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Abstract: We investigate  the  soft  behavior  of  the  tree-level  Rutherford  scattering  processes  mediated  via t-channel
one-graviton exchange.  We consider  two types of  Rutherford scattering processes, e.g.,  a  low-energy massless  struc-
tureless  projectile  (up  to  spin-1)  hits  a  static  massive  composite  particle  carrying  various  spins  (up  to  spin-2),  and  a
slowly-moving light projectile hits a heavy static composite target. The unpolarized cross sections in the first type are
found to exhibit universal forms at the first two orders in  expansion, yet differ at the next-to-next-to-leading order,
though some terms at this order still remain universal or depend on the target spin in a definite manner. The unpolar-
ized cross sections in the second type are universal at the lowest order in projectile velocity expansion and through all
orders in , independent of the spins of both projectile and target. The universality partially breaks down at relative
order- , albeit some terms at this order still depend on the target spin in a specific manner.
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I.  INTRODUCTION

kµ

As  is  taught  in  virtually  every  quantum  field  theory
textbook,  a  generic  tree-level QED  process  with  emis-
sion of  a  low-energy photon exhibits  simplifying feature
[1]. In the soft limit, the full QED amplitude can be fac-
torized into  the  product  of  the  simpler  one  with  the  ex-
ternal  photon  removed  times  a  universal  eikonal  factor.
The  universal  pattern  governing  the  emission  of  soft
photon can  be  readily  carried  over  to  the  case  of  emis-
sion  of  soft  graviton  [2],  and  can  also  be  extended
through  the  next-to-leading-order  (NLO)  in  the  small k
expansion  (where  denotes  the  four-momentum of  the
emitted photon or graviton), which is generically referred
to as the LBK theorem [3−5]. Recently there has been at-
tempt to reproduce the LBK theorem entailing soft grav-
iton  emission  from  the  perspective  of  the  soft-collinear
effective theory [6].

The LBK theorem only applies to the case of on-shell
photon/graviton emitted from the external  legs,  in which
the  matter  fields  correspond  to  structureless  point-like
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particles.  Nevertheless,  it  is  also  of  theoretical  curiosity
about the soft pattern of the processes involving compos-
ite particles and the soft photon/graviton emerging in the
internal line, in which the LBK theorem is no longer ap-
plicable. On the physical ground, one anticipates that in a
process entailing a heavy composite particle, the soft lim-
it implicates that the very long wavelength of the (real or
virtual)  photon/graviton  is  unable  to  resolve  the  detailed
internal structure of the composite particle, so its propri-
eties can be simply summarized in terms of a few low or-
der multipoles,  correspondingly  the  expanded  cross  sec-
tions might exhibit some simple textures. A classical ex-
ample is the soft limit of the Compton scattering, with the
leading  contribution  represented  by  the  Thomson  cross
section, depending only on the total electric charge of the
composite target, while the NLO contribution in  ex-
pansion  becomes  sensitive  to  its  magnetic  dipole  [7, 8].
Another illuminating  example  is  the  Rutherford  scatter-
ing  process,  where  a  low-energy  projectile  bombards  a
static,  heavy,  composite  target  particle  bearing  arbitrary
spin, mediated by a t-channel photon exchange. Recently
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the soft  limit  of  the  electromagnetic  Rutherford  scatter-
ing  process  has  been  comprehensively  investigated  by
two  of  the  authors,  and  some  simple  patterns  about  the
target spin  dependence  have  been  identified  upon  per-
forming the heavy target mass expansion [10].
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The central  theme  of  this  work  is  to  extend  the  pre-
ceding analysis in electromagnetic case [10] to the gravit-
ational  Rutherford scattering process, i.e.,  a  structureless
point-like projectile bombs on a static,  heavy, composite
target particle bearing arbitrary spins, now with the grav-
iton  being  the  force  carrier.  We  consider  two  types  of
benchmark gravitational  Rutherford scattering processes,
e.g.,  a  low-energy massless structureless projectile  hits  a
static massive composite particle with spin up to , and a
non-relativistic  light  projectile  bombs  on  a  heavy  static
composite  target.  The  major  observation  of  this  work  is
similar to  what  is  found  in  its  electromagnetic  counter-
part  [10]:  the  unpolarized cross  sections  in  the  first  type
are  universal  (independent  of  the  target  spin)  at  the  first
two  orders  in  expansion,  yet  differ  at  the  next-to-
next-to-leading order (NNLO), though some terms at this
order still remain universal or depend on the target spin in
a  definite  manner.  The  unpolarized  cross  sections  in  the
second type are universal at the lowest order in projectile
velocity expansion and through all orders in , insens-
itive to both projectile and target's spin. The universality
partially  breaks  down  at  relative  order- ,  though
some terms at  this  order  are  still  universal  or  depend on
the target spin in a recognizable manner.

1
2 1
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The rest of the paper is distributed as follows. In Sec.
II,  we  present  the  expression  of  the  tree-level  amplitude
for  gravitational  Rutherford  scattering  process  involving
a  heavy  composite  spinning  target  particle,  and  specify
the  parametrization  of  the  gravitational  form  factor  of
massive target  particle  carrying various spin.  In Sec.  III,
we consider the low-energy massless point-like projectile
with spin-0,  and , striking on a heavy composite tar-
get  particle  with  spin  ranging  from 0  to  2.  We  organize
the unpolarized cross section in the heavy target mass ex-
pansion up  to  NNLO,  and  identify  some  universal  pat-
tern about the target spin dependence. In Sec. IV, we con-
sider  another  type  of  gravitational  Rutherford  scattering
process,  where  the  projectile  is  replaced  by  a  slowly-
moving light structureless particle with spin ranging from
0  to  1.  We  identify  some  universal  pattern  of  the  cross
section in the double expansion of the projectile velocity
and .  We summarize  in  Sec.  V.  In  Appendix  A,  we
present the spin sum formula for the target particles with
various  spin.  In  Appendix  B,  we tackle  the  gravitational
Rutherford scattering  based  on  the  heavy  black  hole  ef-
fective theory (HBET),  taking the massless spinless pro-
jectile and heavy spinless target particle as example. The
reason why the NLO amplitude vanishes becomes trans-
parent from the perspective of effective field theory. 

II.  AMPLITUDE OF GRAVITATIONAL RUTHER-
FORD SCATTERING INVOLVING A HEAVY

COMPOSITE TARGET PARTICLE

In general relativity, the energy-momentum tensor of
the matter field plays the role of the gravitational sources.
The  symmetric  Belinfante-Rosenfeld  energy-momentum
tensor is defined as 

Tµν =
2√−g

δS
δgµν

, (1)

gµν(x)
gµν(x) = ηµν+ κhµν(x)

ηµν = diag(1,−1,−1,−1)
κ =
√

32πGN

GN = 6.709×10−39 GeV−2

Lint =
κ
2 hµνT µν

where S denotes  the  gravitational  action  of  the  matter
field,  denotes  the  spacetime  metric  field.  In  the
weak gravity case, one approximates 
with  being the Minkowski metric.
Here ,  with  Newton's  constant

. In  the  linearized  approxima-
tion,  the  matter  field  couples  with  the  graviton  simply
through the interaction .

I(k)N(p)→ I(k′)N(p′)

pµ = (M,0)

In this  work,  we  focus  on  the  gravitational  Ruther-
ford scattering process , where I and
N represents a point-like projectile and a heavy compos-
ite  target  particle,  respectively.  We  are  working  in  the
laboratory  frame  where  the  target  particle  is  at  rest,  so
that  the  four-momentum of  the  target  particle  in  the  ini-
tial  state  becomes .  As  depicted  in Fig.  1,  the
tree-level  gravitational  Rutherford  scattering  process  is
induced by the t-channel graviton exchange, and the cor-
responding amplitude reads 

M = κ
2Pµνρσ
4q2

⟨I (k′) |T µν|I (k)⟩⟨N (p′,λ′) |T ρσ|N (p,λ)⟩, (2)

Pµνρσ ≡ ηµρηνσ+ηµσηνρ−ηµνηρσ
q = k− k′

λ,λ′

with  corresponding  to  the
harmonic gauge.  represents the momentum car-
ried  by  the  virtual  graviton,  denote  the  polarization

 

IN→ IN

Fig.  1.    Tree-level  Feynman  diagram  for  gravitational
Rutherford scattering process . The double wavy line
represents the graviton propagator. The thick double line rep-
resents the heavy target particle, and the heavy dot denotes the
gravitational vertex given in (5).
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indices for the massive spinning target particle. For sim-
plicity, we  have  suppressed  the  spin  indices  of  the  pro-
jectile particle.

0,1/2,1
We  will  consider  three  different  types  of  projectile

particles,  the  spin-  point-like  particles.  With  the
mass  denoted  by m,  the  corresponding  energy-mo-
mentum tensors read 

T µν = ∂µϕ∂νϕ− η
µν

2
(
∂ρϕ∂ρϕ−m2ϕ2

)
, spin-0 (3a)

 

T µν =
i
4
ψ̄

ï
γµ
Å
∂ν−

←
∂ν
ã
+γν
Å
∂µ−

←
∂µ
ãò

ψ, spin-
1
2

(3b)

 

T µν = −FµλFν
λ+

1
4
ηµνFρσFρσ−

1
2

m2ηµνAλAλ+m2AµAν.

spin-1
(3c)

The corresponding  gravitational  matrix  elements  in-
volving the projectile particles can be readily worked out: 

⟨I(k′)|T µν|I(k)⟩ = kµk′ν+ kνk′µ−ηµν(k · k′−m2), spin-0
(4a)

 

⟨I(k′)|T µν|I(k)⟩ = 1
4

ū(k′)(γµ(k′ν+ kν)

 

+γν(k′µ+ kµ))u(k), spin-
1
2

(4b)

 

⟨I(k′)|T µν|I(k)⟩ = ε∗σ(k′)[Pµνρσ(k · k′−m2)+ηµνkσk′ρ

+ηρσ (kµk′ν+ kνk′µ)−ηνρkσk′µ−ηµρkσk′ν

−ηνσkµk′ρ−ηµσkνk′ρ]ερ(k). spin-1
(4c)

ep
Jlab EIC EicC

The gravitational matrix elements involving the com-
posite target  particles  in  (2)  are  in  general  nonperturbat-
ive  objects,  which  vary  with  target  species.  In  literature
they  are  usually  referred  to  as  the gravitational  form
factors (GFFs) [11, 12]. Since the GFFs encode some es-
sential  mechanical  properties  of  a  hadron  such  as  mass,
spin  and  shear  force  distributions[14−16], people's  in-
terest  toward hadron's  GFFs has  revived in  recent  years.
Although  it  is  unfeasible  to  detect  the  gravitational
Rutherford  scattering  in  the  foreseeable  future,  it  is  of
high priority of the current and forthcoming  facilities
such as ,  and  to extract nucleon' GFFs in
an indirect  way [17] 1).  Recently  the  GFFs of  the  proton
and pion at small momentum transfer have been investig-
ated from the lattice QCD simulation [18, 19].

In this  work  we  consider  five  types  a  composite  tar-
get particles of mass M, with spin varying from 0 to 2. In
line with  the  Lorentz  group  representation,  the  corres-
ponding  gravitational  matrix  elements  involving  various
target particles  can  be  decomposed  into  the  linear  com-
bination of different GFFs [20] 2):

 

⟨N (p′,λ′) |T µν|N (p,λ)⟩s=0 = 2PµPν F10

Å
q2

M2

ã
+2

(
qµqν−ηµνq2

)
F20

Å
q2

M2

ã
, (5a)

 

⟨N (p′,λ′) |T µν|N (p,λ)⟩s= 1
2
= u(p′,λ′)

î
2PµPν F10

Å
q2

M2

ã
+2

(
qµqν−ηµνq2

)
F20

Å
q2

M2

ã
+P{µ i

2σ
ν}ρqρF40

Å
q2

M2

ãó
u(p,λ), (5b)

 

⟨N (p′,λ′) |T µν|N (p,λ)⟩s=1 = −ε∗α′ (p′,λ′)
ï

2PµPν

Å
ηα
′α F10

Å
q2

M2

ã
− qα

′
qα

2M2
F11

Å
q2

M2

ãã
+2

(
qµqν−ηµνq2

)Å
ηα
′α F20

Å
q2

M2

ã
− qα

′
qα

2M2
F21

Å
q2

M2

ãã
−2M2ηµν

Å
qα
′
qα

2M2
F31

Å
q2

M2

ãã
−P{µην}[α

′
qα]F40

Å
q2

M2

ã
−
(
q{µην}{α

′
qα}−ηµνqα′qα−ηα′{µην}αq2

)
F50

Å
q2

M2

ãò
εα(p,λ),

(5c)
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1) Note that it has been recently proposed that the nucleon GFF may be accessed in the future electron-ion collider via the interference effect between the photon-in-
duced and the massive-graviton-induced amplitude in some beyond Standard Model scenarios [9].

F30 F6,i F31 +F50 = 02) Current conservation enables one to drop the  and  terms, as well as implies  [20].
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⟨N (p′,λ′) |T µν|N (p,λ)⟩s= 3
2
= −uα′ (p′,λ′)

ï
2PµPν

Å
ηα
′α F10

Å
q2

M2

ã
− qα

′
qα

2M2
F11

Å
q2

M2

ãã
+2

(
qµqν−ηµνq2

)Å
ηα
′α F20

Å
q2

M2

ã
− qα

′
qα

2M2
F21

Å
q2

M2

ãã
−2M2ηµν

Å
qα
′
qα

2M2
F31

Å
q2

M2

ãã
+P{µ i

2σ
ν}ρqρ

Å
ηα
′α F40

Å
q2

M2

ã
− qα

′
qα

2M2
F41

Å
q2

M2

ãã
−
(
q{µην}{α

′
qα}−ηµνqα′qα−ηα′{µην}αq2

)
F50

Å
q2

M2

ãò
uα(p,λ),

(5d)

 

⟨N (p′,λ′) |T µν|N (p,λ)⟩s=2 = ε
∗
α′1α

′
2
(p′,λ′)

ï
2PµPν

Å
ηα
′
1α1ηα

′
2α2 F10

Å
q2

M2

ã
− qα

′
1 qα1

2M2
ηα
′
2α2 F11

Å
q2

M2

ã
+

qα
′
1 qα1

2M2

qα
′
2 qα2

2M2
F12

Å
q2

M2

ãã
+2

(
qµqν−ηµνq2

)Å
ηα
′
1α1ηα

′
2α2 F20

Å
q2

M2

ã
− qα

′
1 qα1

2M2
ηα
′
2α2 F21

Å
q2

M2

ã
+

qα
′
1 qα1

2M2

qα
′
2 qα2

2M2
F22

Å
q2

M2

ãã
−2M2ηµν

Å
qα
′
1 qα1

2M2
ηα
′
2α2 F31

Å
q2

M2

ã
− qα

′
1 qα1

2M2

qα
′
2 qα2

2M2
F32

Å
q2

M2

ãã
−P{µην}[α

′
2 qα2]
Å
ηα
′
1α1 F40

Å
q2

M2

ã
− qα

′
1 qα1

2M2
F41

Å
q2

M2

ãã
−
(
q{µην}{α

′
2 qα2}−ηµνqα′2 qα2 −ηα′2{µην}α2 q2

)
×
Å
ηα
′
1α1 F50

Å
q2

M2

ã
− qα

′
1 qα1

2M2
F51

Å
q2

M2

ãã
+q[α′2ηα2]{µην}[α

′
1 qα1]F70

Å
q2

M2

ãò
εα1α2 (p,λ),

(5e)

P ≡ (p+ p′)/2
q ≡ p′− p

a{µbν} ≡ aµbν+aνbµ

a[µbν] ≡ aµbν−aνbµ σµν = i
2 [γµ,γν] εµ uµ εαβ

1/2 3/2

q2/M2

where  is the average momentum of the tar-
get particle between the initial and final states, 
denotes  the  transfer  momentum. ,

,  and . u, , ,  sig-
nify  the  wave  functions  of  the  spin- ,  1, ,  and  2
particles, respectively.  Note  various  GFFs  are  normal-
ized to  be  dimensionless  Lorentz  scalars  that  solely  de-
pend  on  the  ratio .  Note  that  we  have  suppressed
terms that are forbidden by the current conservation.

2(s+1)+3⌊s⌋−Θ(s−1)

F10 F40

F10(0) = 1 F40(0) = s

F′10(0) F11(0) F20(0) F50(0)

From  (5)  one  observes  that  for  target  particle  with
spin s,  the  number  of  independent  GFFs  is

 [20] 1). Analogous to electromag-
netic  form  factors,  various  GFFs  with  zero  momentum
transfer  encapsulate  the  properties  of  the  gravitational
multipoles of  the  composite  target  particles.  For  the  tar-
get  particle  carrying an  arbitrary  spin s,  the  and 
have an absolute normalization at zero momentum trans-
fer,  and ,  as  dictated  by  the  energy-
momentum and  angular  momentum  conservation,  re-
spectively.  The  2), ,  and  terms
are  related  to  angular  momentum  [13, 14],  pressure  and
shear force [14−16] of the target particle. The mass radi-
us of the target particle can also be obtained from the lin-
ear combination  of  these  form  factors  with  zero  mo-
mentum transfer. 

III.  LOW-ENERGY GRAVITATIONAL RUTHER-
FORD SCATTERING WITH MASSLESS PRO-

JECTILE

We first consider the case of the massless projectile of
spin j.  The  corresponding  differential  unpolarized  cross
section in the laboratory frame is given by 

dσ
dcosθ

=
1

2|k| ·
1

2M
· k′2

8π|k|M ·
1

2 j+1
1

2s+1

∑
spins

|M|2 , (6)

|k′|
|k| cosθ

where θ denotes the polar angle between the reflected and
incident  projectile.  The  magnitude  of  the  three-mo-
mentum of the outgoing projectile, , can be expressed
in terms of , M, and : 

|k′| = |k|

1+
|k|
M

(1− cosθ)
. (7)

Squaring the amplitude in (2), summing over the po-
larization in the final state and averaging upon the polar-
izations in the initial state utilizing the spin sum formula
in  Appendix  for  target  particles,  one  encounters  rather

Yu Jia, Jichen Pan, Jia-Yue Zhang Chin. Phys. C 48, (2024)

Θ(x) = 1 x ≥ 0 ⌊s⌋ s ⌈s⌉
s

1) The Heaviside step function is defined as  for , otherwise vanishes. The symbol  signifies the floor function of . Later the symbol  will be
used to represent the ceiling function of .

Fn(q2/M2) = Fn(0)+F′n(0)q2/M2 +O(1/M4)2) The Taylor expansion of the GFF around the origin is understood to be .
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|k| ≪ M

lengthy and cumbersome-looking expressions.  It  is  diffi-
cult to identify any clear pattern about the dependence on
the heavy target particle spin. Nevertheless, since we are
solely concerned with the low-energy limit , it be-
comes elucidating to carry out the heavy target mass ex-
pansion  for  the  unpolarized  cross  sections.  As  we  will
see, the soft behavior of the gravitational Rutherford scat-
tering  becomes  transparent  and  one  is  able  to  recognize
some universal patterns. 

0A.    Massless spin-  projectile
1/MExpanding  (6)  in  powers  of ,  one  immediately

observes that the first two terms of the unpolarized cross
sections  are  universal, e.g.,  independent  of  the  target
particle spin: Å

dσ
dcosθ

ãs

LO
=

κ4M2F2
10

512πsin4 θ
2

, (8a)

 Å
dσ

dcosθ

ãs

NLO
= − κ

4M|k|F2
10

128πsin2 θ
2

, (8b)

Fn

Fn(0) F10 = 1

k′2/k2 1/M
F10

with the  occurring  GFFs  evaluated  at  the  zero  mo-
mentum transfer.  For  simplicity,  we  have  adopted  as
the  shorthand  for  from  now  on.  Note  that 
for any type of composite target particles. The leading or-
der  (LO)  term  is  identical  to  the  cross  section  obtained
from the  light-bending angle  in  classical  general  relativ-
ity[21, 22]. This is intuitively as expected, because in the
soft limit, the long-wavelength graviton can only feel the
total  mass of the composite target  particle,  insensitive to
any further  details  about  its  internal  structure.  Interest-
ingly, the next-to-leading order (NLO) term still remains
universal,  which  originates  from  expanding  the  phase
factor factor  to NLO in . It is instructive to un-
derstand why only a single GFF  contributes at  NLO
from the  angle  of  effective  field  theory.  We  will  devote
Appendix B to such an analysis.

In  contrast,  at  the  next-to-next-to-leading-order
(NNLO) in heavy target  mass expansion,  the differential
cross sections starts to depend on the target particle spin:Å

dσ
dcosθ

ãs

NNLO
= − κ4k2

64πsin2 θ
2

ß
F10F′10−

1
2

F10F20 (1− cosθ)+
1
8

F2
10

ï
7cosθ− 2

3

Å
21
2
+ s+ ⌈s⌉

ãò
+Θ

Å
s− 1

2

ãï
(−1)2s+7

24
F10F40− f (0)

s F2
40(cosθ+1)

ò
− 1

6
Θ (s−1)[2cosθF10F50+F10F11]− Θ (s−2)

1
6

F10F70(1+ cosθ)
™
, s = 0,

1
2
,1,

3
2
,2 (9)

with 

f (0)
1
2
=

1
16
, (10a)

 

f (0)
1 =

1
6
, (10b)

 

f (0)
3
2
=

5
144

, (10c)

 

f (0)
2 =

1
8
. (10d)

F′10F10 F10F20 F2
10 cosθ

F′10F10

F2
10(q2/M2)

F′10 F11 F20 F50

We  observe  that , ,  terms  still
remain  universal, i.e.,  independent  of  the  target  spin.  In
fact, the  terms actually have the same origin of the
LO and NLO cross sections, which correspond to higher-
order  term  in  Taylor  expansion  of  in  the
squared LO amplitude and the phase space measure. The
GFFs , ,  and  reflect the mechanical proper-

F10F40

4/3

ties of the composite target particles such as angular mo-
mentum [13, 14],  pressure  and shear  force  [14−16].  Our
results indicate that at NNLO in heavy target mass expan-
sion,  the  cross  section  starts  to  depend  on  the  detailed
three-dimensional internal structure of target particle oth-
er  than its  mass.  Curiously,  the coefficient  of  the 
term  seems  to  reflect  the  spin-statistic  characteristic  of
the target  particle,  which alternates  from 1 (fermions)  to

 (bosons). Although we only enumerate five different
kinds of  target  spin,  it  is  conceivable  that  the  aforemen-
tioned patterns should hold true for arbitrary target spin.
 

1/2B.    Massless spin-  projectile

1/M

We can repeat our investigation in Sec. III A by repla-
cing the projectile with a point-like massless Dirac fermi-
on. After conducting the heavy target mass expansion, we
again  observe  that  the  unpolarized cross  sections  exhibit
universal forms at LO and NLO in  expansion:
 Å

dσ
dcosθ

ãs

LO
=
κ4M2F2

10 cos2 θ
2

512πsin4 θ
2

, (11a)
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Å
dσ

dcosθ

ãs

NLO
= −

κ4M|k|F2
10 cos2 θ

2

128πsin2 θ
2

. (11b)

cos2 θ

2

θ ≈ 0

θ ≈ π

It is  worth  emphasizing  that,  although  these  expres-
sions are  independent  of  the  target  spin,  they  are  sensit-
ive  to  the  projectile  spin.  To  be  definite,  there  arises  an
extra factor  in the numerators of (11) with respect
to  (8)  in  the  case  of  spinless  projectile.  In  the  forward
limit ,  the  occurrence  of  this  extra  factor  does  not
make  a  difference.  Nevertheless,  this  extra  factor  brings
in a  strong  suppression  of  the  LO  and  NLO  cross  sec-
tions  around  the  backward  scattering  limit  ( )  for  a

1
2spin-  projectile  with  respect  to  the  spin-0  projectile,  as

is evident by comparing (8) and (11). This feature can be
readily  understood  by  the  fact  that,  analogous  to  QED,
gravitational  interaction  also  conserves  the  helicity  of
massless  matter  particle.  Therefore,  the  conservation  of
angular  momentum along the  beam direction forbids  the
backward scattering of projectile to occur, since the spin
of  the  heavy  static  target  particle  cannot  be  changed  by
the soft gravitational scattering.

0 2

As in Sec. III A, the universality becomes partially vi-
olated  at  NNLO.  For  various  composite  target  particles
with spin ranging from  to , the NNLO contributions to
the cross sections become

 Å
dσ

dcosθ

ãs

NNLO
=

κ4k2

64πsin2 θ
2

ß
−F10F′10 cos2 θ

2
+

1
8

F2
10 cos2 θ

2

ï
13sin2 θ

2
+

2
3

(s+ ⌈s⌉)
ò

−Θ
Å

s− 1
2

ãï
(−1)2s+7

24
F10F40 cos2 θ

2
− f ( 1

2 )
s F2

40 (cos2θ+8cosθ+23)
ò

+
1
6
Θ (s−1) F10 (2F50+F11)cos2 θ

2
+Θ (s−2)

1
3

F10F70 cos2 θ

2

™
, s = 0,

1
2
,1,

3
2
,2 (12)

with 

f ( 1
2 )

1
2
=

1
256

, (13a)

 

f ( 1
2 )

1 =
1

96
, (13b)

 

f ( 1
2 )

3
2
=

5
2304

, (13c)

 

f ( 1
2 )

2 =
1

128
. (13d)

F′10F10 F10F20 F2
10 sin2 θ

2
cos2 θ

2
F′10F10

F10F40

1
4/3

Similar to the pattern revealed in the case of massless
spinless projectile, we observe that the coefficients of the

, ,  remain  independent  of
the target spin. The  term actually has the same ori-
gin of the LO and NLO cross sections. The coefficient of
the  term again reflects the spin-statistic character-
istic of the target particle, which alternates from  (fermi-
ons) to  (bosons). 

1C.    Massless spin-  projectile
We can repeat the the preceding analysis by turning to

1
1
2

a massless spin-  projectile. Upon heavy target mass ex-
pansion,  analogous to the cases of the spin-0 and spin-
projectile,  we again observe the similar universal pattern
at LO and NLO: Å

dσ
dcosθ

ãs

LO
=
κ4M2F2

10 cos4 θ
2

512πsin4 θ
2

, (14a)

 Å
dσ

dcosθ

ãs

NLO
= −

κ4M|k|F2
10 cos4 θ

2

128πsin2 θ
2

, (14b)

cos4 θ

2

θ ≈ 0

1
2

θ ≈ π 1

except there appears an extra factor  in the nu-
merators with respect to the case of spinless projectile. In
the forward limit , the emergence of this extra factor
does  not  make  a  difference.  Similar  to  the  case  of  the
spin-  projectile,  this  extra  factor  brings  in  a  stronger
suppression  of  the  LO  and  NLO  cross  sections  near  the
backward  scattering  limit  ( )  for  a  spin-  projectile.
The  reason  is  the  same  as  explained  before,  since  the
gravitational interaction  preserves  the  helicity  of  mass-
less  spin-1  matter  particle  (photon),  the  conservation  of
angular  momentum along the  beam direction forbids  the
backward scattering of the massless projectile to occur.

The universality becomes partially violated at NNLO.
For  target  particle  with  spin  ranging  from  0  to  2,  the
NNLO contributions to the unpolarized cross sections be-
come
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Å
dσ

dcosθ

ãs

NNLO
= −

κ4k2 cos2 θ
2

256πsin2 θ
2

ß
F2

10 cos2 θ

2

ï
3cosθ− 1

3
(9− s−⌈s⌉)

ò
+4F10F′10 cos2 θ

2

+Θ

Å
s− 1

2

ãï
(−1)2s+7

6
F10F40 cos2 θ

2
+ f (1)

s F2
40(cosθ−3)

ò
−2

3
F10 [Θ (s−1)(F11+2F50)+Θ (s−2)2F70]cos2 θ

2

™
, s = 0,

1
2
,1,

3
2
,2 (15)

with 

f (1)
1
2
=

1
4
, (16a)

 

f (1)
1 =

2
3
, (16b)

 

f (1)
3
2
=

5
36
, (16c)

 

f (1)
2 =

1
2
. (16d)

1
2

F′10F10 F10F20 F2
10 cosθcos2 θ

2

F′10F10

F10F40

1 4/3

Similar  to the projectile  of  spin-0 and ,  we observe
that  the  coefficients  of , , 
terms  are  independent  of  the  target  spin.  Actually  the

 term has the same origin of the LO and NLO cross
sections.  Again,  the  coefficient  of  the  term again
reflects  the  spin-statistic  characteristic  of  the  target
particle,  which  alternates  from  (fermions)  to  (bo-
sons). 

IV.  GRAVITATIONAL RUTHERFORD SCATTER-
ING WITH NON-RELATIVISTIC LIGHT PRO-

JECTILE

In  this  section,  we  turn  to  the  original  prototype  of

m≪ M

Rutherford scattering process, i.e., a slowly moving light
projectile hits a heavy static target, albeit with the interac-
tion  mediated  by  exchanging  a  graviton  exchange  rather
than  exchanging  a  photon.  We  assume  the  projectile  is
point-like particle with mass .

The  differential  cross  section  for  the  nonrelativistic
Rutherford scattering in the laboratory frame is given by 

dσ
dcosθ

=
1

32πM

ï
p′0+ k′0

Å
1− |k||k′| cosθ

ãò−1

× |k
′|
|k|

1
2 j+1

1
2s+1

∑
spins

|M|2 , (17)

where the projectile bears spin j, θ denotes the polar angle
between the reflected and incident projectile.

k≪ m≪ M

v = |k|/m
m/M

Similar to Sec.  III,  let  us consider again three differ-
ent types of projectiles and five different types of targets.
The  resulting  expressions  of  unpolarized  cross  sections
are  generally  rather  lengthy  and  unilluminating.  Since
there  are  three  widely  separated  scales  inherent  in  this
process, ,  the  appropriate  way  of  extracting
the soft  behavior  is  to  simultaneously  expand the  differ-
ential  cross  sections  in  powers  of  (velocity  of
the  projectile)  and .  The  necessity  of  conducting
double  expansion  renders  this  case  more  complicated
than  the  case  of  low-energy massless  projectile  as  dis-
cussed in Sec. III.

1/M
Interestingly, at the lowest order in velocity yet to all

orders  in , the  differential  cross  sections  scales  as-
sumes a uniform form:Å

dσ
dcosθ

ãs

(v0)
=

F2
10κ

4m4M(M+m)2
Ä√

M2−m2 sin2 θ+mcosθ
ä2

512πk4
√

M2−m2 sin2 θ
Ä

M− cosθ
√

M2−m2 sin2 θ+msin2 θ
ä2 =

κ4M2m4F2
10

2048πk4 sin4 θ
2

+O
Å

m6

M4k4

ã
. (18)

1/k4which  scales  as ,  exactly  identical  to  the  familiar
Rutherford formula  obtained  from  the  classical  mechan-
ics with Newtonian's gravitational law [28]. Note this ex-
pression is insensitive to both target and projectile's spins,
since the spin degree of freedom decouples in the nonre-
lativistic limit. This is in contrast to the LO expressions in
the case  of  massless  projectile  in  heavy  target  mass  ex-
pansion, which  is  insensitive  to  the  target  spin  yet  de-
pends on the projectile spin.

1/k2

At  NLO  in  velocity  expansion,  the  differential  cross
sections scale as , whose explicit expressions are still
rather  complicated  yet  vary  with  different  projectile  and
target  species.  Nevertheless,  once  the  heavy  target  mass
expansion  is  performed,  some  clear  pattern  starts  to
emerges. In  the  following,  we will  consider  three  differ-
ent types of light projectiles with spin ranging from 0 to
1.
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0A.    Slowly-moving spin-  projectile
v2At relative order- , after conducting the heavy target

mass expansion,  the  differential  unpolarized  cross  sec-
tion becomes particularly simple: Å

dσ
dcosθ

ãs

(v2)
=

κ4M2m2F10

256πk2 sin2 θ
2

×
ñ

F10

2sin2 θ
2

− m
M

F10+
m2

M2
g(0)

s + · · ·
ô
, (19)

with 

g(0)
s = −F20−F′10+

F10

4

ï
1
3

(3+ s+ ⌈s⌉)−2cosθ
ò

−Θ
Å

s− 1
2

ã
1
24

[
(−1)2s+7

]
F40

+Θ (s−1)
Å

1
6

F11+F50

ã
+Θ (s−2)

2
3

F70,

s = 0,
1
2
,1,

3
2
,2. (20)

O(v2/Mn) n = 0,1
O(v2/M2)

F′10 F20 F10 cosθ

F40

1 4/3

Clearly the  ( ) terms remain independent
of the target spin. At , the universality becomes
partially violated. Nevertheless, the , , and 
terms still  do not depend on the target particle spin.  The
coefficient of the  term again reflects the spin-statistic
characteristic of the target particle, which alternates from

 (fermions) to  (bosons). 

1
2B.    Slowly-moving spin-  projectile

O(v0)

v2

We can repeat our investigation by replacing the pro-
jectile  with  a  slowly-moving  Dirac  fermion.  The 
cross  section  is  given  by  (18),  since  the  spin  degree  of
freedom decouples in the nonrelativistic limit. At relative
order- , after carrying out the heavy target mass expan-
sion,  the  differential  cross  section  again  possesses  a
simple form: Å

dσ
dcosθ

ãs

(v2)
=

κ4M2m2F10

256πk2 sin2 θ
2

ï
F10

16
3cosθ+5

sin2 θ
2

− mF10

8M
(3cosθ+5)− m2

M2
g( 1

2 )
s + · · ·

ò
, (21)

with 

g( 1
2 )

s = F′10+F20+
1

48
F10

ï
15cosθ−4

Å
3
4
+ s+ ⌈s⌉

ãò
+Θ

Å
s− 1

2

ã
1

24
[
(−1)2s+7

]
F40

−Θ (s−1)
Å

F50+
1
6

F11

ã
−Θ (s−2)

2
3

F70,

s = 0,
1
2
,1,

3
2
,2. (22)

O(v2/Mn) n = 0,1
O(v2/M2)

F′10 F20 F10 cosθ

F40

1 4/3

The  ( ) terms remain universal. The uni-
versality has been partially violated in the  term.
However,  even  at  this  order,  the , ,  and 
terms still appears to be independent of the target particle
spin.  The  coefficient  of  the  term  again  reflects  the
spin-statistic characteristic of the target particle, which al-
ternates from  (fermions) to  (bosons). 

1C.    Slowly-moving spin-  projectile

1 O(v0)

v2

As  a  final  example,  we  consider  a  slowly-moving
light  spin-  projectile.  Needless  to  say,  the  differ-
ential cross section is again described by (18). At relative
order- , after carrying out the heavy target mass expan-
sion, the expanded differential cross sections bear the fol-
lowing structure: Å

dσ
dcosθ

ãs

(v2)
=

κ4M2m2F10

1536πk2 sin2 θ
2

ï
F10 (2cosθ+1)

sin2 θ
2

− 2m
M

(2cosθ+1) F10−
m2

M2
g(1)

s + · · ·
ò
, (23)

where 

g(1)
s = F10

ï
cosθ+

1
2

(1− s−⌈s⌉)
ò
+6F′10+6F20

+Θ

Å
s− 1

2

ã
1
4
[
(−1)2s+7

]
F40

−Θ (s−1)(F11−6F50)−Θ(s−2)4F70,

s = 0,
1
2
,1,

3
2
,2. (24)

O(v2/Mn) n = 0,1
O(v2/M2)

F′10 F20 F10 cosθ

F40

1
4/3

Clearly the  ( ) terms remain universal. At
,  the  universality  becomes  partially  violated,

notwithstanding that the , , and  terms still
do  not  depend  on  the  target  spin.  The  coefficient  of  the

 term again  reflects  the  spin-statistic  characteristic  of
the target particle,  which alternates from  (fermions) to

 (bosons). 

V.  SUMMARY

In  this  work,  we  have  conducted  a  comprehensive
study  of  the  soft  pattern  of  the  tree-level  gravitational
Rutherford scattering  processes.  Two  classes  of  Ruther-
ford  scattering  processes  have  been  considered, i.e.,  a
low-energy massless projectile strikes on a static,  heavy,
composite target carrying spin up to 2, and a slowly-mov-
ing light structureless projectile bombs on a static, heavy,
spinning composite target particle.

The soft limits of both classes of gravitational Ruther-
ford  scattering  processes  have  exhibited  some  universal
and simple  patterns.  For  the  former  type,  given  a  mass-
less  projectile  with  a  certain  spin,  the  first  two  terms  in
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1/M

1/M

v2

1/M

O(v2/M2)

the  heavy  target  mass  expansion  remain  universal,  and
the NNLO term starts to develop target spin dependence.
Nevertheless, several terms at NNLO still remain univer-
sal  or  have  some  definite  pattern  of  dependence  on  the
target spin. For the latter, one has to carry out the double
expansion  in  projectile  velocity  and  in  order  to
identify a simple soft limit. At the lowest order in v yet to
all orders in , the differential cross section has a uni-
versal form,  insensitive  to  both  of  the  projectile  and tar-
get  spin.  At  the  relative  order- ,  the  first  two  terms  in

 expansion  are  still  independent  of  the  target  spin.
The  universality  starts  to  be  partially  violated  in  the

 piece, though some terms at  this  order  still  re-
main  independent  of  the  target  spin,  or  bears  a  definite
pattern of target spin dependence.

F40 = s
It is  curious  that  at  NNLO  in  heavy  target  mass  ex-

pansion,  the  prefactors  of  the  term in  both  types
of gravitational Rutherford scattering processes encapsu-
late some peculiar spin-statistics characteristic, which al-
ternate  from  a  constant  for  fermionic  target  to  another
constant  for  bosonic  target.  It  is  interesting  to  examine
whether  this  pattern  holds  true  for  the  composite  target
with arbitrarily high spin. 
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APPENDIX A: POLARIZATION SUM FORMULA

In deriving the unpolarized cross sections, the follow-
ing spin sum formulas concerning massive target particles
are useful: 

∑
λ

u(p,λ)ū(p,λ) =
̸ p+M

2M
, (A1a)

 ∑
λ

εα(p,λ)ε∗α′ (p,λ) = η̂αα′ , (A1b)

 ∑
λ

uα(p,λ)ūα′ (p,λ) = − ̸ p+M
2M

Å
ηαα′ −

1
3
γαγα′

− 2pαpα′
3M2

+
γα′ pα−γα′ pα

3M

ã
,

(A1c)

 ∑
λ

εα1α2 (p,λ)ε∗α′1α′2 (p,λ) = η̂α1α
′
1
η̂α2α

′
2

+ η̂α1α
′
2
η̂α2α

′
1
− 2

3
η̂α1α2 η̂α′1α

′
2
, (A1d)

η̂αβ ≡ −ηαβ+
pαpβ
M2

ū(p,r)u(p, s) = δrs

with . Note that the Dirac spinor is nor-
malized as . 

APPENDIX B: THE VANISHING OF THE NLO
AMPLITUDE IN THE HEAVY BLACK HOLE EF-

FECTIVE THEORY

Since  the  first  detection  of  the  gravitational  wave
(GW) by LIGO and VIRGO in 2015, precise predictions
of  the  GW  templates  become  an  imperative  task.  As  an
efficient theoretical framework to organize the post-New-
tonian  and  post-Minkowski  expansion,  the  heavy  black
hole effective  theory  (HBET)  has  recently  been  de-
veloped [24, 25],  which is  analogous to the heavy quark
effective theory  (HQET)  tailored  for  heavy  quark  phys-
ics.  Recently  it  has  been  applied  to  GW emission  in  the
scattering of  binary spinless  black holes  or  neutron stars
with arbitrary masses at next-to-leading order in the post-
Minkowski expansion [26].

1/M
1/M

The original  HBET  Lagrangian  is  designed  to  de-
scribe a heavy structureless particle (black hole) interact-
ing with soft gravitons, with the expansion parameter be-
ing  [24, 25]. We will use this machinery to explain
why  the  NLO amplitude  in  expansion  vanishes  for
gravitational Rutherford scattering.

For  simplicity,  let  us  consider  heavy  spinless  target
particle,  which  is  represented  by  a  complex  scalar  field.
The  underlying  theory  describing  a  heavy  structureless
particle interacting with gravity is simply assumed to be 

S =
∫

d4x
√−g

(
gµν∂µϕ∗∂νϕ−M2|ϕ|2

)
. (B1)

1/M

Mimicking  the  derivation  of  HQET  from  QCD,  one
integrates  out  the  heavy  anti-particle  degree  of  freedom
by substituting the equation of  motion into (B1) and ex-
pands the Lagrangian in powers of . The effective ac-
tion in general spacetime background then reads [24, 25] 

S HBET =

∫
d4x
√−g

2

ï
M
(
vµvνgµν−1

)
φ∗vφv

+
i
2

gµν(vµ(φ∗v∂νφv− (∂νφ∗v)φv)

+ vν(φ∗v∂µφv− (∂µφ∗v)φv))

+
i
2

(vµvνgµν−1)
(
(v ·∂φ∗v)φv−φ∗vv ·∂φv

)ò
. (B2)

√−g = 1− κ
2
ηµνhµν+O(h2)

vµ = (1,0)

Since we are interested in the Rutherford scattering in
Minkowski  spacetime,  the  weak  field  approximation

 is  invoked.  The  subscript  of φ
is  the  velocity  label  of  the  heavy  target  particle,  with

 in the laboratory frame. It should be cautioned
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ci

φ∗vφv

1/M

that (B2) was invented for a point-like target particle [24,
25].  To  describe  a  heavy  composite  target  particle,  one
should  assign  general  Wilson  coefficients  to  those
higher-dimensional operators,  which reflect its nontrivial
internal  structure.  Keeping  the  free  kinetic  term  of  the
heavy  scalar  field,  as  well  as  organizing  the -grav-
iton interactions in powers of , we then obtain 

LHBET′ =
i
2
(
φ∗vv ·∂φv− (v ·∂φ∗v)φv

)
+ c1

Mκ

2
hµνvµvν

+
iκ
4

hµν(c2,2vµvν+ c2,1ηµν)
(
(v ·∂φ∗v)φv−φ∗vv ·∂φv

)
+ c2,1

iκ
4

hµν(vµ(φ∗v∂νφv− (∂νφ∗v)φv)

+ vν(φ∗v∂µφv− (∂µφ∗v)φv)),

(B3)

where  the  subscript  HBET'  implies  that  the  original
HBET is generalized to account for the composite heavy
target particle.

φ∗vφv 1/M
From  (B3)  one  readily  reads  off  the  Feynman  rules

for the -graviton vertices through NLO in : 

Vφ∗vφvh
LO = c1

iMκ

2
vµvν, (B4a)

 

Vφ∗vφvh
NLO =

iκ
4

î
c2,1vµ( p̃ν+ p̃′ν)+ c2,1vν(p̃µ+ p̃′µ)

− (c2,2vµvν+ c2,1η
µν)(v · p̃+ v · p̃′)

ó
, (B4b)

c1 = c2,1 = c2,2 = 1 p̃ p̃′

p = Mv+ p̃

φ∗vφvh

For  a  point-like  target  particle,  one  simply  has
 1). Note that the  and  signify the re-

sidual  momenta  of  target  particle, e.g., . As-
suming  the  projectile  to  be  a  massless  spinless  point
particle,  combining  (4a)  and  the  vertices enumer-

1/M

ated in (B4),  we then obtain the HBET prediction to the
gravitational  Rutherford  scattering  amplitudes  through
NLO in  expansion: 

MEFT =
c1κ

2M
4(cosθ−1)

+
c2,2κ

2(|k| − |k′|)
16sin2 ( θ

2

) +O
Å

1
M

ã
, (B5)

|k| |k′|

1/M2

1/M

However,  in light of the relation between  and 
as  given  in  (7),  one  readily  observes  that  the  second
(nominally NLO) term in (B5) is suppressed with respect
to  the LO term actually  by a  factor  of ,  rather  than

. Therefore, we conclude 

MEFT =
c1κ

2M
4(cosθ−1)

+O
Å

1
M

ã
. (B6)

This EFT analysis provides a clear perspective to un-
derstand why the NLO amplitude vanishes.

The  EFT  prediction  (B6)  should  be  identical  to  the
LO result in (8a), which has been derived earlier in terms
of the GFFs of composite target particle, 

M = κ2M2F10

2(cosθ−1)
+O
Å

1
M0

ã
. (B7)

c1 = F10 = 1 2M

c1 = 1

This  criterion  enforces ,  once  the 
factor  is  compensated  for  the  non-relativistic state  nor-
malization. The requirement , irrespective to wheth-
er the heavy target  particle is  fundamental  or composite,
may  be  attributed  to  the  reparametrization  invariance  in
HBET.

O(1/M)Since  the  HBET  vertex  yields  a  vanishing
contribution to the Rutherford scattering amplitude, there-
fore the  NLO  contribution  to  the  unpolarized  cross  sec-
tion in (8b) solely arises from the expansion of the phase
space factor.
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