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Abstract: We examine the gauge invariance of massive vector Kaluza-Klein (KK) modes within various 6D brane

models. Our analysis reveals that additional constraints on the brane's geometry are essential to maintain the gauge

invariance of the massive vector KK modes. However, these conditions are not universally satisfied by brane solu-

tions, leading to loss of gauge invariance. In instances where the brane solutions align with the conditions, we com-

pute the mass spectra of both vector and scalar KK modes, and find some resonances for the KK modes in one of the

brane models. Our findings indicate that the presence of a single type of massive scalar KK mode will break the

gauge invariance.
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I. INTRODUCTION

The concept of extra dimensions and brane worlds
has been a topic of interest for many years. Initially, the
extra dimensions are supposed to be compactified on the
scale of the Planck length [1-3]. While in the Randall-
Sundrum brane model [4, 5], the extra dimensions were
considered infinite, enhancing the possibility of their ex-
perimental detection. Our study focuses on the physical
phenomena that arise from these extra dimensions. For
example, a massless field in the bulk can acquire mass
through these extra dimensions, manifesting as a series of
Kaluza-Klein (KK) modes in the brane [6—33]. This has
profound implications for the U(1) gauge field.

It is well known that the Stueckelberg mechanism
[34] or Higgs mechanism [35] is necessary to preserve
the gauge invariance of massive gauge field. These two
mechanisms respectively introduce a Stueckelberg field
or a Goldstone boson to maintain the symmetry of the
gauge field. We observe that for a higher-dimensional
massless U(1) gauge field, there are two types of KK
modes present in the brane: vector and scalar. Due to the
scalar KK modes, these massive vector modes are formu-
lated gauge invariant [36, 37]. We have investigated how
the number of extra dimensions, the dimensionality of the
brane, and the coupling between the bulk field and other
scalar fields, such as the dilaton field, affect this gauge
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invariance [38—40].

Our previous discussions were grounded on a con-
formal metric. Brane models with one extra dimension
under the conformal metric are typically solvable;
however, this is not the case for branes with more extra
dimensions. For example, many 6D brane models have
been constructed with metrics that differ from the con-
formal metric. Naturally, one might inquire whether the
gauge invariance of massive vector KK modes is still re-
mained in these various brane models, and how it relates
with the geometry of the branes.

To address this, we begin by reviewing the method
for studying the gauge invariance of the effective action
of a bulk free U(1)gauge field. From this, we show that
the relationships between the coupling coefficients will
determine the gauge invariance. Next, we consider a
brane model with the following general line-element:

dSZ — eZB] ('M)guvdxﬂ dx’ + eZBz()',Z)dZZ + e233 (V,Z)dyZ' (1)

Here e28:10:9 282000 and e2830:9 are the functions of
two extra dimensions y and z. This line-element can be
matched with most of the 6D brane models studied in lit-
eratures by choosing special 5109 282009 gnd 28:049),
Since these three factors appear in every coupling coeffi-
cients, they impact on the effective action and its gauge
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invariance. We will demonstrate that certain constraints
should be imposed to preserve the gauge invariance of the
effective action. Subsequently, we verify whether the
brane solutions meet the constraints. Once the requisite
conditions are satisfied, we will proceed to calculate the
mass spectra of the KK modes. Our findings will demon-
strate that when a single type of scalar KK mode is
massive, the gauge invariance is disrupted.

Our paper is structured as follows: In Sec. II, we re-
view the derivation of the effective action for a massless
bulk U(1) field, and point out the key for the gauge in-
variance of massive vector KK modes. Subsequently, we
will discuss the gauge invariance in the three distinct
types of brane models, as characterized by the metrics
(28)~(45) in Sec. IIlI. Finally, we summarize our find-
ings and give another way to the constraints in Sec. IV.

II. THE KEY TO GAUGE INVARIANCE OF
MASSIVE VECTOR KALUZA-KLEIN MODES
We consider a massless U(1) gauge field Xy (M =

0,1,...5) as a perturbation in the bulk, embedding a brane
with codimension-2. The action for the field is given by

1
S :—Z/d6X\/—_gYM1M2YM]M2, (2)

1
E (HM]XMZ—

BMZXMI). In the brane, this field manifests as a series of

where the field strength is defined as Yaru,

KK modes. By developing a KK decomposition for the
bulk field, we can derive the effective action for these KK
modes. The general KK decomposition is chosen as fol-
lows:

X, (2y,2) = RO W (3,2), (3a)
X(x,3,2) =y ") Wy (3,2), (3b)
(3¢)

X0#,3,2) = Y @) Wi (y,2),

where W\ (y,z), W"(y,z), and W;”)(y, ) are functions de-
pendent only on the extra dimensions y,z. The term
X™(x) represents the n— level vector KK mode, while
¢ (x*) and ¢™(x*) denote two distinct types of scalar
modes. Substituting the KK decomposition (3) into the
bulk action (2) yields the effective action:

1 N A N ’ ’ ’ A A ’ ’ ’ ’ A ’ A ’
S =_ ZZ/dA‘X* /-8 {]i"")yg)yﬂ\'(fl)*_ (Ién'1)+li""))xﬁn)xﬂ(n)+I§n" >(9#¢(n)(9”¢(")—Igm)((9#¢(")X”(n)+Xfln)(9”¢("))

+ I;nn’)a/l(p(n)aygp(n’) _ Ié(;nn’) ((9#90('1))2#(”,) + Xl(ln)a/.lso(n’)) + I;nn’)¢(iz)¢(n') + Igm’)QD(n)QD(n/) _ I?(T)n’) (¢(n)sa(n’) + ‘p(n)(p(n’)) .

Here, the coupling constants I ~ 1" are ex-
pressed as integrals over the extra dimensions. We have
not yet provided precise definitions for these integrals, as
the metric, which is essential for their calculation, has not
been specified. The constants I{"” and I/ are the
masses attributed to the vector KK modes, with each
part's mass originating from one of the two extra dimen-
sions. 1" and I{"" represent the masses of the two types
of scalar modes, respectively. The interaction between the
vector and scalar KK modes is denoted by 1 and 1™,
which we refer to as vector-scalar coupling constants.
The masses of the two types of scalar KK modes denote
by I/ and I{"”. They also interact with scalar-scalar
coupling 1. Moreover, the orthogonality conditions,
given by Iﬁ””/) = 6,,,1/,15””') = I;””') =26,, serveas funda-
mental postulates within the framework of this study.

The key to gauge invariance of the effective action is

4)

[
the interrelation between masses of the KK modes with
the vector-scalar and scalar-scalar coupling constants.
Building on our prior research [36—41], we found that the
effective action is gauge invariant in branes described by
a conformal metric. However, the existing literature
presents solutions for 6D branes with non-conformal met-
rics. Our research aims to extend the investigation of
gauge invariance to these 6D brane models. In this scen-
ario, the metric (the geometry) of the brane is different,
all the coupling constants will change. Therefore, we will
first reconsider whether the gauge invariance is main-
tained under such variations.

To this end, we derive the equations of motion
(EOM) for the KK modes using two distinct approaches.
Firstly, the EOM can be directly derived from the effect-
ive action (4):
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1
V3

+ Iénn’)av¢(n') + Iétzn’)av(p(tz’) — O,

a}l (Ii’m') /_g?uv(n’)) _ I‘(nn’)XV(n’)

(5a)

1 nn’ A n nn’ Aoun’
\/_—gaﬂ(lé ) V _g6p¢( )_Ié ! V —gX”( ))

_ I;"" ) ¢(n’) + I%" )90("/) =0,

(5b)

1 nn’ ~ n nn’ ~Aoun’
\/_—gau(lé VAR VA G

-1 ¢(ﬂ) -0 SO(n) =0,

(3¢)

with @ = [") + 1" On the other hand, substituting
the KK decomposition into the EOM of the bulk field
Ou(A—gY"") =0, we have:

1 A A
] (\/jg Yﬂlllz(n)) — (A + ) K
+ 43 #29" + 44§29 =0, (62)

1 P n ~ ui(n
\/__gam( \/jgauld)( )_/15 /_g Xm( ))

az (eZBl —By+B3 az an)) e—(Bz+B3)

ay (eZB] +B,-B; awan)> e~ (B2+B3)

—A6 ¢ + 47 0" =0, (6b)
1 — . = Suin
_gaﬂl( /_g 3;11¢( ) _ s /_g Xl ))
+9 " = 1o " =0, (60)

where 1; ~ 4, are defined differently in different branes,
which will be shown in the following sections. The two
groups of EOM (5) and (6) must be consistent. It is from
this consistency that we can deduce the equations that the
KK modes satisfy, as well as the interrelations among the
coupling constants. Armed with these interrelations, we
can then investigate the gauge invariance of the massive
vector KK modes. It will be found that additional con-
straint-conditions on the brane geometry are necessary to
obtain a gauge-invariant effective action.

III. CONSTRAINTS ON THE GEOMETRY FROM
THE GAUGE INVARIANCE

With the metric (1) and the KK decomposition (3),
the parameters A; ~ 1;o featured in the EOM (6) are expli-
citly defined as:

av (eZBl +By—B3 W’Eﬂ)) e—(32+33)

4= 2w Y = 2w b= 2w ’
~ d. (6231—B3+Bz Wé"))e—(32+33) _ 6ZW§") ~ 6}, (6431—32—33 6),-W£")) e~ (2B1-B2+B3)
Ag = G , As= W 6 = W ,
B 6y (6431—32—33 az W§”>) e~(2B1-By+B3) B c')y Wf") ~ 3z (6431 -By-B; (%Wén)) e~ (2B1+B2-B3)
A7 = We , Ag= W Ay = o ,
= 8. (6431—32—33 azu(/é)n)) e~ (2Bi+B2-B3)
W3
For convenience, we introduce the constants By comparing Eq. (5) with Eq. (6), we derive the fol-

", cy,Cy” to denote the vector-scalar and scalar-scalar

. ) )
couplings, and m{’ 9m(2n)’mfpn .,m{" to represent the masses

of the KK modes:

1 2 1 2

I;nn) —— m(]n) , Ié((m) - _ m<2n) ,
2
() _ o (M2 gm) _ ()2
LY =2m,", I —2m;’ s N
(nn") _ ~(n) (nn') _ ~(n) (nn") _ ~(n)
I = C™ 8y 1 = CP Sy I = C 5,
(®)

lowing equations:

-0, (6231732+B3 BZW@) e BB — m(ln)2W§n), 9)
— 3},(623”32’33 a, Win))e—Br& — m(zn)2 Wf"), (10)
_ 6y( o4B1-B2-Bs 6),(W§"))) e 2B1-B2+Bs) _ mg’>2W§">, (1 1)
-9, (6431—32—33 Bz(Wé"))) o (B1+B2-B3) _ mL(pn)Zwén). (12)
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And
_ (n) yy7(n) _ 2B -By+B3 17\ .—Br—B3
20" W =0,(e W) e , (13)
1 n n n
EC(I) Wi =, (W"), (14)
-2 C;n) W;n) — 6y(6231+32_33 Wgn)) 6_32_33, (15)
1 n n n
Ec;)Wyzay(W]( N, (16)
1
_ 5 Cén) Wé") — 3},(e43"BZ’B3(9Z(W§"))) e—(2B]—Bz+Bg)’
(17)

_ l an) Wé’l) — 62 (6431—32—33 ay(ng))) e—(ZB]+Bz—Bg)
3 . .
(18)

Then we can establish the following relationships
between the coupling constants.

e Firstly, by differentiating with respect to z to Eq.
(13), we derive a relationship between C{” and.m{" with
the aid of Egs. (14) and (9). Similarly, a relationship
between CY” and m}" is also established. These relation-

ships are presented as follows:

C(ln)Z — m(ln)2’ C;n)Z — m(zn)Z- (19)

e Sccondly, we try to find the relationship between
Cc",cy and C{". By differentiating with respect to y to
Eq. (13) and considering Eq. (16), there is an equation
about W{" and Wy":

1 cy’
_E C;n) Wén) — 2C(,3C(n) az (ay(eZB]-%—Bz—B} Wgn)) 6_32_33),
1 2
(20)

which must be consistent with Eq. (18). From this con-
sistency, we confirm that a constraint condition on the
geometry of the brane, given by

0,.(2B, + B, - B3) =0, 21)

az(Bl —B3)=0, 3y(Bl -B,)=0, (22)

must be introduced to establish a relationship between

O .
Cc”, Cy”, and C3:

Cy? =201y, (23)

This relationship, Eq. (23), is crucial to the gauge in-
variance of the effective action. In contrast, for scenarios
involving branes with a single extra dimension, no such
constraint on the brane is required.

At the same time, with the Eqgs. (14), (15) and (17),
one more condition is found:

6},,1(231 —-B,+B;)=0. (24)

Finally, by considering all the constrains from
Eqgs.(21),(23) and (24), we derive the final constrains on
the geometry in 6D brane world with line-element (1):

6%231 = 0, (9%1(32—33) = 0, BZBI 26133, ByBl = 6},82. (25)

e Furthermore, by taking the derivative with respect
to y of Eq. (14) and with respect to z of Eq. (16), we show
that C370.W” = C\"3,Ws”. This relationship allows Eq.
(17) to be equivalent to Eq. (11), thereby establishing a
connection between CY” and mf; ', A similar relationship
between C\" and m{" can also be derived. These two rela-
tionships are expressed as:

an)Z — m((bn)Z, C(ln)Z — m((pn)Z' (26)

Using the relationships (19), (23), and (26), the effect-
ive action, as given by Eq. (4), can be rewritten as:

1 4 5| Py
Seff=—42n:/d Jc\/—g{Ym#2 yUrise

_ % Z (6;1¢(n) _ % an) Xfln))Z

1 1w ot
-5 (aﬂtp(")—ECE)XL))Z

1 n n n n

-3 (C8 g™ — P om)?]. 7)

This formulation maintains gauge invariance under
the transformations:

X# - Xﬂ +0,y", ¢ — "+ C(ln)?’("),
O™ — " 4 an))/(”),

with y™ being a scalar field. Despite variations in the
definitions of the coupling constants compared to those in
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branes with a conformal metric, the structure of the ef-
fective action, Eq. (27), remains unchanged. Notably, the
geometric constraint, Eq. (25), is introduced here and is
essential for achieving this gauge-invariant effective ac-
tion. Moreover, we can check various brane models, in
which the gauge invariance of the massive vector KK
modes can be preserved. In the following, we give some
examples.

In the following, we will examine three cases based to
6D brane models in former literatures, and check wheth-
er the constrain conditions (25) are satisfied. If the condi-
tions are met, we will proceed to calculate the masses of
the KK modes.

A. case l: Bi(y,2) = Bi(2), B2(y,2) = B3(y,2) = B2(2)

For most of the 6D brane models, to solve the solu-
tions the extra dimensions are assumed as only the func-
tions of one of the extra dimensions B(y,z) = Bi(z). In
references [42—44], the authors have discussed solutions
for a brane with codimension-2, as described by the line-
element given as:

ds* = ¢*(rg,dx" dx’ — A(r)(dr* + r*d6?), (28)
For this line-element, the additional spatial part is
conformally equivalent to a Euclidean space. The metric
function A(r) associated with the extra dimension 7,
serves as a conformal factor for the two-dimensional Euc-
lidean metric.
It is easy to find that the conditions (25) become:

¢/ /1/

T 2

—1

(29)

In the referenced literature [42—44], a brane solution
is provided:

p2¢r

)
r

c’ +ar’
b+’

P(r) = A(r) = (30)

where a (with a> 1), b, and ¢ are constants, and p is an
integration constant with units of length. We find that this
solution, Eq. (30), does not satisfy the condition (29) ex-

C
cept when 7= e This suggests that in this brane model,

the gauge invariance of the massive vector Kaluza-Klein
modes is only realized at a fixed value of r, specifically
=t

a

However, according to Eqgs. (9), when r is constant,
the vector Kaluza-Klein modes and the scalar modes ¢
cannot obtain masses from this extra dimension. In con-
trast, the vector mode and another scalar mode ¢™ could
gain masses from another compactified extra dimension
0. Consequently, the effective action transforms into:

1 A | ©(n) $rvu(n
Seff = _Z E /d4x V -8 |:Y;(4V)Yﬂ()
1wy ? ()2, (n)2
—2(0,,¢<">—5C," x;ﬁ) -2cY go('”] (31)

It becomes evident that the gauge invariance of this
effective action is broken.

B. casell: B,(y,2) = Bi(), B:2(y,2) = B>(y), B3(y,2) =0

In the referenced works [24, 45—49], the authors have
investigated a brane model described by the line-element:

ds*=e Vg, dx" dx’ +ePVd7 + dy?, (32)
where the extra dimension is characterized as a 1-sphere
with the range 0 <y < oo and 0 <z < 2x. Comparing the

general metric (1), we have Bi=-5A0).B, =—5B0).

For this case, the imposing constraint on the geometry
(25) becomes:

0,A = 0,B. (33)
Despite the definitions of the constants C\” to C}”
differing in this context, the gauge-invariant effective ac-
tion, as given by Eq. (27), can still be formulated under
the constraint condition (33). We discover that there ex-
ist two distinct brane solutions that meet this criterion.
Prior to presenting these brane solutions, we aim to
simplify Egs. (9) to (12), which now are equal to:

~3, (e B W") e = m{ W, (34)
— (e M)W 2B = m§P W, (35)
-8, (8—2A+%BayW§n))eA—%B — mg')zWé"), (36)
-0, (6—2A+%Bazwén))eA+%B — mf;)ZWé"), (37)

This simplification is instrumental in calculating the
mass spectra of the vector and scalar KK modes under the
orthogonality conditions. To this end, we carry out a co-
ordinate transformation dy=e ?Ady, and define
W =W and W =e2AW™. Consequently, Egs.
(34) and (36) are transformed into a pair of Schrodinger-
like equations:

— 055 W + Vg W™ = m{* W\, (38)
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Oy W+ VW = W = WO, (39)
where the effective potential is expressed as
V. —1(6A)2 10 A (40)
eff = 47 5 O3

Additionally, with the transformation dz = e 24-Bdz
and W =24 W, Eqs. (35) and (37) are reformulated
as:

0o W =m§P W, 0, Wi = mlPW = miP WY (41)

Given that the extra dimension z is compact, it is
evident from Eq. (41) that the vector KK modes can ac-
quire a portion of their mass from this dimension, where-
as the scalar modes ¢ obtain their full mass from z. The
ability for the vector modes and the scalar modes ¢ to
acquire mass from the another dimension y is determined
by the effective potential V.y, which depends on the
brane's warp factor. We proceed to present two types of
brane solutions that fulfill the condition (33), accompan-
ied by the respective shapes of V..

e In Refs.[45—47] there is a brane solution:

A() =cy, B(y)=cy—-2logRy, (42)

where ¢ is a positive constant, and R, being a length

scale. Under the coordinate transformation dy = e¢~24dy,
- I

the warp factor can be written as A(Y) = 2111(56)’), then

2
the effective potential (40) is derived as Verr = R We plot

it in Fig. 1. For this case, there is no bound or resonance
KK mode obtained from this extra dimension.

e In Ref.[24, 50], there is also a solution satisfying
(33):

Vet ()
50

¥
-0.5 0.0 0.5 1.0 1.5 20 25 3.0

Fig. 1.  (color online) V. in brane model with warp factor
(42) under c=1

with a,B8(8 > 0) two constants. And the effective potential
in this brane model is plotted in Fig. 2. Although there is
no bound Kaluza-Klein mode, some resonances exist. We
present the numerical results using the method outlined in
Refs. [51—53]. To identify the resonances, we define a re-
lative ratio:

o r(n)2 =,
P(m®) = M (44)
fo f(n)zdy
where ny < 1. Resonances can be identified by the peaks
of this relative ratio. The relative ratios for different a are
shown in Fig. 3. We observe that resonances appear due
to the warp factor A(r). Interestingly, for a massive vec-
tor KK mode, its mass consists two parts, one of which
has a finite lifetime on the brane. Meanwhile, resonances
also exist for the scalar KK mode ¢ . When they vanish
the gauge invariance of the effective action will be des-
troyed.

C. caselll: B,(y,z) = B3(y,2)

For the two cases discussed earlier, the warp factors
are dependent on a single extra dimension. However, it is
common for warp factors to be associated with both ex-
tra dimensions, as exemplified by Eq. (45):

ds’ = P09 dxt dx’ + PO (dy’ +d). (45)

A(y) = B(y) = Blncosh(ay) +E tanh?(ay) 43) Branes. of this nature are known as mul‘q—warped
2 branes. It is clear that for this case, the gauge-invariant
(a) a=1 (b) a=25 (¢) a=3
Fig. 2. (color online) V. in brane model with warp factor (43) under different @ and 5 = 1.

-6
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o 2 4 6 8 10 12 o s
m?

(a) a=1, m{M?=342068 (b)

Fig. 3.

effective action needs the constraints on the brane's geo-
metry:

0,B; =0.B,, 0,B; =0,B,, 9,.B=0. (46)

In the referenced literature [54, 55], solutions for a
brane model characterized by the line-element (45) have
been obtained. However, these solutions do not satisfy-

ing these constraints.

IV. DISCUSSION AND SUMMARY

This study begun with an examination of the method-
ology for deriving the effective action of a massless bulk
U(1) gauge field through a general KK decomposition
within branes of codimension 2. The effective action im-
plies the existence of two distinct types of scalar KK
modes that couple with the massive vector modes. While
we have established that the effective action maintains
gauge invariance in brane models with a conformal met-
ric. However, the solvable 6D branes are usually con-

a=25 m

(1)2
1

25 o 10 20 30

e

(1)2
1

40 50 60

= 8.29298 (¢) a=3 mi{"? =16.41179

(color online) Relative ratio denoting the resonances in brane model with warp factor (43) under different @ and b=1.

structed within the non-conformal metrics. By compar-
ing the EOM for the KK modes (deriving from two
ways), we revealed that to preserve the gauge invariance
of the effective action in these 6D branes, certain con-
straints on the brane's geometry must be introduced.

Nevertheless, the gauge invariance can be easily com-
promised. Firstly, if the brane solutions do not conform to
the imposed constraint conditions, the formulation of a
gauge-invariant effective action becomes unfeasible.
Secondly, even when the brane solutions match the con-
straints, gauge invariance is only preserved if both types
of massive bound scalar KK modes are present within the
brane.

Furthermore, from the effective action (4), we see that
if there are no couplings between different types of scal-
ar KK modes, which are from the term Y,.¥* in the bulk
action of the field, the effective action resembles that of a
5D brane model. In this case, no additional constraints on
the geometry are required to preserve the gauge invari-
ance. In our another work [56], we also discover that the
constraints are related to the assumption that only the KK
modes under the same level can interact with each other.
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