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Abstract: This study investigated the elastic and inelastic scattering of *He particles from *C, '°0, *Mg, and *Si
nuclei at 60 MeV using a double-folding approach with four newly derived effective nucleon-nucleon (NN) interac-
tions (R3Y(HS), R3Y(L1), R3Y(W), and R3Y(Z)) derived from the relativistic mean-field theory. The four derived
effective NN interactions exhibited strong sensitivity to the choice of exchange potential. Regularizing the NN inter-
actions improved the agreement between calculated folded potentials and experimental data. Normalization con-
stants for the R3Y(HS) interaction suggested its superiority over the R3Y(L1) and R3Y(W) interactions within the
double-folding framework. Transition potentials based on two models, deformed potential and double folding poten-
tial, were used to describe inelastic scattering. Physically consistent deformation parameters were obtained. The de-
formed potential model yielded better results for '*C and '®O, whereas the double folding model performed better for
Mg and *Si, suggesting that the advantage of the double folding model is limited to lighter targets. The Bohr-Mot-
telson transition density effectively described 2" states; however, it was less suitable for the 3~ state of '°O, for which
a Tassie-like transition density provided improved agreement.
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I. INTRODUCTION

Understanding nucleus-nucleus interactions remains a
fundamental challenge in nuclear physics. All observable
scattering quantities can be computed once the optical po-
tential is defined, and consequently, the scattering matrix
is determined. For heavy-ion collisions, microscopic
models such as the double-folding (DF) method have
been among the most successful approaches for calculat-
ing optical potentials [1—6]. The DF method relies on two
key inputs: (1) nuclear densities of colliding nuclei and
(2) effective nucleon-nucleon (NN) interactions between
the projectile and target nucleons. Although nuclear dens-
ities can be accurately derived from models or electron
scattering experiments, developing a realistic, effective
NN interaction remains an open problem [7, 8].

Despite extensive theoretical and experimental ef-
forts, the nature of effective NN interactions remains in-
completely understood. Recent progress has been made
through the relativistic mean-field (RMF) theory, which
has yielded new microscopic NN interactions (e.g.,
R3Y(HS), R3Y(L1), R3Y(W), and Z). The NN interac-
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tion obtained through this theory was remarkably related
to the inbuilt fundamental parameters of RMF where the
HS, L1, W, and Z parameters were extensively validated
in literature to reproduce nuclear ground-state properties
such as binding energies, charge radii, and deformation
parameters [9, 10]. These interactions have been success-
fully applied to cluster radioactive decays [11, 12] and
used for investigating the elastic scattering cross-sections
of proton and neutron haglo nuclei [7] and the analysis of
SLi(*He,d)’Be transfer reactions [13]. However, further
validation is required, particularly in intermediate-energy
scattering, where nuclear and Coulomb forces play signi-
ficant roles.

A primary source of knowledge related to the charac-
teristics of ground and low-lying excited states of atomic
nuclei is the study of the elastic and inelastic processes of
the helium isotope *He interaction with the nuclei [14].
Over the past few decades, researchers have extensively
investigated *He scattering on light nuclei at energies
reaching 150 MeV [15-23]. The energy range of the in-
cident particles can be classified into three major categor-
ies. The first category includes energies below 15—20
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MeV. In this range, the Coulomb interaction is the dom-
inant scattering determinant, and the inner region of the
nucleus does not affect differential cross-sections. In the
second category, nuclear forces become relevant with in-
cident particle energies of 20—40 MeV. Consequently, the
scattering presents a different characteristic, and a dif-
fraction pattern appears in the angular distributions, sim-
ilar to that of an absorbing sphere. In the third category,
the *He scattering properties change at energies greater
than 40 MeV. Recently, the elastic-scattering data of *He
on '*C, '°0, **Mg, and **Si at 60 MeV have been used for
experimentally determining the parameters of optical po-
tentials [19, 22, 24, 25].

This work investigates the elastic and inelastic scat-
tering of *He from '°C, '°0, **Mg, and **Si at 60 MeV us-
ing a DF model with RMF-derived NN interactions. We
aim to evaluate the performance of R3Y(HS), R3Y(L1),
R3Y (W), and R3Y(Z) interactions in reproducing elastic
scattering data; examine the impact of NN interaction
regularization and exchange potentials on cross-section
predictions; determine the optimal NN interaction and as-
sociated parameters for describing *He scattering; com-
pare the deformed potential (DP) and DF models for in-
elastic scattering to excited states; and investigate the
sensitivity of inelastic scattering descriptions to the
choice of transition potential model and relevance of Bo-
hr-Mottelson and Tassie models for describing collective
nuclear excitations. The theoretical framework of this
study is presented in Sec. II. The results of the calcula-
tions are reported in Sec. III, analyzing scattering observ-
ables obtained from the DF model for the various target
nuclei and discussing the sensitivity of the results to mod-
el parameters and associated uncertainties. Finally, Sec.
IV summarizes the key findings, discusses their implica-
tions for our understanding of *He-nucleus scattering, and
outlines potential avenues for future research.

II. THEORETICAL FORMALISM

A. Elastic scattering

In the DF approach, the real part of the optical poten-
tial is generated by folding the matter density of the pro-
jectile and target with an effective NN interaction [26].
The folded potential can be expressed as

VPE =P vEX, )

where VP and VEX represent the direct and exchange po-
tentials, respectively. The direct part of the folded poten-
tial, which represents the nuclear interaction independent
of nuclear spins and isospins, takes the form

VPR E) = / &7, 7 p, (7)) p(P) VAN E) , §=F+ 7 =7,
2)

where p,, represent the nuclear matter densities of the
projectile and target, respectively. viy represents a direct
part of the NN effective interaction. The exchange part
VEX which considers the effect of a single knock-on ex-
change, has two forms. The first form is expressed as [1]

VEX (7 E) = / &F, EF, p,(7) pu() T EYH, ()

where Joo (E) represents the strength of the exchange
term, which exhibits a weak linear dependence on energy.
The Dirac delta function §(s) ensures that the interaction
is local, effectively transforming it into a zero-range
pseudo-potential. This form is widely used in heavy-ion
scattering studies. The knock-on interaction Jo, (E)d(s) is
a semi-phenomenological formula that requires calibra-
tion for both nucleon-nucleus and nucleus-nucleus scat-
tering.

A more rigorous and theoretically grounded approach
for approximating the exchange potential has been pro-
posed as an alternative to the simpler, semi-phenomeno-
logical approach of the first form [1]. This approach ex-
plicitly accounts for the finite range of the interaction. Al-
though this form is non-local, some studies [27, 28]
demonstrated that an accurate local approximation can be
obtained by treating the relative motion locally as a plane
wave, yielding the expression

VEGE) = [ @707, py0Fy + ) 0T~ 9

iK(7).5
with
EX 6—45 e—2.5s
VNNM3Y - Reidy (8> E) = {4631 P 1787 55
~0.7072s
—7.8477} 1-0.002¢),
070725 ¢ 2
(5)
e e 255
vﬁﬁ(M}Y-Paris)(syE) = {— 1524.25 15 -518.75 XT
07072
—7.8474 1-0.003¢),
070725 ¢ &)
(6)

and
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1
3

E =

E3Hg ) (7)

K*(r) = %’2‘ [E-VPF—V(], (8)

where K(r) represents the local momentum of relative
motion. This exchange form involves a self-consistency
problem, which can be readily solved using a realistic ap-
proximation for the density. The potential is then evalu-
ated using an iterative method [26], yielding a local self-
consistent potential.

1. Effective NN Interactions

There are several types of effective NN interactions.
Such interactions are phenomenological, derived by fit-
ting experimental scattering data and phase shifts. New
microscopic NN interactions are derived using the RMF
theory. A relativistic mean-field Lagrangian density of a
nucleon-meson many-body system is assumed [29-31],
and it is constructed from the Lagrangian density of Dir-
ac spinor fields for the nucleons, four different meson
fields (o, w, p, and J), and the electromagnetic field at-
tributed to the interaction of the charged particles. The
solutions of a single NN potential for scalar (o, J) and
vector (w, p) fields were determined assuming a heavy
and static baryonic medium with a one-meson exchange.
The resultant effective NN interactions were obtained
from the summation of the scalar and vector parts of the
single meson fields and defined as [11]

W) =V, +V,+ Ve + Vs, 9

2 LMy 2 L —myr 2 LMl 2 L—mgr
_8,e Y &e g ¢ g&e™
() = §e g P S 0

dr r dr r dr r An r
(10)

where g,, 8., & , and gs; represent the coupling con-
stants for o, w, p, and J mesons, respectively. m,, m,,
m,, and m; represent the masses of o, w, p, and 6 mesons,
respectively. For a standard nuclear medium, the contri-
bution Vs of 0 meson can be neglected compared to the

magnitudes of V,, and V,,. Then, Eq. (10) takes the form

gi e Ml g% e Mo g(27 e Mol

11
4 r . r Vi¥g an

() =

The derived NN interactions from the RMF theory are
inserted into Eq. (4) to obtain a real direct folded poten-
tial based on RMF. Using the R3Y(HS) parameters from
Table 1 in Eq. (11) as illustrative examples, one can ob-
tain ((See left panel of Fig. 1)

—3.968r -3.902r

e 6882645

—2.64r

4r
(12)

V) (1) = 11956.945— +4099.06

4r 4r

An essential aspect of using effective NN potentials
in the form of the Yukawa potential is related to their reg-
ularization caused by singularities. This regularization
eliminates the singularities at |s| = 0, which lack physical
significance. Although the singularity can impact the ana-
lysis of NN scattering, it does not pose any challenges
when calculating the folding integral for generating the
nucleon-nucleus or nucleus-nucleus potential. However,
certain studies (e.g., [32, 33]) utilized "regularized" M3Y
potentials of the NN interaction that did not include this
singularity. In this study, we explore this issue further.
Such problems can be attributed to the breakdown of the
meson theory at extremely short distances because of the
extended structure of nucleons [34]. One-boson-ex-
change potentials are commonly regularized by incorpor-
ating several cut-off factors, including monopole, dipole,
and exponential cut-off form factors [35]. In this study,
the approach reported in a previous study [33]is fol-
lowed. The regularized Yukawa function ¢. is derived
from the Fourier transform to configuration space by in-

corporating a momentum cut-off form factor F (77)) as

o

(r)_ 4i/ d3ﬁ ei[-?
Yc - m (27‘[)3 (ﬁz+m2)

F(p), (13)

The cut-off form factor is defined as the nucleon form
factor py (p)

Table 1. Parameters of effective NN interactions based on Eq. (11) for different RMF models [11].
Set my MeV My, MeV my, MeV 8o 8w 8p gw2/m MeV g2 /n/ MeV go2/m MeV
R3Y(HS) 520 783 770 10.47 13.80 08.08 11956.94 4099.06 6882.64
L1 550 783 - 10.30 12.60 - 9967.88 - 6660.95
w 550 783 - 09.57 11.67 - 8550.74 - 5750.24
Z 551.31 780 763 11.19 13.83 10.89 12008.98 744591 7861.80
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Fig. 1.
the shape and strength of the potentials is illustrated.

F(p) = / 47 py(B), (14)

After some transformations, we obtain the following ex-
pression for the regularized Yukawa function ¢¢ (r)[36]:

e—m”?—?l”
c(r) = /d?l ox(PD)—5—=7> (15)
m|P—7

Then, the regularized effective NN potential, which con-
sist of three Yukawa functions, can be written in the regu-
larized form as [33]

)= [ APpuIE =747

A

2
- Zf,,/dr P =3

migiz
4

oc (),
(16)
where py(P) represents the nucleon density distribution

parameterized based on experimental data in [37] using a
sum of Gaussian functions:
(%)
rr)’

1

3
1
pn(r) = E aiwexp 17)
i=1 !

2. Matter Density Distributions

In addition to the effective NN interaction, the fold-
ing calculation requires nuclear density distributions for
the colliding nuclei. The nuclear matter density distribu-
tion of the projectile nucleus *He is assumed to follow a
Gaussian distribution (GD),

3.0

0.0 0.5 1.0 1.5

r [fm]

20 25 3.0

(color online) Comparison of (a) unregularized and (b) regularized effective NN potentials. The impact of regularization on

pu(r) = pu(0)exp(—Br), (18)
For the target nuclei, the densities are assumed to follow
modified Gaussian distributions, which exhibit a nuclear
bubble structure [38]; see Fig. 2.

pu(r) = pu(0) [1+wr*] exp(-Br), (19)
where p) (0) values were obtained from the normaliza-
tion condition

4n / p(rrtdr=A, (20)

The parameters for py, (0) , @, and S used in Egs. (17) and
(18) are listed in Table 2.

An imaginary potential (W) is introduced into the op-
tical potential to accommodate absorption into alternat-
ive reaction channels. Since surface absorption is determ-
ined to predominate within this energy range, the imagin-
ary potential is modeled as a surface potential. Two forms
of the imaginary potential are used. The first form con-
sists of a phenomenological potential obtained from the
first derivative of a WS potential,

i-eo()"

WP = —4a W,— 1)

The second form is formulated based on the first de-
rivative of the obtained folded potential itself and is ex-
pressed as

dVPF(r)
dr °

WO = —4a N, (22)

where a represents the diffuseness parameter of the fol-
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Table 2. Parameters and root-mean-square (RMS) radii of the nuclear matter densities for *He [39], '*C [40], '°0 [40], *Mg [41], and

Si [39].
Nuclei po/fm™ o/fm™ pm™ Calculated RMS radius /fm Experimental RMS radius /fm
*He 0.2202 - 0.5505 1.6508 1.976 [42]
2C 0.1644 0.4988 0.3741 2.4067 2.46 [43]
°0 0.1317 0.6457 0.3228 2.6401 2.73 [43]
Mg 0.1499 0.4012 0.2383 3.0498 3.08 [43]
%gj 0.2052 0.1941 0.2112 3.1378 3.15[43]

ded potential, obtained by fitting the folded potential to a
WS form. N; represents a normalization constant intro-
duced for scaling purposes. The second form is em-
ployed to reduce the number of free parameters and
provide a less ambiguous method for examining different
effective interactions.

Finally, the local optical potential takes the form

U(r,E) = Ng [VP(r,E)+ VX (r,E)| +iW(r) + Vc(r),  (23)

where the real component of the optical potential, de-
noted as V2T is scaled by a normalization factor Ng. This
normalization factor is incorporated to accommodate
minor adjustments required to address dynamic polariza-
tion contributions, higher-order effects omitted in the
methodology employed to derive the folded potential, and
slight uncertainties inherent in the folding inputs. It is an-
ticipated that this factor will remain proximate to unity,
affirming the physical significance of the folded poten-
tial. The Coulomb potential V¢ describing the interaction
between the projectile and target is assumed to corres-
pond to the interaction between a point particle and uni-

formly charged sphere with radius Rc. Accordingly, the
Coulomb potential is expressed as

ZpZré?
pere ,V?RC
p
Ve =3 270/ g 24)
3——) ,r <Re,
2R, ( r2) TSe

The optical potentials can be characterized by real Jy, and
imaginary Jy volume integrals per nucleon defined as

oo

Jy=-— V(r)ridr, (25)

ALA,
0

2dr. (26)

TAA,
0

B. Inelastic scattering

For inelastic scattering, the multipole component of
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the transition potential U, is

Ua(P) = Va(@) +iW,(7) + (Ve),s (27)
In the DF model, the real part of the transition potential
of the inelastic scattering is

Vi) =N [VX(E, P+ VIXE,P)], (28)

where (V(), represents Coulomb's transition potential,
and VP and V¥ represent direct and exchange transition
potentials, respectively. The transition potential is ob-
tained by folding the transition density p', which de-
scribes the inelastic excitation of the target nucleus, with
the ground-state density of the projectile and effective in-
teraction as [2]

V2 E) = / &F, OF, o, (7)) o0 viNGE),  (29)

V.EX(RE) = / &P,AF, pp(Fe 7y +3)

- . iK(7).5
pﬁﬂ)(r,,r, - ) vix (S, E) exp ( u )

(30)

A "collective" model is used when the excitation is
"isoscalar" and strong [44]. The Bohr—Mottelson (BM)
model [45] is adopted in this study. In the BM model, the
radial transition density (with A > 2)is assumed to be pro-
portional to the radial derivative of the ground-state dens-

ity:

dp,(r)
dr ’

pV(r) = —pIR (31)

where B7 and R represent the matter deformation para-
meter and nucleus radius, respectively; R = 1.24'7 fm [2].

In the DP model, the radial transition potential is con-
sidered proportional to the radial first derivative of the
normalized folded potential:

Vi) = -8R Ly (), (32)
dr

where Y represents the deformation parameter of the fol-
ded potential V,(r). To compare the DP model with the
DF approach for the inelastic form factor, it is assumed
that

By =Bi. (33)

The deformed imaginary part W, is considered as the
deformed surface WS of the phenomenological imagin-
ary elastic scattering potential [46]:

~ d r-RO\\"
Wp(r,0) = —4aWoa (1 —exp ( P )) , (34)
RO)=R, (1+B)Y)(®),1=20r3 (35)

Then, W, has the form [47]

Wi(r) = %/Wp(r, 0) P,(cos(6))sin(0)d6. 36)
0

The deformation parameter of the imaginary poten-
tial serves as a measure of absorption in the considered
channel. In this approach, the Coulomb deformation is
not included; only the nuclear part of the transition poten-
tial is considered. The deformation parameter is ad-
justable and determined by comparing the computed in-
elastic cross-section with the observed data. In both mod-
els, it is assumed that the real and imaginary deforma-
tions are equal,

Bl =B i =B (37

Since all deformation parameters are derived by
modifying the potentials, they should be denoted as gV .
However, for simplicity, they will be referred to as . All
DF calculations are performed using a modified version
of BiFold code [48]. The code originally calculates the
density-dependent or independent DF potentials between
two colliding spherical nuclei. The modifications extend
the capability of the code to calculate the transition poten-
tials based on Egs. (29) and (30).

III. RESULTS AND DISCUSSION

A DF analysis of the *He elastic and inelastic scatter-
ing off *C, '°0, **Mg, and **Si at 60 MeV was performed
in this study. The experimental data for elastic and in-
elastic differential cross-sections were obtained from [19,
22,24, 25].

A. Elastic scattering

The angular distributions of the elastic and inelastic
scattering were calculated using the DF approach. The
real part of the optical potential was calculated using new
effective NN interactions, and the imaginary part of the
optical potential was assumed to have two forms: a sur-
face WS and the first derivative of the folded potential.
First, the effective NN interactions were regularized to
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consider the effect of regularization on the nucleus-nucle-
us potential. This study used four effective NN interac-
tions obtained from the RMF model (R3Y(HS),
R3Y(L1), R3Y(W), and Z) to examine their validity in
describing the elastic and inelastic scattering of light pro-
jectiles and investigate their effects on the nucleus-nucle-
us scattering. Figure 1 illustrates the effective NN interac-
tions before and after regularization. The effect of the
cut-off form factor on effective NN interactions removed
the singularity. It preserved the potential behavior, which
was repulsive at the core and attractive with an increase
in separation. The depth of the regularized interactions
was reduced to approximately 30% of their original
value. At the core, the R3Y(Z) interaction had the largest
repulsive strength, followed by the R3Y(HS) interaction
and then by the R3Y(L1) and R3Y (W) interactions.
Second, the regularized effective interactions were
folded with the nuclear matter densities for *He and tar-
get nuclei. The direct component of folded potentials ex-
hibited a repulsive nature for R3Y(HS) and R3Y(Z) inter-
actions, similar to the DF potentials derived from the
M3Y Paris interaction [1]. For R3Y(L1) and R3Y(W) in-
teractions, the direct component of folded potentials was
attractive, similar to the DF potentials derived from the
M3Y Reid interaction [1]. The exchange part of the fol-
ded potential was added to the direct part. The study ex-
plored the effects of employing both zero-range and fi-
nite-range exchange interactions within the potential

HS

model. Zero-range exchange interactions produced a
deeper total folded potential than finite-range exchange
interactions, requiring a small normalization constant to
fit the differential cross-section data. Therefore, consider-
ing the finite-range exchange interactions, the direct po-
tentials were combined with the exchange potential,
which resulted in the combination being denoted as
R3Y+EX(FR). An additional examination of the ex-
change potential was conducted with both Reid and Paris
finite exchange interactions. For the R3Y(HS) interac-
tion, the direct part R3Y(HS) was combined with both
EX(FR/Reid) and EX(FR/Paris) to obtain R3Y(HS)+
EX(FR/Reid) and R3Y(HS)+EX(FR/Paris), respectively.
The generated total folded potential based on the Reid in-
teraction was very shallow, making it unsuitable. The ob-
tained shallow potential was similar to that in [7]; the au-
thor used Reid EX(ZR), and one can see in Fig. 2 in [7]
that the folded potential R3Y(HS)+EX(ZR/Reid) had the
smallest depth. Conversely, combining the exchange po-
tential based on the Paris interaction with the direct part
of R3Y(HS) produced a more suitable potential than the
Reid exchange. For R3Y(L1) and R3Y(W) interactions,
the best choice was using the Reid finite exchange poten-
tial to generate the total folded potential R3Y(L1)+
EX(ZR/Reid) and R3Y(W)+EX(ZR/Reid). The analysis
revealed that the folded potential generated by
R3Y(Z)+EX(FR) exhibited a repulsive characteristic,
with the majority of the contribution arising from the dir-

L1

100 1

Depth (MeV)

= Total

== Direct part
= Exchange part
= = Total

== == Direct part

= == Exchange part

Depth (MeV)

=300

345 6
r (fm)

0 1 2

Fig. 3.

7 8

300 -

r (fm)

(color online) Folded potential for *He+'">C at 60 MeV based on unregularized (Solid line) and regularized NN effective inter-
actions (Dashed line). The Paris exchange interaction is used for R3Y(HS) and R3Y(Z), whereas the Reid exchange potential is used
for R3Y(L1) and W. The colored lines represent the total, direct, and exchange potentials for R3Y+EX(FR).
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ect component of the potential (see Fig. 3). Therefore, the
R3Y(Z) interaction was excluded from this analysis be-
cause a purely repulsive potential for the *He-nucleus
scattering was considered physically meaningless within
this energy range. The direct, exchange and total poten-
tials for '*C are plotted in Fig. 3.

Folded potentials obtained from regularized effective
NN interactions were examined to investigate how regu-
larization affects nucleus-nucleus scattering. The regular-
ization decreased the direct portion of the folded poten-
tial while marginally boosting the exchange portion,
which resulted in an overall rise in the R3Y(HS) folded
potential and decreases in the R3Y(L1) and R3Y (W) fol-
ded potentials. The repulsive nature of the folded poten-
tial based on the R3Y(Z) interaction remained un-
changed by regularization, which reinforced our choice to
exclude R3Y(Z) from this analysis. The total folded po-
tentials for '*C, '%0, **Mg, and *Si are illustrated in
Fig. 4.

Calculations were performed to obtain the elastic
scattering cross-sections of the ‘He+'?C, ‘He+'O,
‘He+**Mg, and *He+**Si systems at 60 MeV. The folded
potentials served as the real component of the optical po-
tentials, whereas surface WS or the derivative of the fol-
ded potential was used as the imaginary component. The
values of @ used to derive the imaginary potentials from
the folded potentials based on Eq. (21) and its equivalent
WS parameters are listed in Table 3.

Table 4 identifies the optimal parameter set (includ-
ing normalization and imaginary potential parameters) for
describing elastic scattering. The folded potentials de-
rived from regularized interactions effectively fit the ex-
perimental data, as shown in Fig. 6. For the *He+"*C sys-
tem, Fig. 5 illustrates how the imaginary component af-
fects the differential cross sections, with the surface
Woods-Saxon (SWS) imaginary component outperform-
ing the surface folded derivative (SDF) one. This out-
come is expected because the SWS potential incorpor-
ates more adjustable parameters such as the depth, radius,
and diffuseness of the potential, whereas the SDF poten-
tial is restricted to a single parameter N, that only adjusts
the depth of the potential. In addition, a limitation of the
SDF potential is its lack of a microscopic foundation and
the use of a fixed geometry that may not adequately re-
flect the absorption process. The assumption that the ima-
ginary part is proportional to the real folded potential part
is somewhat arbitrary, and it is employed here merely to
simplify the parameter count and facilitate comparisons
between different effective interactions. The results in
Table 4 show that SWS and SDF potentials provide equi-
valent normalization constant values across diverse R3Y
interactions. Thus, despite its many parameters, the SWS
potential may be useful for testing and evaluating R3Y
interactions. The choice of imaginary potentials appears
to affect the normalization constant, with SDF potentials
obtaining slightly higher N; values than SWS potentials

Depth (MeV)

Depth (MeV)

r (fm)
(color online) Unnormalized folded potentials R3Y(HS)+EX(ZR/Paris) and R3Y(HS)+EX(ZR/Reid) for *He+"C, *He+'O,

’He+**Mg, and *He+**Si at 60 MeV based on unregularized (solid lines) and regularized (dashed lines) effective NN interactions ob-
tained from the RMF model.

Fig. 4.

r (fm)
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Table 3. Parameters of Woods-Saxon potentials equivalent to folded potentials based on the regularized NN interactions R3Y(HS)+
EX(FR/Paris), R3Y(L1)+EX(FR/Reid), and R3Y(W)+EX(FR/Reid).

Reaction VNN V /MeV R /fm a+Aa /fm
HS -121.10 2.5412 0.8404+0.0022
*He+'*C L1 —264.84 2.4338 0.8364+0.0030
W —242.97 2.4393 0.8303+0.0029
HS -130.51 2.7806 0.8694+0.0023
‘He+'°O L1 —283.92 2.6631 0.8701+0.0032
w —259.70 2.6732 0.8632+0.0032
HS —144.81 3.1105 0.9453+0.0028
‘He+*Mg L1 —311.68 2.9864 0.9464+0.0036
W —284.34 3.0010 0.9393+0.0035
HS -162.70 3.0941 0.9885+0.0032
SHe+>Si L1 —356.57 2.9348 0.9926+0.0039
W —324.94 2.9497 0.9866+0.0038

Table 4. Normalization constants (N, N)), depth (Wp), radius and diffuseness parameters (rp and ap), total cross-sections (o), x>
values, and volume integrals (Jg and J;) for the theoretical analysis with the regularized NN interactions R3Y(HS)+ EX(FR/Paris),
R3Y(L1)+EX(FR/Reid), and R3Y(W)+EX(FR/Reid).

Reaction VPF + Img. Nr Jr /MeV-fm? Wp/N; /MeV rp /fm ap /fm J; MeV-fm? og /mb X
*He+'2C R3Y(HS)+SWS 0.98 449.8 19.342 1.298 0.608 164.0 869.3 8.5
R3Y(HS)+SDF 0.96 441.7 0.13 - - 157.3 953.9 20.4
R3Y(L1D+SWS 0.46 414.9 18.480 1.223 0.658 146.2 859.2 4.5
R3Y(L1)+SDF 0.46 414.9 0.064 - - 156.4 600.6 14.4
R3Y(W)+SWS 0.50 413.0 18.378 1.237 0.645 144.6 851.0 54
R3Y(W)+SDF 0.49 411.7 0.070 - - 155.8 877.4 9.2
*He+'°0 R3Y(HS)+SWS 0.90 413.6 12.746 1.549 0.686 152.8 1141.3 8.4
R3Y(HS)+SDF 0.95 436.3 0.14 - - 165.0 1082.5 22.1
R3Y(L1D+SWS 0.43 390.8 11.662 1.505 0.769 152.4 1183.0 10.9
R3Y(L1)+SDF 0.51 460.3 0.079 - - 188.3 1058.4 31.4
R3Y(W)+SWS 0.47 386.7 11.488 1.491 0.783 151.1 1185.6 11.4
R3Y(W)+SDF 0.57 470.6 0.089 - - 193.0 1059.8 31.5
SHe+*Mg R3Y(HS)+SWS 0.79 364.8 14.295 1.169 1.067 159.0 1601.1 42.3
R3Y(HS)+SDF 0.80 367.9 0.14 - - 163.5 1292.3 53.4
R3Y(L1D+SWS 0.40 362.6 16.410 1.171 0.980 162.0 1496.2 32.5
R3Y(L1)+SDF 0.43 387.8 0.075 - - 176.3 1263.2 71.9
R3Y(W)+SWS 0.39 318.3 13.513 1.008 1.313 169.2 1848.2 43.1
R3Y(W)+SDF 0.47 387.8 0.084 - - 179.6 1262.1 75.15
SHe+*Si R3Y(HS)+SWS 0.79 357.8 18.243 1.030 1.047 150.9 1571.2 23.8
R3Y(HS)+SDF 0.82 373.7 0.12 - - 142.6 1355.0 37.8
R3Y(L1D+SWS 0.39 349.7 19.723 1.018 0.989 147.3 1473.7 8.6
R3Y(L1)+SDF 0.40 358.0 0.062 - - 149.2 1297.6 15.3
R3Y(W)+SWS 0.43 349.0 19.839 1.021 0.982 147.3 1465.7 9.0
R3Y(W)+SDF 0.45 368.4 0.070 - - 153.3 1298.2 16.2
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Fig. 5.

(color online) Elastic differential cross-sections for *He + '2C scattering at 60 MeV calculated with folded potentials using a)

R3Y(HS), b) R3Y(L1), and c¢) R3Y(W) real parts and surface Woods-Saxon (SWS) or folded derivative (SDF) imaginary parts. (d)

Comparison of SWS and SDF potentials within the R3Y(HS) model.

but with less fitting (a large ¥* value). The diffraction pat-
tern at forward angles formed by SDF potentials has a
deep first minimum that does not match experimental
data, suggesting that the SDF potential may not be the
best option. Further, the performance of the SDF poten-
tial is highly dependent on the folded potential and its
shape; in this scenario, folded potentials obtained from
R3Y do not appear to be adequate for generating the ima-
ginary potential at this energy. Moving forward in this
study, the SWS potential will be used to simulate the ima-
ginary component of the optical potential in further in-
vestigations.

The effect of regularization on elastic differential
cross-sections was investigated by comparing calcula-
tions using unregularized and regularized NN interac-
tions. Figure 6 demonstrates that regularization consist-
ently enhances differential cross-sections within the dif-
fraction region for all interactions considered. The regu-
larized HS interaction yielded a substantially better fit to
the data than the unregularized HS interaction. This im-
provement suggests that the shape of the folded poten-
tials derived from regularized NN interactions more ac-
curately represents the physical system. The N; constant
associated with the regularized HS interaction was found
to be lower than that of the unregularized HS interaction;
however, it was higher than those obtained with the un-

regularized L1 and W interactions. Finally, the impact of
regularization was negligible for scattering angles less
than 25°.

The Ny values for the R3Y(HS) interaction with SWS
imaginary potentials are 0.98, 0.90, 0.79, and 0.79 for
12C, %0, *Mg, and **Si, respectively, with real volume
integrals in the range of 350-450 MeV-fm?® The
R3Y(L1) and R3Y(W) interactions could reproduce the
experimental data with a normalization constant of less
than half (see Table 4), indicating that R3Y(L1) and
R3Y(W) interactions produced deeper potentials than re-
quired. This implies that both interactions are not good
candidates for nuclear potentials to describe the *He scat-
tering at this energy. Np decreases with an increase in
mass number, which indicates that R3Y interactions are
suitable for light nuclei.

B.

The inelastic scattering of *He has been analyzed us-
ing the distorted wave born approximation (DWBA) and
coupled channels (CC) methods based on the Schrodinger
equation for the low-lying 2" state for '*C, 3 state for '°O,
2" state for Mg, and 2" state for **Si at 60 MeV. Two
real form factors of the transition potentials were con-
sidered: the simple deformed optical potential (DP) and
double folded (DF) potential. In the deformed optical po-

Inelastic scattering
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Fig. 6.  (color online) Elastic differential cross-sections for *He on '°C, '°0, **Mg, and **Si at 60 MeV. The graphs compare differen-
tial cross-sections calculated using a folded potential with different NN interactions: a) unregularized (left) and b) regularized (right).

The specific interactions used are R3Y(HS)+EX(FR/Paris), R3Y(L1)+EX(FR/Reid), and R3Y(W)+EX(FR/Reid), all with an SWS ima-
ginary potential.
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tential approach, the transition potentials were calculated
using Eq. (31). In the folded transition potential approach,
the real part of the form factor was calculated by folding
the R3Y(HS)+EX(FR/Paris) regularized NN interaction
with the ground state of *He and the target transition
density using Eqs. (28) and (29). The R3Y(L1l) and
R3Y(W) interactions were excluded because of their low
normalization constants. The target transition density was
assumed to follow the BM model indicated in Eq. (30).
The imaginary part of the transition potentials was con-
sidered the deformed surface WS potential derived from
the semi-microscopic elastic potential as in Eq. (35).

DWBA calculations were carried out using the
ECIS06 code by inserting the real part of the obtained
transition potentials and setting the imaginary part para-
meters. It was assumed that Bz =3;, and deformation
parameters that best fit the inelastic experimental data
were searched. The obtained values are listed in Table 5
(see DWBA (DP) and DWBA (DF) columns).

For the low-lying 2" state of '*C, the transition poten-
tials based on the DP and DF models, with the R3Y(HS)
regularized NN interaction based on the BM model for
transition density, are obtained (see Figs. 7(c), 8, and
9(c)). The DP was significantly deeper and possessed a
distinct form factor compared to the DF potential. The
DP and DF potential described the inelastic scattering
well at small angles but failed at large ones (see Fig. 10).
This failure confirms the strong coupling between states
and supports the application of the CC method. The DP
model achieves a better result than the DF model. The de-
formation parameter obtained from the DP model is con-
sistent with the parameter obtained from the proton scat-
tering, and it is larger than the results obtained from elec-
tron and *He scattering (see Table 5). The deformation
parameter obtained from the DF approach has a large
value (f = 0.81). Although this result may indicate that

the DF approach struggles to yield realistic transition po-
tentials, we should not draw this conclusion until we ex-
amine the DF approach in the CC framework.

For the low-lying 3" state of '°0, the DF transition po-
tential did not provide a good fit and required a large de-
formation parameter. In Fig. 8, the folded potential of the
ground state and transition potentials obtained via the mi-
croscopic method for multipole 1 =2 and A =3 are plot-
ted. The depth of the transition potentials decreases with
an increase in multipolarity, and therefore, the transition
potential for the inelastic 3" state of 'O requires a large
deformation parameter. The '®O nucleus can exhibit col-
lective excitations in the form of vibrational modes. Al-
though the deep core retains the shape of the ground state
in such modes, a few nucleons beyond this core particip-
ate in surface oscillations, thereby leading to vibrational
spectra [51]. Therefore, it may not be appropriate to treat
the transition density of the 3- state in the same way as
that of the 2" state. Consequently, it was speculated that
the transition density might be the source of the problem.
The BM transition density is not suitable for weaker
transitions or larger multipolarities [44]. An appropriate
deformation parameter can be obtained when a Tassie-
like (T) transition density [52] is used, wherein the radial
transition density is considered.

dp(r)
P = ~TiR ==,

(3%)

where 77 represents matter deformation with dimension-
ality (fm™"), which is used to construct the nuclear trans-
ition density for a multipole A.

The transition potential obtained by the Tassie-like
transition density denoted as DF-T reproduced the in-
elastic data better than the transition potential obtained by
the BM model, which is denoted as DF-BM (see Fig. 9).

Table 5. Target nuclei, excited state (17), excitation energy (E,, in MeV), and deformation parameters.

Semi-Microscopic

Target AT E.. /MeV Previous Studies
DWBA (DP) DWBA (DF) CC (DP) CC (DF)
+0.51 (*He, *He")[49]
" . X +0.810 (BM) +0.719 (BM)
C 2 4.44 +0.6 (p, p")[49] +0.618 +0.54
+0.336 (T) +0.313 (T)
—0.45 (e, €)[49]
. ~ s +0.507 (BM) +0.511 (BM)
o 3 6.13 +0.331 (He, *He") [19] +0.329 +0.314
+0.245 (T) +0.249 (T)
+0.67 (He, *He') [24]
Mg 2+ 1.37 +0.47 (p, p) [50] +0.520 +0.655 (BM) +0.436 +0.562 (BM)
+0.45 (e, ') [50]
+0.49 (3He, 3He") [25]
S 2" 1.78 —0.37 (p, p') [50] +0.386 +0.495 (BM) +0.322 +0.407 (BM)

~0.39 (e, ') [50]

“ The reference did not determine the sign of the parameter.
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Fig. 7. (color online) a) Transition density for 'C based on the BM model (8= 0.81). b) Unnormalized direct and exchange parts of

the transition potential based on the DF approach with regularized R3Y(HS)+EX(FR/Paris). c) Transition potentials based on the DP

and DF models (setting SR = 1 for comparison).

20
0 '
_20 4
S 4]
s ¥
<
e _60 4
£
2
o 807
(a]
=100 |
—_— G.S.
—120 A=2
140 — A=3
o 1 2 3 4 5 6 71 8
r[fm]
Fig. 8. (color online) Unnormalized ground state folded po-

tential (black line) and transition potentials of '°O for differ-
ent multipolarities based on the DF approach with
R3Y(HS)+EX(FR/Paris) interactions (colored lines) and the
BM model for transition density (Setting 8/R =1 for compar-
ison).

The deformation parameter obtained from fitting the data
has a reasonable value (zr = 0.245 fm™"). In Fig. 9, a com-
parison is made between transition potentials obtained
from the BM and T models and the transition potential of

the DP model for the *He+'°0 system. The BM model
generated a shallow transition potential, whereas the T
model generated the deepest one. Similar to the *C case,
both DP and DF models achieve satisfactory results at
small angles but fail at large angles. An attempt was
made to extend the T model to '“C inelastic scattering;
however, no satisfactory result was obtained. The value
of the deformation parameter was very small (8 = 0.336)
compared to that for the BM model (§ = 0.81). The ana-
lysis revealed that the BM model yielded larger deforma-
tion parameter values than the T model, particularly when
considering the transition potential estimated for 'C and
0. A possible explanation for the failure of the Tassie
model in describing the 2 state of '2C is that this state ex-
hibits rotational rather than vibrational characteristics.
The BM collective model, which successfully describes
rotational bands, would therefore be more appropriate for
12C, in contrast to the Tassie model employed for vibra-
tional excitations [53]. This discrepancy clarifies why the
Tassie model effectively represents the vibrational excita-
tions of '®O; however, the rotating characteristics of '*C
require the BM model.

The transition potentials of the inelastic 2" state for
Mg and **Si were determined for the DP and DF mod-
els using BM transition density. Both models yielded sat-
isfactory results for small and large angles. The DP mod-
el exhibited a slightly enhanced result, particularly at

1.6 100 10
= 141 a) — M| _ | b) — c)
'= 1.2 il | »> 50 >
£ ) )
= 1.0 E E -10
=~ 0.8 =0 =
S 06 £ =20
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Fig. 9. (color online) a) Transition density of '®0 based on the BM and Tassie-like (T) models (setting SR = 7R = 1 for comparison). b)

Unnormalized direct and exchange parts of the transition potential are based on the DF calculation for the T model. ¢) Transition poten-

tials are based on the DP and DF models.
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large angles. The deformation parameters based on the
DF approach are consistent with previous *He scattering
studies (8 = 0.655 and 0.495 for Mg and **Si, respect-
ively). The DP and DF models yield deformation para-
meters that exceed those derived from electron and pro-
ton scattering. The real and imaginary parts of the trans-
ition potentials after fitting with the inelastic data were
plotted in Fig. 11. The maximum depth for the transition
potential of '°C, **Mg, and **Si ranged between 11 and 14
MeV, whereas for '°O, the maximum depth was approx-
imately 9 MeV. The root mean square (RMS) radii for the
real part of the transition potential were 3.872, 3.865,
4.636, and 4.720 fm for '*C, '°O, **Mg, and **Si, respect-
ively. The RMS radii of the transition potential for the 2"
state were factors of 1.134, 1.177, and 1.177 larger than
the RMS radius for the ground state DF potential of *C,
Mg, and *Si, respectively. For the 'O nucleus, the
RMS radius of the transition potential for the 3° state was
1.075 times larger than that of the ground-state DF poten-
tial. The calculated RMS radii do not represent the radii
of the excited states; instead, they should be interpreted
as the RMS radii of the interaction range between the *He
particle and target nuclei. Changes in these radii relative
to the ground state can provide insights into nuclear de-
formation. These changes for '*C, **Mg, and **Si exceed
that of '°0, likely because of their significant static nucle-
ar deformation.

Next, the CC method was applied to measure the

120 0 20 40 60 80

1073

100 120
Oc.m. [deg]

(color online) DWBA calculations for the elastic scattering of *He on '>C, '°O, *Mg, and **Si at 60 MeV.

strength of coupling between states based on the semi-mi-
croscopic optical potentials. In the CC calculations, the
(0%, 2%) coupling schemes were studied using the collect-
ive rotational model for *C, **Mg, and **Si, whereas the
(0%, 3") coupling schemes were used for '°O. The CC cal-
culations involved the variation of the normalization con-
stant, surface WS potential parameters, and deformation
parameters permitted to simultaneously optimize the fit
for elastic and inelastic data. The results are listed in Ta-
ble 6. The deformation parameters are listed in Table 5
(see CC (DP) and CC (DF) columns). Potentials derived
from elastic scattering were utilized as initial potentials
for CC calculations, with inelastic data incorporated into
the process. Channel coupling was found to affect the
ground-state scattering behavior [54, 55], which requires
a comparison of CC calculations for both elastic and in-
elastic cross-sections.

First, the coupling effect on the elastic scattering was
analyzed. The sensitivity of the coupling to the inelastic
form factor was explored by examining the DP and DF
models. The elastic scattering with and without coupling
was depicted in Fig. 12 for both models. The CC method
accurately described elastic scattering within the angular
range of 10 to 100°. For the '*C nucleus, the CC ap-
proach produced an oscillation within the angular range
of 80 to 120°, which was consistent with the data and not
observed in the DWBA method. The CC calculation
based on the DP, referred to as CC-DP, had a better res-
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(color online) a) Real part of the DF transition potentials for the scattering of *He on '2C (*2 state — BM model), 'O ('3 state

— T model), **Mg (*2 state — BM model), and *Si ("2 state — BM model) at 60 MeV based on the regularized HS+EX (FR/Paris) inter-

action. b) Imaginary part of the transition potentials.

Table 6. Normalization constant (Ng), depth (Wp) in MeV, radius and diffuseness parameters (rp and ap), total cross-sections (o),

and y? values of elastic and inelastic scattering for CC calculations based on the folding model with regularized R3Y (HS) interaction.

Reaction Model N Wp MeV rp /fm ap /fm o /mb B/ Xastic Xetastic
SHe+'2C DP 0.863 10.431 1.569 0.596 915.5 +0.54 18.37 2.66
DF - BM 0.892 10.843 1.569 0.611 915.5 +0.719 30.70 11.2

SHe+'°0 DP 0.892 10.969 1.594 0.701 1159.7 +0.314 7.89 151.22
DF-T 0.861 13.593 0.858 1.126 1249.5 +0.249 9.98 769.91
SHe+*Mg DP 0.722 9.882 1.230 1.146 1639.3 +0.436 37.3 9.26
DF - BM 0.739 10.095 1.243 1.126 1624.8 +0.562 37.5 6.52
*He+**Si DP 0.761 13.576 1.126 1.037 1546.9 +0.322 12.4 13.1
DF - BM 0.777 14.055 1.123 1.022 1529.7 +0.407 11.2 11.2

ult than the calculation based on the DF potential, de-
noted CC-DF, with BM densities. The oscillation was out
of phase at angles over 120° in the DF calculation. For
the '°O nucleus, the CC method agreed with the DWBA
method up to an angle of 120°. The CC-DF disagreed
with both DWBA and CC-DP from a large angle. The ef-
fect of coupling was not evident in the '°O case. No signi-
ficant difference was observed for the Mg and **Si nuc-
lei compared to the DWBA calculations. The DP results
were slightly better than the DF results, except for the '°O
nucleus. The coupling effect consistently decreased the
normalization constant across all cases. In addition, the
explicit inclusion of inelastic states reduced the depth of
the imaginary potentials and required larger values for the
radius parameter. In all cases, rp > ap is satisfied, except
for the DF calculation of '°O. The CC method yielded lar-
ger total reaction cross-sections than the DWBA method.
Second, inelastic cross sections calculated using the
CC method were analyzed and presented in Fig. 13. Sol-
id lines depict the results obtained using the DWBA
method, whereas dashed lines represent those from the
CC method. The CC calculations were initiated with the

most suitable DF transition potentials identified within
the DWBA analysis. For the DF model, transition poten-
tials based on the BM model were applied to '*C, **Mg,
and 2%Si, whereas the T model was utilized for '°O. For
12C, the CC method enhanced the accuracy of results at
both small and large angles for both DP and DF poten-
tials (see Fig. 13). This improvement suggested strong
coupling between nuclear states. The DP provided a bet-
ter fit for experimental data than the DF potential. Coup-
ling reduced the deformation parameter by 12.6% for the
DP and 11.2% for the DF potential. An evaluation of the
DF potential based on the T model showed unsatisfact-
ory results; the small value obtained for the deformation
parameters supported the conclusion that the BM trans-
ition density was the optimal choice for the 2" state '*C.
For the 3™ state of '°O, the CC method provided accur-
ate descriptions within an angular range of 10° to 50°.
However, for larger angles, neither CC-DP nor CC-DF
showed significant improvement. The calculated cross-
sections at angles greater than 80° are significantly high-
er than the experimental ones. The DWBA results outper-
formed those of the CC method. This finding aligned
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Fig. 12. (color online) Coupled channels calculations for the elastic scattering of *He on *C, '°0, **Mg, and **Si at 60 MeV.
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Fig. 13. (color online) Coupled channels Schrédinger-based calculations for the inelastic scattering of *He on '2C, '°0, **Mg, and 2Si
at 60 MeV.

114101-16



Double-folding analysis of elastic and inelastic *He-nucleus scattering at 60 MeV

Chin. Phys. C 49, 114101 (2025)

with the results of a previous study [19]. Burtebayev et
al. considered the coupling of the elastic and inelastic
scattering in the forward and reverse directions in the
framework of the collective and microscopic models, re-
spectively; nevertheless, the results were unsatisfactory
(see Fig. 4 in [19]). The deformation decreased by 4.56%
for the DP and increased by 1.63% for the DF potential.
The DP produced a very consistent value of .

For the 2* state of **Mg, applying coupled channel
calculations improved the results in the diffraction region
for both DP and DF potentials. At large angles, the
DWBA and CC calculations exhibited no significant dif-
ference. The present result exceeded the results obtained
by Sadykov et al. (See Fig. 7 [24]) in the comparison.
The authors utilized only the deformed real potential,
which is a common approach in light particle scattering
studies that enables them to compare their results with ex-
isting data. The present study provided evidence for the
crucial role of imaginary part deformation in describing
inelastic scattering. The coupling decreased the value of
f. The DP produced S = 0.436, consistent with proton and
electron scattering results. In contrast, the DF potential
yielded B = 0.562, which aligns with findings from *He
scattering (see Table 5). Compared to the CC-DP results,
the CC-DF results showed a marginal improvement.

For the 2" state of 2*Si, the implementation of coupled
channel calculations demonstrated minimal enhancement
in the accuracy of inelastic cross-section determinations.
Consequently, coupled channel calculations had virtually
no effect on the accuracy of inelastic cross-section pre-
dictions. The CC-DF calculations produced a f value of
0.322, which is consistent with proton and electron scat-
tering experiment results. The CC-DP calculations yiel-
ded the lowest value of the deformation parameter. Simil-
ar to the case of **Mg, the CC-DF results showed only a
marginal improvement over the CC-DP results, suggest-
ing that the DF approach is not particularly advantageous
for light targets.

Deformation parameters extracted from *He scatter-
ing systematically exceeded those obtained from electron
scattering, consistent with previous observations of pro-
jectile-dependent results [56]. This discrepancy arises be-
cause electron scattering interacts with protons solely via
the Coulomb force, exclusively probing their charge dis-
tribution. In contrast, *He scattering interacts with pro-
tons via both Coulomb and nuclear forces and with neut-
rons via the nuclear force, thereby exhibiting sensitivity
to both neutron and proton distributions. The extracted
deformation values could reflect dynamic deformation ef-
fects, where nuclear distortions emerged from the inter-
play between the internal structure of the target nucleus
and incident projectile. Such dynamic deformation should
fundamentally depend on both the nuclear structure and
effective NN interactions during the scattering process. A
comparison between the extracted deformation paramet-

ers and proton scattering results offers additional support
for dynamical deformation effects, with the expectation
that this effect will be more pronounced in *He scattering
because of its greater deformation magnitude.

IV. CONCLUSIONS

This study investigated the *He elastic and inelastic
scattering off ?C, '°0, **Mg, and **Si at 60 MeV using a
DF approach. Optical potentials were calculated based on
RMF-derived NN interactions R3Y(HS), R3Y(L1),
R3Y(W), and R3Y(Z) for the real part. The results of the
present study can be summarized as follows:

1. The regularization procedure maintained the char-
acteristic behavior of NN interactions while reducing the
potential well depth. The R3Y(Z) interaction was ex-
cluded from our analysis as a purely repulsive potential
was deemed unphysical for *He-nucleus scattering in this
energy regime. Regularized potentials demonstrated im-
proved agreement with experimental data. Comparative
analysis revealed that the SWS imaginary potential
provided results superior to those derived from folded po-
tentials. In addition, the selection of imaginary potential
affected the required normalization constant significantly.

2. The R3Y(HS) interaction successfully reproduced
experimental scattering data with an optimal normaliza-
tion constant N = 1 for '>C and 0.9, 0.79 and 0.79 for '°O,
Mg and **Si, respectively. In contrast, both R3Y(L1)
and R3Y(W) interactions required significantly smaller
normalization constants (N < 0.5), which produced un-
realistically deep potentials that rendered them unsuit-
able for describing *He-nucleus scattering. We observed
an inverse relationship between the normalization con-
stant and target mass number, suggesting that the RMF-
derived R3Y(HS) interaction demonstrated better per-
formance for lighter nuclear systems.

3. Analysis of the inelastic scattering was conducted
within the DWBA framework, employing two distinct ap-
proaches for transition potentials: a phenomenological
DP and a microscopic DF potential. The DP approach
yielded a larger potential depth for the 2* excited state of
12C than the DF method. Although both models success-
fully reproduced small-angle scattering cross-sections,
their accuracy diminished at larger angles, with the DP
model demonstrating a better performance in this regime.
For the '°0's 3™ state, the DF approach based on BM col-
lective models required an anomalously large deforma-
tion parameter (3 > 0.5). A better agreement with experi-
mental data was achieved using a Tassie-type transition
density, which provided more realistic nuclear deforma-
tion characteristics. For the 2* states of **Mg and *Si,
both DP and DF approaches incorporating BM transition
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densities produced comparable and satisfactory results
across the measured angular range.

4. The CC method was applied to analyze both elast-
ic and inelastic scattering processes, demonstrating vary-
ing degrees of success across different nuclear systems.
For elastic scattering, the CC calculations showed excel-
lent agreement with experimental data in the angular
range of 10°—100°, particularly for the '>C nucleus, which
accurately reproduced the characteristic oscillatory pat-
tern observed between 80°—120°. An analysis of the ef-
fects of coupling various transition potentials on elastic
scattering revealed that CC-DP consistently outper-
formed the DF potential approach with BM densities
(CC-DF), with the latter exhibiting phase discrepancies
beyond 120° that limited its effectiveness for backward-

angle scattering. In the analysis of inelastic scattering, the
CC method proved effective for the '*C nucleus, signific-
antly improving the agreement with experimental data
across both forward and backward angles for both trans-
ition potential formulations, thereby suggesting strong
coupling between nuclear states in this system. Further,
the method provided accurate descriptions of the 3 state
in '°O for scattering angles up to 50°; however, its effect-
iveness diminished at larger angles regardless of the po-
tential used. The results were more varied for the 2" states
of heavier nuclei: the **Mg case showed noticeable im-
provement in the diffraction region. Meanwhile, the **Si
system exhibited only minimal enhancement in cross-sec-
tion determination, indicating weaker coupling effects in
these heavier nuclei.
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