysRevD.71.023501
https://doi.org/10.1103/PhysRevD.70.103505
https://doi.org/10.1103/PhysRevD.70.103505
https://doi.org/10.1103/PhysRevD.70.103505
https://doi.org/10.1103/PhysRevD.70.103505
https://doi.org/10.1103/PhysRevD.70.103505
https://doi.org/10.1103/PhysRevD.70.103505
https://doi.org/10.1103/PhysRevD.70.103505
https://doi.org/10.1103/PhysRevD.70.103505
https://doi.org/10.1103/PhysRevD.70.103505
https://doi.org/10.1103/PhysRevD.70.103505
https://arxiv.org/abs/
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.48550/arXiv.gr-qc/9809049
https://doi.org/10.48550/arXiv.gr-qc/9809049
https://doi.org/10.48550/arXiv.gr-qc/9809049
https://doi.org/10.48550/arXiv.gr-qc/9809049
https://doi.org/10.48550/arXiv.gr-qc/9809049
https://doi.org/10.48550/arXiv.gr-qc/9809049
https://doi.org/10.48550/arXiv.gr-qc/9809049
https://doi.org/10.48550/arXiv.gr-qc/9809049
https://doi.org/10.48550/arXiv.gr-qc/9809049
https://doi.org/10.48550/arXiv.gr-qc/9809049
https://doi.org/10.1103/PhysRevD.98.044048
https://doi.org/10.1103/PhysRevD.98.044048
https://doi.org/10.1103/PhysRevD.98.044048
https://doi.org/10.1103/PhysRevD.98.044048
https://doi.org/10.1103/PhysRevD.98.044048
https://doi.org/10.1103/PhysRevD.98.044048
https://doi.org/10.1103/PhysRevD.98.044048
https://doi.org/10.1103/PhysRevD.98.044048
https://doi.org/10.1103/PhysRevD.98.044048
https://doi.org/10.1103/PhysRevD.99.024009
https://doi.org/10.1103/PhysRevD.99.024009
https://doi.org/10.1103/PhysRevD.99.024009
https://doi.org/10.1103/PhysRevD.99.024009
https://doi.org/10.1103/PhysRevD.99.024009
https://doi.org/10.1103/PhysRevD.99.024009
https://doi.org/10.1103/PhysRevD.99.024009
https://doi.org/10.1103/PhysRevD.99.024009
https://doi.org/10.1103/PhysRevD.99.024009
https://doi.org/10.1103/PhysRevD.99.024009
https://doi.org/10.1103/PhysRevD.105.024042
https://doi.org/10.1103/PhysRevD.105.024042
https://doi.org/10.1103/PhysRevD.105.024042
https://doi.org/10.1103/PhysRevD.105.024042
https://doi.org/10.1103/PhysRevD.105.024042
https://doi.org/10.1103/PhysRevD.105.024042
https://doi.org/10.1103/PhysRevD.105.024042
https://doi.org/10.1103/PhysRevD.105.024042
https://doi.org/10.1103/PhysRevD.105.024042
https://doi.org/10.1103/PhysRevD.105.024042

Dynamical system analysis of Dirac-Born-Infeld scalar field cosmology in coincident...

Chin. Phys. C 48, 095102 (2024)

(32]
(33]

[34]
[35]

[36]

J. B. Jiménez et al., Phys. Rev. D 101, 103507 (2020)

J.B. Jiménez, L. Heisenberg, and T. S. Koivisto, JCAP 08,
039 (2018)

F.K. Anagnostopoulos, S. Basilakos, and E. N. Saridakis,
Phys. Lett. B 822, (2021)

F. D'Ambrosio, L. Heisenberg, S. Kuhn, Class. Quantum
Grav. 39, 025013 (2022)

S. Capozziello, V. De Falco, C. Ferrara, Eur. Phys. J. C. 82,
865 (2022)

D. Zhao, Eur. Phys. J. C 82, 303 (2022)

A. De and L.T. How, Phys. Rev. D 106, 048501 (2022)

N. Frusciante, Phys. Rev. D 103, 0444021 (2021)

W. Khyllep, A. Paliathanasis and J. Dutta, Phys. Rev. D
103, 103521 (2021)

M. Calza and L. Sebastiani, Eur. Phys. J. C. 83, 247 (2023)
H. Shabani, Avik De, T. H. Loo, arXiv:2304.02949
W. Khyllep, J. Dutta, E. N. Saridakis,
Yesmakhanova, Phys. Rev. D 107, 044022 (2023)
H. Shabani and M. Farhoudi, Phys. Rev. D 88, 044048
(2013)

A. Paliathanasis, Phys. Dark Univ. 41, 101255 (2023)

and K.

[46]

[47]
(48]

[49]
[50]

[51]
[52]

[53]
[54]

[55]

[56]
[57]

095102-11

S. Ghosh, R. Solanki and P. K. Sahoo, Phys. Scr. 99,
055021 (2024)

G. Leon et al., Fortschr. Phys. 71, 2300006 (2023)

Bharat Ratra and P. J. E. Peebles, Phys. Rev. D 37, 3406
(1988)

P. J. E. Peebles and A. Vilenkin, Phys. Rev. D 59, 063505
(1999)

A. Baldazzi, O. Melichev and R. Percacci, Ann. Phys. 438,
168757 (2022)

J. Hao, X. Li, Phys.Rev. D 68, 083514 (2003)

P. Chingangbam and T. Qureshi, Int. J. Mod. Phys. A 20,
6083 (2005)

L. Heisenberg, Phys. Rep. 1066, 1 (2024)

J. B. Jiménz, L. Heisenberg and T. S. Koivisto, Universe 5,
173 (2019)

S. Bahamonde, C. G. Bohmer, S. Carloni et al., Phys. Rept.
775, 1 (2018)

J. Einasto et. al., A&A 462, 397 (2006)

S. W. Hawking, G. F. R. Ellis, The Large Scale Structure of
Space-Time (Cambridge: Cambridge University Press,
1973)


https://doi.org/10.1103/PhysRevD.101.103507
https://doi.org/10.1103/PhysRevD.101.103507
https://doi.org/10.1103/PhysRevD.101.103507
https://doi.org/10.1103/PhysRevD.101.103507
https://doi.org/10.1103/PhysRevD.101.103507
https://doi.org/10.1103/PhysRevD.101.103507
https://doi.org/10.1103/PhysRevD.101.103507
https://doi.org/10.1103/PhysRevD.101.103507
https://doi.org/10.1103/PhysRevD.101.103507
https://doi.org/10.1103/PhysRevD.101.103507
https://doi.org/10.1088/1475-7516/2018/08/039
https://doi.org/10.1088/1475-7516/2018/08/039
https://doi.org/10.1088/1475-7516/2018/08/039
https://doi.org/10.1088/1475-7516/2018/08/039
https://doi.org/10.1088/1475-7516/2018/08/039
https://doi.org/10.1088/1475-7516/2018/08/039
https://doi.org/10.1088/1475-7516/2018/08/039
https://doi.org/10.1088/1475-7516/2018/08/039
https://doi.org/10.1088/1475-7516/2018/08/039
https://doi.org/10.1016/j.ifacol.2021.08.035
https://doi.org/10.1016/j.ifacol.2021.08.035
https://doi.org/10.1016/j.ifacol.2021.08.035
https://doi.org/10.1016/j.ifacol.2021.08.035
https://doi.org/10.1016/j.ifacol.2021.08.035
https://doi.org/10.1016/j.ifacol.2021.08.035
https://doi.org/10.1088/1361-6382/ac3f99
https://doi.org/10.1088/1361-6382/ac3f99
https://doi.org/10.1088/1361-6382/ac3f99
https://doi.org/10.1088/1361-6382/ac3f99
https://doi.org/10.1088/1361-6382/ac3f99
https://doi.org/10.1088/1361-6382/ac3f99
https://doi.org/10.1088/1361-6382/ac3f99
https://doi.org/10.1088/1361-6382/ac3f99
https://doi.org/10.1088/1361-6382/ac3f99
https://doi.org/10.1088/1361-6382/ac3f99
https://doi.org/10.1088/1361-6382/ac3f99
https://doi.org/10.1140/epjc/s10052-022-10823-x
https://doi.org/10.1140/epjc/s10052-022-10823-x
https://doi.org/10.1140/epjc/s10052-022-10823-x
https://doi.org/10.1140/epjc/s10052-022-10823-x
https://doi.org/10.1140/epjc/s10052-022-10823-x
https://doi.org/10.1140/epjc/s10052-022-10823-x
https://doi.org/10.1140/epjc/s10052-022-10823-x
https://doi.org/10.1140/epjc/s10052-022-10823-x
https://doi.org/10.1140/epjc/s10052-022-10823-x
https://doi.org/10.1140/epjc/s10052-022-10266-4
https://doi.org/10.1140/epjc/s10052-022-10266-4
https://doi.org/10.1140/epjc/s10052-022-10266-4
https://doi.org/10.1140/epjc/s10052-022-10266-4
https://doi.org/10.1140/epjc/s10052-022-10266-4
https://doi.org/10.1140/epjc/s10052-022-10266-4
https://doi.org/10.1140/epjc/s10052-022-10266-4
https://doi.org/10.1140/epjc/s10052-022-10266-4
https://doi.org/10.1140/epjc/s10052-022-10266-4
https://doi.org/10.1140/epjc/s10052-022-10266-4
https://doi.org/10.1103/PhysRevD.106.048501
https://doi.org/10.1103/PhysRevD.106.048501
https://doi.org/10.1103/PhysRevD.106.048501
https://doi.org/10.1103/PhysRevD.106.048501
https://doi.org/10.1103/PhysRevD.106.048501
https://doi.org/10.1103/PhysRevD.106.048501
https://doi.org/10.1103/PhysRevD.106.048501
https://doi.org/10.1103/PhysRevD.106.048501
https://doi.org/10.1103/PhysRevD.106.048501
https://doi.org/10.1103/PhysRevD.106.048501
https://doi.org/10.1103/PhysRevD.103.0444021
https://doi.org/10.1103/PhysRevD.103.0444021
https://doi.org/10.1103/PhysRevD.103.0444021
https://doi.org/10.1103/PhysRevD.103.0444021
https://doi.org/10.1103/PhysRevD.103.0444021
https://doi.org/10.1103/PhysRevD.103.0444021
https://doi.org/10.1103/PhysRevD.103.0444021
https://doi.org/10.1103/PhysRevD.103.0444021
https://doi.org/10.1103/PhysRevD.103.0444021
https://doi.org/10.1103/PhysRevD.103.0444021
https://doi.org/10.1103/PhysRevD.103.103521
https://doi.org/10.1103/PhysRevD.103.103521
https://doi.org/10.1103/PhysRevD.103.103521
https://doi.org/10.1103/PhysRevD.103.103521
https://doi.org/10.1103/PhysRevD.103.103521
https://doi.org/10.1103/PhysRevD.103.103521
https://doi.org/10.1103/PhysRevD.103.103521
https://doi.org/10.1103/PhysRevD.103.103521
https://doi.org/10.1103/PhysRevD.103.103521
https://doi.org/10.1140/epjc/s10052-023-11393-2
https://doi.org/10.1140/epjc/s10052-023-11393-2
https://doi.org/10.1140/epjc/s10052-023-11393-2
https://doi.org/10.1140/epjc/s10052-023-11393-2
https://doi.org/10.1140/epjc/s10052-023-11393-2
https://doi.org/10.1140/epjc/s10052-023-11393-2
https://doi.org/10.1140/epjc/s10052-023-11393-2
https://doi.org/10.1140/epjc/s10052-023-11393-2
https://doi.org/10.1140/epjc/s10052-023-11393-2
https://doi.org/10.1140/epjc/s10052-023-11393-2
https://arxiv.org/abs/
https://doi.org/10.1103/PhysRevD.107.044022
https://doi.org/10.1103/PhysRevD.107.044022
https://doi.org/10.1103/PhysRevD.107.044022
https://doi.org/10.1103/PhysRevD.107.044022
https://doi.org/10.1103/PhysRevD.107.044022
https://doi.org/10.1103/PhysRevD.107.044022
https://doi.org/10.1103/PhysRevD.107.044022
https://doi.org/10.1103/PhysRevD.107.044022
https://doi.org/10.1103/PhysRevD.107.044022
https://doi.org/10.1103/PhysRevD.107.044022
https://doi.org/10.1103/PhysRevD.88.044048
https://doi.org/10.1103/PhysRevD.88.044048
https://doi.org/10.1103/PhysRevD.88.044048
https://doi.org/10.1103/PhysRevD.88.044048
https://doi.org/10.1103/PhysRevD.88.044048
https://doi.org/10.1103/PhysRevD.88.044048
https://doi.org/10.1103/PhysRevD.88.044048
https://doi.org/10.1103/PhysRevD.88.044048
https://doi.org/10.1103/PhysRevD.88.044048
https://doi.org/10.1016/j.dark.2023.101255
https://doi.org/10.1016/j.dark.2023.101255
https://doi.org/10.1016/j.dark.2023.101255
https://doi.org/10.1016/j.dark.2023.101255
https://doi.org/10.1016/j.dark.2023.101255
https://doi.org/10.1016/j.dark.2023.101255
https://doi.org/10.1016/j.dark.2023.101255
https://doi.org/10.1016/j.dark.2023.101255
https://doi.org/10.1016/j.dark.2023.101255
https://doi.org/10.1016/j.dark.2023.101255
https://doi.org/10.1088/1402-4896/ad39b5
https://doi.org/10.1088/1402-4896/ad39b5
https://doi.org/10.1088/1402-4896/ad39b5
https://doi.org/10.1088/1402-4896/ad39b5
https://doi.org/10.1088/1402-4896/ad39b5
https://doi.org/10.1088/1402-4896/ad39b5
https://doi.org/10.1088/1402-4896/ad39b5
https://doi.org/10.1088/1402-4896/ad39b5
https://doi.org/10.1088/1402-4896/ad39b5
https://doi.org/10.1002/prop.202300006
https://doi.org/10.1002/prop.202300006
https://doi.org/10.1002/prop.202300006
https://doi.org/10.1002/prop.202300006
https://doi.org/10.1002/prop.202300006
https://doi.org/10.1002/prop.202300006
https://doi.org/10.1002/prop.202300006
https://doi.org/10.1002/prop.202300006
https://doi.org/10.1002/prop.202300006
https://doi.org/10.1002/prop.202300006
https://doi.org/10.1103/PhysRevD.37.3406
https://doi.org/10.1103/PhysRevD.37.3406
https://doi.org/10.1103/PhysRevD.37.3406
https://doi.org/10.1103/PhysRevD.37.3406
https://doi.org/10.1103/PhysRevD.37.3406
https://doi.org/10.1103/PhysRevD.37.3406
https://doi.org/10.1103/PhysRevD.37.3406
https://doi.org/10.1103/PhysRevD.37.3406
https://doi.org/10.1103/PhysRevD.37.3406
https://doi.org/10.1103/PhysRevD.59.063505
https://doi.org/10.1103/PhysRevD.59.063505
https://doi.org/10.1103/PhysRevD.59.063505
https://doi.org/10.1103/PhysRevD.59.063505
https://doi.org/10.1103/PhysRevD.59.063505
https://doi.org/10.1103/PhysRevD.59.063505
https://doi.org/10.1103/PhysRevD.59.063505
https://doi.org/10.1103/PhysRevD.59.063505
https://doi.org/10.1103/PhysRevD.59.063505
https://doi.org/10.1016/j.aop.2022.168757
https://doi.org/10.1016/j.aop.2022.168757
https://doi.org/10.1016/j.aop.2022.168757
https://doi.org/10.1016/j.aop.2022.168757
https://doi.org/10.1016/j.aop.2022.168757
https://doi.org/10.1016/j.aop.2022.168757
https://doi.org/10.1016/j.aop.2022.168757
https://doi.org/10.1016/j.aop.2022.168757
https://doi.org/10.1016/j.aop.2022.168757
https://doi.org/10.1103/PhysRevD.68.083514
https://doi.org/10.1103/PhysRevD.68.083514
https://doi.org/10.1103/PhysRevD.68.083514
https://doi.org/10.1103/PhysRevD.68.083514
https://doi.org/10.1103/PhysRevD.68.083514
https://doi.org/10.1103/PhysRevD.68.083514
https://doi.org/10.1103/PhysRevD.68.083514
https://doi.org/10.1103/PhysRevD.68.083514
https://doi.org/10.1103/PhysRevD.68.083514
https://doi.org/10.1103/PhysRevD.68.083514
https://doi.org/10.1142/S0217751X05024298
https://doi.org/10.1142/S0217751X05024298
https://doi.org/10.1142/S0217751X05024298
https://doi.org/10.1142/S0217751X05024298
https://doi.org/10.1142/S0217751X05024298
https://doi.org/10.1142/S0217751X05024298
https://doi.org/10.1142/S0217751X05024298
https://doi.org/10.1142/S0217751X05024298
https://doi.org/10.1142/S0217751X05024298
https://doi.org/10.1016/j.physrep.2024.02.001
https://doi.org/10.1016/j.physrep.2024.02.001
https://doi.org/10.1016/j.physrep.2024.02.001
https://doi.org/10.1016/j.physrep.2024.02.001
https://doi.org/10.1016/j.physrep.2024.02.001
https://doi.org/10.1016/j.physrep.2024.02.001
https://doi.org/10.1016/j.physrep.2024.02.001
https://doi.org/10.1016/j.physrep.2024.02.001
https://doi.org/10.1016/j.physrep.2024.02.001
https://doi.org/10.1016/j.physrep.2024.02.001
https://doi.org/10.3390/universe5070173
https://doi.org/10.3390/universe5070173
https://doi.org/10.3390/universe5070173
https://doi.org/10.3390/universe5070173
https://doi.org/10.3390/universe5070173
https://doi.org/10.3390/universe5070173
https://doi.org/10.3390/universe5070173
https://doi.org/10.3390/universe5070173
https://doi.org/10.3390/universe5070173
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1051/0004-6361:20065501
https://doi.org/10.1051/0004-6361:20065501
https://doi.org/10.1051/0004-6361:20065501
https://doi.org/10.1051/0004-6361:20065501
https://doi.org/10.1051/0004-6361:20065501
https://doi.org/10.1051/0004-6361:20065501
https://doi.org/10.1051/0004-6361:20065501
https://doi.org/10.1051/0004-6361:20065501
https://doi.org/10.1051/0004-6361:20065501
https://doi.org/10.1051/0004-6361:20065501

	I INTRODUCTION
	<i>II</i><i>f</i>(<i>Q</i>)<i>GRAVITYINTHEPRESENCEOFASCALARFIELD</i>
	III EQUATIONS OF MOTION
	IV DYNAMICAL SYSTEM ANALYSIS
	A Exponential potential
	1<i>Limitpointanalysisfor</i>(±1,0,<i>λ</i>)

	B Power-law potential

	V CONCLUSION
	DATA AVAILABILITY
	ACKNOWLEDGMENTS
	REFERENCES

