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Abstract: In this study, we present several improvements of the non-relativistic Friedrichs-Lee model with mul-

tiple discrete and continuous states and still retain its solvability. Our findings establish a solid theoretical basis for

the exploration of resonance phenomena in scenarios involving multiple interfering states across various channels.

The scattering amplitudes associated with the continuum states naturally adhere to coupled-channel unitarity, render-

ing this framework particularly valuable for investigating hadronic resonant states appearing in multiple coupled
channels. Moreover, this generalized framework exhibits a wide-range applicability, enabling investigations into res-

onance phenomena across diverse physical domains, including hadron physics, nuclear physics, optics, and cold

atom physics, among others.
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I. INTRODUCTION

Unstable states constitute a ubiquitous phenomenon
in contemporary physics, manifesting across various dis-
ciplines such as molecular physics, nuclear physics and
particle physics. In the realm of hadronic physics, the pre-
valence of unstable resonances is particularly notable
within the context of strong interactions, where new res-
onant states are frequently encountered and documented.
These resonances assume significant significance in un-
raveling the fundamental characteristics of hadrons and
their interactions, perpetuating their investigation as a vi-
brant research area within the field of particle physics.

To explore the characteristics of unstable states across
diverse branches of physics, several models sharing a
similar conceptual framework have independently
emerged. Among these models, the Friedrichs model
stands as a simple non-relativistic Hamiltonian that
couples a bare discrete state to a bare continuous state [1].
Within this model, the solutions for unstable generalized
eigenstates can be rigorously obtained and expressed in
terms of the bare states. In the realm of quantum field
theory, the Lee model was developed to investigate the
properties of field renormalization [2]. This model con-
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siders two nucleon states, denoted as N and V, which can
be converted to each other by absorbing or emitting a bo-
sonic @ particle through the processes V= N + 6. Analog-
ous models can be found in various domains, such as the
Jaynes-Cummings model in quantum optics [3] and the
Anderson model in condensed matter physics [4]. In this
article, we collectively refer to these models as the
Friedrichs-Lee (FL) model, highlighting their common
conceptual foundation. The generalized eigenstates of the
full interacting Hamiltonian within the FL model can be
explicitly determined in terms of the original discrete
state and the continuum states.

The original Friedrichs-Lee model, which involves
only one discrete and one continuous state, is often con-
sidered as a toy model due to its simplicity. It is usually
employed to comprehend the properties of bound states,
virtual states and resonant states that appear in the scatter-
ing processes. When the bare discrete state is above the
continuum threshold, its pole position moves to the
second sheet and become a pair of resonance poles. If the
bare discrete state is below the threshold, there would be
an accompanied virtual state pole on the second sheet
when the interaction is turned on. Besides these states
generated from the bare discrete states, there could also
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be dynamically generated states from the singularities of
the interaction vertices [5]. The mathematical back-
ground of describing the unstable states is the Rigged Hil-
bert Space (RHS) quantum mechanics [6—8], rather than
the conventional Hilbert space. In the RHS quantum
mechanics, the Hamiltonian H, as an Hermitian operator,
could have generalized complex eigenvalues and the re-
lated eigenstates corresponding to the pole of the S-mat-
rix that lies on the unphysical sheet of the analytically
continued energy plane, commonly referred to as the
Gamow states. The Friedrichs model was also extended
to include more continuous or discrete states and with a
more realistic interaction vertex function. As a result, it
finds extensive application in a wide range of realistic
scenarios, particularly in the study of hadronic scattering
processes [9—14]. Furthermore, coupled-channel models
sharing similar spirits have demonstrated success in de-
scribing a variety of resonance phenomena in different
physical systems [15—25]. The widespread applicability
and efficacy of these models in describing resonance phe-
nomena render them as powerful tools in studying the
properties of unstable states in different physical con-
texts.

In the hadron physics, the usual effective field theory
calculation of the scattering amplitude encounter chal-
lenges pertaining to unitarity and analyticity. The perturb-
ative S matrix generally fails to generate bound states or
resonance poles on the analytically continued Riemann
surface of the energy plane. To address this, various unit-
arization methods are used, such as the K-matrix method.
The typiclal ];{-matrix parameterization 'of the S-matrix

—1
like S = 1K
unitarity by hand. However, this parametrization does not
guarantee the absence of unphysical spurious poles, in-
cluding those situated in the complex energy plane of the
first Riemann sheet, which violates causality. In contrast,
the Friedrichs-Lee model achieves unitarity as a con-
sequence of its dynamics, and the Hermitian property of
the Hamiltonian ensures the absence of spurious poles in
the first Riemann sheet. These are the immediate advant-
ages of these kinds of models over the K-matrix paramet-
erization.

While there have been notable achievements in the
application of such models, certain aspects still call for
further improvement. From a quantum field theory per-
spective, the previous model only considered the contri-
bution of intermediate s-channel discrete state to the amp-
litude. However, there are other types of interactions that
are not included. The first one comes from the crossed
channels in the two-to-two scattering amplitude, where
the intermediate particle can also appear as the 7- or u-
channel propagators. The second one involves the con-
tact interactions, such as the four-point vertex. Upon per-
forming a partial wave projection, both of these interac-

lacks a dynamical origin and enforces

tions can be represented by continuum-continuum inter-
actions. These interactions introduce a mild background
to the final experimental observation, potentially interfer-
ing with the s-channel resonances and modifying the
lineshape. It is crucial to include these background contri-
butions in the analysis of the experimental data while pre-
serving analyticity and unitarity. The commonly used
Breit-Wigner parametrization to parameterize the - or u-
channel resonance and a polynomial to parameterize the
background would violate the unitarity. A naive K-mat-
rix unitarization may introduce unexpected spurious poles
in the S-matrix. Thus, to incorporate the continuum-con-
tinuum interactions into the Friedrichs-Lee like models
could overcome these problems. However, a general con-
tinuum-continuum interaction renders the model no
longer solvable. In refs. [10, 26], a particular form of sep-
arable interaction involving the continuum states is intro-
duced, where the interaction vertex function between the
discrete-states and the continuum also appears as the
factors of the separable interaction between two con-
tinuum states. The Hamiltonian is

D N 0
H=>" Mlixil+»_ / dw wlw; iY{w; ]
i=1 i=] Vi
C oo oo
+> vy( / dwfi(w)lw:iy) / dof; @) )

ij=1 di aj

D C 00
SO [uf},»lﬂ (/ dwf (W)w:il)

j=1 i=1 ai

+ u_,»,»(/m dwf,-(w)lcu;i))(jq , )

i

where the form factor fj(w) is associated with the i-th
continuum state |w;i), both for its the interaction with dif-
ferent discrete states and for its interaction with other
continuum states. There are two aspects which could be
improved for this model. First, the interaction between
the discrete states |j) and the continuum could be exten-
ded to a general function f;;(w), for a more realistic de-
scription of the strong interaction in the real world. Us-
ing the quark pair creation (QPC) model as an example,
the interaction between a meson and their decay products
is expressed as a complicated integration between the
wave function for the three states and the pair production
vertex [12, 27]. Thus the form of the interaction function
depends both on the discrete state and the continuum.
Secondly, the interaction between the continuum states
does not need to be factorized using the same factors as
the interaction between the discrete state and the con-
tinuum. In this paper, we will demonstrate that after fac-
torizing the continuum-continuum interaction independ-
ent of the discrete-continuum interaction, the model re-
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mains exactly solvable. In principle, the extra continuum-
continuum interaction should be the residue interaction
after subtracting the s-channel intermediate discrete state
contribution, which could have no relation with the dis-
crete-continuum interaction. Whether this interaction can
be expressed as a separable potential remains an open
question. There are aleady some physical applications of
the separable potentials in discussing real world prob-
lems, for example, describing the interaction between the
open-flavor channels and the hidden-flavor channels in
momentum space [?]. Our formalism differs from this im-
plementation by two key advances: First, we parameter-
ize all continuum-continuum couplings via separable po-
tentials, withou the distinction between open-flavor and
hidden -flavor channels. This enables a more general de-
scription of coupled-channel systems. Secondly, by pro-
jecting potentials onto angular momentum eigenstates
through spherical harmonic expansion, the three-dimen-
sional momentum integration reduces to a one-dimen-
sional radial integral. This systematically eliminate angu-
lar variables, significantly simplifying both numerical im-
plementation and analytical discussion of mementum. dy-
namics. Moreover, in general, a square-integrable interac-
tion potential between continuum states could be expan-
ded using a series of general separable basis: In fact, one
can also expand both the discrete-continuum interaction
vertex and continuum-continuum interaction vertices us-
ing the same function basis. Thus, the study of such sep-
arable potentials may have broader physical applications.
In this paper, our focus lies on these two kinds of im-
provements: the incorporation of a more general discrete-
continuum interaction and various separable continuum-
continuum interactions among multiple bare discrete and
continuum states in the FL model. By rigorously solving
the eigenstates for the Hamiltonian, we obtain the "in"
and "out" states, the scattering S-matrix, discrete state
solution, and other mathematical physics properties. Our
aim is to establish a solid foundation for the further phe-
nomenological applications of the FL model by includ-
ing these additional physical features.

We organize the paper as follows: In Section II, the
solution of the FL model with more general interactions
between discrete states and continuum states is derived.
Section III discusses the case with extra separable con-
tinuum-continuum interactions. Section IV is devoted to
studying the case when the interaction potential between
continuum states could be approximated by a sum of sep-
arable potentials and consider the cases when both the
continuum-continuum potential and continuum-discrete
potentials are approximated by a truncated series. In sec-
tion V, as an application, we consider some simple ex-
amples and discuss the behavior of the discrete states
after turning on various interaction. Section VI is the con-
clusion.

II. THE EXTENDED FRIEDRICHS-LEE MODEL
WITH MULTIPLE DISCRETE STATES AND
CONTINUUM STATES

First, we are going to consider a system with D kinds
of discrete states and C kinds of continuum states, where
C and D denote the numbers of the continuum states and
the discrete states respectively. If there is no interaction,
the mass of the j-th discrete state |j) is M;, while the en-
ergy spectrum of the n-th continuum state ranges in
[a,,0) with the threshold energy a,. The interaction
between the j-th discrete state and the n-th continuum
state can be generally represented by a coupling function
fin(w). The full Hamiltonian can be expressed as

H =Hy+H,, )
where the free Hamiltonian H, could be written down ex-
plicitly-as

D C o0

Hy =" M)+ / dwwlw; n)(w;nl, 3)
i=1 n=1 Y an
and the interaction part H; reads
D C 0o

Hi=Y %" [m( / dw f,(w)w:nl)

j=1 n=1 an

+ (/ da)fjn(a))lw;m)(j@. (4)

The free eigenstates are supposed to be orthogonal to
each other and the normalization conditions satisfy
(iljy = 6ij, (ilw;ny =0 and (w;njw’;n’) = §(w—w')5,,. For
simplicity, we first suppose that there is no degenerate
threshold and no degenerate discrete states. In fact, if
there are degenerate states with the same threshold and
the same interactions with the other states, the corres-
ponding solutions will also be degenerate with the same
expression after the interactions are turned on, and we
will take them as one state with degenerate degrees of
freedom just like different magnetic quantum numbers
when there is no magnetic field. If the states with degen-
erate threshold take part in different interactions, the fol-
lowing discussion will not be modified too much. We
will come back to this case later.

The general solution for the energy eigenvalue prob-
lem H|W(E))=E|¥Y(E)) can be represented as a linear
combination of the discrete states and the continuum
states,

D C
W(E) =) aiEMiy+ ) / dwy,(E,)lw;n), (5
i=1 n=1 Y dn
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where the «;(E) and y,(E,w) functions are defined as the
coefficient functions of the discrete states and the con-
tinuum states respectively. By substituting this ansatz in-
to the eigenvalue equation, and carefully examining the
coefficients preceding the discrete states and the con-
tinuum states, we can derive two distinct sets of equa-
tions,

(M; - E)a](E>+Z / dw f;, (WW(E,w) =0

n=1 Y dn

forj=1,...,D (6)
D
D aE) fin(w) + (= E)W(E, ) =0,
j=1

forn=1,...C, and w > a,. @)

An important observation to make is that the formula ex-
hibits a nontrivial complexity, which does not appear in
the single-channel scenario. Specifically, for a given en-
ergy range @, < w < a1, there are only / equations present
in Egs. (7).

Consequently, the eigenvalue problem yields both
continuum solutions and discrete solutions. These solu-
tions correspond to different regimes of the spectrum,
which will be addressed carefully in the following.

1. The continuum state solutions

When the energy E is above the highest threshold,
that means, E >ac, there will be C continuum states
when the interactions are turned on, so the m-th con-
tinuum solution will be

D C
Wo(E)) = an(Eid+Y / darfu(E. w)|w:n),
i=1 n=1 Y an

m=1.2,..,C. 8)

However, when the energy £ is lower than the highest
threshold, e.g., E € [a;,a141), [ < C, there will be [ degener-
ate continuum eigenstates, m=1,2...,/, and the other
states are not well-defined below their thresholds and are
set to 0. To remove the ambiguity of the degenerate
states, it is required that when the interaction is turned
off, i.e. fju(w)— 0, |¥,) tends to the free continuum state
|E;m). We expect that, when the eigenvalue E € [ay,a;],
we can solve a; and ¢, in |¥;(E)), and then analytic-
ally extend these parameters to E € [ay,a;] to solve
[¥,(E)), and so on. In this way the eigenfunctions can be
uniquely determined. From Eq. (6,7) in terms of the coef-
ficients in Eq. (8), the coefficient function ,,,(E,w) be-
fore the continuum state in different energy regions could
be expressed as

(for n< l) wmn (E7 (1.)) = ’)/nérnné(w - E)

| D
+ E—wiid Zamj(E)fjn(w) s

(forn>10)  Yu(E,w) = Zamj(E)fm(w)

This equation could be concisely written down in one
equation by using the Heaviside step function O(x),

lﬁriym(Ea w) = Ynémn(s(w - E)®(E - Cl,,)

1

9
E E-w+i0 ©)

Zf,n(w)am,(E)

Notice that ¢, is a generalized function, and in order to
distinguish between different integral contours, we have
included +i0 in the denominator of the integral in Eq.(8).
The ¢+ state corresponds to the coefficient for the in-state
while ¢y~ corresponds to those of the out-state. For the
convenience of the future discussions, we will omit the
superscripts + in the notations. It should be understood
that the appropriate superscript can be easily inferred
based on the context. In the cases where there is a need to
explicitly indicate the in-state or out-state, we will make
use of the superscript accordingly.

Inserting this equation back into Eq.(6), we can ob-

tain the equations for the coefficient functions ., (E) for
m=1,2,...1

fkn(w)f;(w)]
E-w=i0

—Zamk(m[ak,(E Mj)- Z /

n=1

+ Zyn1(E)6nznf;n(E) =0.

n=1

(10)

With many different discrete states and continuum ones
involved in, the representation becomes much more com-
plex than the simplest version. In fact, the formula and
the derivation procedure could be simplified by introdu-
cing the matrix form. In the following, the matrices are
represented in bold faces and the dot symbol "-" repres-
ents the matrix product, and the matrix element is ex-
pressed in the form like (n);;. For example, Eq. (10) could
be written down in the matrix form as

—a*(E)-n.(E)+y(E)-f'(E) =0,

where @ and f are the Cx D and D xC matrices for the
coefficients @, and f;,, respectively. The matrix y is
defined as a diagonal matrix of dimension C xC
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(7)n1n(E) = yn(smn(a(E - an)s

whose diagonal elements y, could be different in prin-
ciple for different n and the values could be determined
by the normalization conditions. The 75, matrix, the in-
verse of resolvent function matrix, is of dimension D x D
and every matrix element reads

M (E) = (E = M)6y; - Z / W (11)

n=1

In general, the determinant of # matrix does not vanish
for @ < E < a1, and the matrix @* can be represented as

o (E) = y(E)-£'(E) 0.\ (E).
Inserting this result into Eq. (9), the coefficient functions

V.. before the continuum states can be obtained in mat-
rix representation

+ _ _ 1 g ! .
Y (E,w) =yi(w E)+E—wii07(E) t'(E)-n. (E)-f(w).

The solution of the continuum eigenstate can then be ex-
pressed as

P2 (E)) = Z(x,m(E)|z)+Z / dwy (E,)|w;n)

i=1 n=1

D
= YuO(E — a,,)|E.m) + Z (v -£1(E) 0. (E))

|’<>+Z/ Slain).

fkn(w)
n=1

mk

(12)

Notice that in the energy region a; < E <ay,;, the wave
function |¥;) for m > should vanish. Another required
condition is that, when the coupling function f;, vanishes,
[P£(E)) tends to |E,m). Therefore, the coefficient y,, is
determined to be 1. It can be checked that the normaliza-
tion satisfies (VZ(E)|W:(E"))=6(E—E')5u,. Actually, in
the point view of the scattering theory, |¥*) is the "in"
state and [¥~) is the "out" state, so the S matrix can be ob-
tained by inner product of the "in" state and the "out"
state as

(Y (E)Y,(E")) =y, ya0(E—E') = 21iS(E - E') (y(E")
AYE) -7, (E)-£(E)- ¥ (E))
=8(E-E)|y

nm

-(1=2nit"(E)-n . (E)-£*(E)) -

'}’] nm*
(13)

The 5.(E) function can be analytically extended to the
complex E plane with n,(F) and n_(E) coinciding with
7(E) on the upper edge and lower edge of the real axis
above the thresholds, respectively. We can also define the
analytically continued S matrix

S =1-2#if"(E)-5 ' (E)-f*(E), (14)
where E is analytically continued to the complex energy
plane and only when E is real and on the upper edge of
the cut above the lowest threshold a, is the S matrix the
physical one. Given the presence of C continuous states
with distinct thresholds, it is a general result that there ex-
ist 2¢ different Riemann sheets for the analytically con-
tinued S matrix. Since only the Riemann sheets nearest to
the physical region affect the physical S-matrix the most,
we label the m-th sheet as the Riemann sheet continued
from the physical region (a,,,a,:1), where the first sheet
where, the physical S matrix resides is called physical
sheet by convention.

It is worth pointing out that the formula of scattering
matrix Eq. (14) has important phenomenological applica-
tions. For example, in studying the particle-particle scat-
tering processes, the two particles that collides or those
final states (usually called as channels in the scattering
experiments) form continuum states, while the intermedi-
ate resonance states are regarded as the discrete states.
The (n,m)-th element of scattering matrix in Eq. (14)
could describe the scattering amplitudes from the chan-
nel of n-th continuum state to the m-th channel. The
coupled-channel unitarity is naturally satisfied among all
the related scattering amplitudes due to the obvious rela-
tion SS™=1. Furthermore, once the coupling function
between the discrete and continuum state is reliably de-
scribed by some dynamical models, the physical observ-
ables, such as the cross sections, could be predicted or
calculated [28].

2. The discrete state solutions:

In Egs. (6, 7), if the eigenvalue E ¢ [a,,o0) for
n=1,...,C, there is no need to introduce the +i0 in the
denominator of the integrand and we have
(forn=1,...

1
Un(E.w)= ijfjn(wm,(E), C) (15)

D
((E)-n(E)); = > aw(E) [6,,(M,; ~ E)

k=1

_ Z / ﬁ(m (w)fjm(w) ] O ,
=1 v dm

(for j=1,...,D). (16)
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In order to obtain nonzero solutions of a,(E), it is neces-
sary to satisfy the condition detn(E)=0. This condition
implies that there may exist discrete energy solutions for
this equation, which in general correspond to the poles of
the S-matrix elements. If there exist solutions on the first
sheet, they must reside on the real axis below the lowest
threshold since the eigenvalue of a hermition Hamiltoni-
an for a normalizable eigenstate should be real. Addition-
ally, solutions can also be found on the unphysical sheets,
which may corresponds to complex conjugate resonance
poles on the complex energy plane or to virtual state
poles located on the real axis below the lowest threshold.
There would be at least D discrete solutions which tend to
the bare discrete states, i.e. o\’ —» 6y and E — M, for
[=1,2,...,D, as all the coupling function f,, —» 0. Fur-
thermore, it is possible for other dynamically generated
states that do not go to the bare states when the interac-
tions are switched off. In general, the solutions does not
exhibit degeneracy, indicating that the poles for § matrix
are just simple poles. If the degenerate solutions occur for
detn(E) =0, it implies that two or more poles may coin-
cide and form a higher order pole. This situation is con-
sidered to be accidental and only occurs for some special
coupling functions. For the purposes of our discussion,
we will not consider this special case and assume that the
solutions are non-degenerate. Then for each energy solu-
tion E;, we can also find the eigenvector ag)(E,-) and
Y O(E;,w), and the wave function of discrete state is ex-
pressed as

. o 5 fn@)
rmmﬁ;W@WH;LMéwmmwm

When E; lies on the real axis of the first Riemann Sheet
below the lowest threshold, this wave function corres-
ponds to a bound state. In this case, the integrals in n(E;)
and a,(f)(E,-) are real. The normalization for this state is
well-defined and the af)(Ei) can be chosen such that

m=1 " 4m

D C
i Jim(@) (@) .,
1= Ejk a’](()(Ei)<6jk+ E / dwﬁ>aj) (E,)

D
- Z“lii)(Ei)UI:j(Ei)ay)*(Ei)’ (18)
Jk

with 7;,(E) being the derivative of n;(E) w.r.t. E. Actu-
ally, this equation has a probabilistic explanation. The
first term on the right-hand side of the equal sign repres-
ents the probability of finding the bare discrete states in
the bound state, while the second one represents those of
finding the bare continuum states in it. If we define

P
z =l (ENP,

D £
w=Z¢mM/mmwmwﬁwm’“%

- 2
Py (Ei-w)

am

then, Zz?=35,7" is called the elementariness and
X® =3¢ X is called the compositeness for the bound
state. When the solution E; resides on the unphysical
sheet, it is necessary to deform the integral contour to by-
pass the pole position in different integrals, as illustrated
in Fig. 1. For resonance poles on the m-th sheet, the in-
tegral contour for the first m-th integral should be de-
formed accordingly, following the contour shown in Fig.
1. In such cases, the usual definition of the normalization
may not be well-defined, as the integral contour for the
pole and its conjugate pole are not consistent. Therefore,
it becomes necessary to define the normalization through
the inner product of the state and its conjugate state
which corresponds to the conjugate pole. The resulting
normalization is similar to Eq. (18) with E; replaced by
the pole position on the unphysical sheet and the integral
contour suitably deformed. However, it is important to
note that the probabilistic interpretation of each term in
the sum will no longer hold, as the terms may not be real
or positive for poles on the unphysical plane.

Now we come to the case with degenerate threshold.
If there are different continuum states with the same
threshold a,, with degeneracy #,, we need to add another
label x tothe continuum to denote the different con-
tinuum states sharing the same threshold, |w,n«). Thus all
the indices in the equations labelling the continuum states
would include the additional indices « to label the degen-
erate states, for example, fi,(w), @uis VYin> Y, P become
fime> @nci> Vies Wmene- There will be h=35" h, con-
tinuum states. The sum over the continuum states also
needs to sum over the x. The matrix y is defined as
Voo (E) = 6n0iw O(E —a,). f matrix becomes a Dx}
matrix and 5 is still a DxD matrix. With all these
changes, the previous discussion and equations can be
smoothly used in this case.

III. INCLUDING SEPARABLE CONTINUUM-
CONTINUUM INTERACTIONS

In the previous case, we considered a scenario where
a bare continuum state is only coupled to the bare dis-

ImE

Re E

Eq

Fig. 1. The integral contour for the resonance solution.
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crete states but not to the other continuum states.
However, when the direct interactions between con-
tinuum states become significant, it is more appropriate to
include the corresponding term in the interaction
Hamiltonian H,. Analytically solving the Hamiltonian
with a general continuum-continuum interaction is gener-
ally not feasible. Therefore, in this section, we will focus
on the case with a separable interaction, which still al-
lows for an exactly solvable solution.

The Hamiltonian, including D discrete states and C
continua with factorizable self-interacting contact terms,
can be expressed as

D C )
H= ZM,-li)(i|+Z / dwwlw;n)w;n|
i=1 n=1 v dn
C ) )
> v / dwg(@)lw;m) ) / dwg(w)w;nl)

mn=1 am n

D C o0
33| )

j=1 n=1 an

+ (/mdwﬁn(w)lw;m)(jl}.

(20)

In this case, the new coupling constants v,,, between two
continuum states have been incorporated in the interac-
tion terms, and v, = v;,, is satisfied to meet the Hermiti-
city requirement. The form-factor functions g,(w) are in-
volved in the interaction between two continuum states,
and f;,(w) represents the interaction vertex between the j-
th discrete state and the n-th continuum state. We sup-
pose fj, matrix is of full rank, otherwise one can always
find a decoupled state by linear combination of the dis-
crete states or the continuum states. For the sake of sim-
plicity, we first assume that the coupling constant matrix
Vun 18 non-degenerate and will come back to the degener-
ate v,,, case later.

Similar to the previous case, we are also going to
solve the Hamiltonian eigenfunction H|V(E)) = E|¥(E)).
The eigenstate of the Hamiltonian with eigenvalue E can
be be expanded in terms of the discrete states and the
continuum states as

D C
ED =Y B+ [ dosEolom. @)
i=1 n=1 v dn

Inserting this ansatz into the eigenvalue equation and pro-
jecting to the discrete eigenstates or the continuum ones,
one can find two sets of equations

(M;,—E)a(E)+AjE)=0, j=1,...D (22)

D C
D B fin(w) + (= EWn(E, )+ Y VunBu(E)ga(w) =0,

j=1 m=1

n=1,...,C, andw>aq,

(23)

where, two new integration functions A;(E) and B,(E)
have been defined as

C )
A=Y [ dos@Eo,

n=1 v dn

B.(E) = / 4w g (Wn(E,). (24)

n

Since we have assumed that the continuum-continuum
coupling' constants v,,,s are not degenerate, there are C
independent B, (E) functions. On the contrary, if v,,, mat-
rix is-degenerate, the only change is that there will be
fewer g, and B, functions.

Similarly as discussed previously, if the eigenvalue
E € [a;,a;,,) for [ < C, there should be / continuum solu-
tions |¥,(E)), m=1,2,...,] with the same eigenvalue E.
As the interactions are gradually deactivated, it is re-
quired that these continuum solutions tends to well-
defined states |E,m). This ensures that in the absence of
interactions, the continuum solutions can be uniquely de-
termined as the continuum states |E,m), thus eliminating
any ambiguity in their characterization. This requirement
guarantees a smooth transition from the interacting sys-
tem to the non-interacting system.

Under these specific conditions, the / contiuum state
solutions for a; < E < a;,; coincide with the first / states
for E > ac. Consequently, it is sufficient to solve for the
solutions when E > ac, and then the first / solutions can
be obtained for the range E <a;. For each continuum
state |¥,,(E)) with E > ac, the corresponding coefficients
are denoted as a,, Yum(E,w), Aj,, and B, as in eqs.
(21), (22), and (23). Then, one could obtain

@5, (E) = — MJA;?'m(E), 25)
Yin(B,) = Sl = E)+ ———
D ALE @)
X (; ﬁ + nZ::] V"”/Br_l’m(E)gn(U))> .
(26)

The procedure of solving the equation Eq. (26) is
straightforward but intricate. The strategy is to apply the
operations Y, [, dwf;,(E)x and Y,vi,., [dwgi(w)x on
the left-hand side of Eq. (26), respectively. After this, we
can derive the following expressions:
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0= f;.(E)- ZD: ApnlE) (6, /(E-M;)- ZC: / Ir ”(w)f’”(w)) + zcj ( (E) Z / f’”(w)g"(w) 27)
= Jjm f E— Mj’ JJ J — /. E—w+i0 £ n m Vo ” E—w+ lO
fin(w)g,(w) gn(w)g,(w)
mm’gm(E)-l_Za/mZvnm E—-w=+i0 ZBH Wl(E)( Varme Zvnm’vnﬂ E—-w=+i0 ) (28)

n=1 dn

[

The matrix representation proves to be a valuable tool in simplifying the derivation process and achieving concise
results. In this context, we introduce matrix Y and F with (C+ D) x C dimension, matrices V4 and V2, with dimensions
DxD and CxC respectively, matrices VA% and V54, having dimensions DxC and Cx D respectively, and finally, a
(C + D)X (C + D) matrix M encompassing V4, VE VA8 and V34 as follows

A, (E
V)jm = jm = E/f(M)f Bjn = fre form=1,--,Cij=1,--.D,
J
(Y = 'm—D.,ns (F)mn = VZ,m_DgZ, forn=1,---,Ccm=D+1,---,D+C, (29)
A f/n(w)fi:(w) . L
(VD)ij = 6i;(E = M;) - Z AT ot fori=1,---,D;j=1,---,D,
w w
(VB)mn—(an val ln/‘gEl‘( Z()gl‘f‘(lo) fOI'm:l,'--,C;n:L-'-,C,,
AB _ f;:l(w)gn(w) . . _
(V )im__zvn’m/%E—wi-iO’ fori=1,---,Dym=1,---,C,
Jinlw)g, (@) .
(VBA)”IJ:_ nm/ et 2 a)+10 fOI'JZI,""D;m:I,...’C’
VA(E) VAB(E)
MIJ: , fOI'I,le,"',C-i-D. (30)
VPAE)  VH(E)

Similar to the coefficients a and y, we have omitted the
superscript + in the notations of the matrices Y, V, and
M, which can be inferred from the surrounding contexts.
With these matrices, the two equations (27) and (28)
above can be expressed in matrix form

M-Y=F. (31)
or in component form
D c
> Vi EXuE)+ Y Vil (E)Bu(E) = £, (E), (32)
=1 n=1
Z VIAE)a(E) + Z VB (E)By(E) = g (E)o .
- (33)

Before further proceeding, let us look at some proper-

ties of these matrices. From the relation v}, = v,,,, we can
observe the following symmetric properties:
(VA+)7=(VA_)ﬁ, V5w = (V5 ),
(VB = (VP M7 =M. (34)

In the case where v,,, fi.(w) and g,(w) are real for real
w, these function matrices possess real analyticity prop-
erty. As a result, they can be analytically continued to the
entire complex E plane and satisfy the Schwartz reflec-
tion property. Moreover, the analytically continued func-
tion matrices can relate the +i0 and —i0 counterparts, rep-
resenting the limits on the upper and lower edges along
the real axis above the threshold. In the cases that v,,,,
fim(w) and g,(w) are complex, the function matrices will
no longer be real analytic, but the determinant of the mat-
rix M, denoted as detM, remains real analytic. Thus the
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analytically continued determinant exhibits the Schwartz
reflection symmetry, detM(z) = detM*(z*).

In general, detM is nonzero for general real £ values
above the lowest threshold, otherwise if detM =0 for all
real E, v,,, matrix would be degenerate and there would
be a state decouples in continuum-continuum interaction,
which is not our assumption at present. As a result, M
possesses an inverse. and Y can be obtained by
Y =M"'-F. Then, by inserting A,,(E) or a;,(E) and B,,

into Eq. (26), one obtains the coefficients y,, and the
continuum eigenstates are solved to be
D
WL(E) = |Esmy+ Y o (E)
Jl
N )
. n .
x<|])+;/andwE_wil_0|w,n>>
5 ( 2
+ 3 v Bon(E) / Dy 39)

nn'=1

for E > a,,. Upon comparison with Eq. (12), this solution
is different only in the last term, stemming from the pres-
ence of separable potential. Importantly, it can be con-
firmed that the solution retains the previous normaliza-
tion condition, (Wi (E)Y:(E’))=6(E—E’)d,,. This, nor-
malization condition guarantees the orthogonality of the
wave functions, ensuring their compatibility and consist-
ency within the framework of the problem.
The S-matrix can be obtained as

Sn(E,E") = 6, 0(E—E")=27i6(E — E')

( )

J Jay

The expressions obtained in these two equations devi-
ate from (27) and (28) by the absence of the first terms on
the right hand side. Analogous to the definition in Eq.
(30), we can introduce the matrices V4, VA3, V&4 VB,
and M as the analytic continuation of the matrices in Eq.
(30) and

< ](E M) Z/ Jn(U))fjn( ))+Z

fjn(w)gn(w) ZB (E)(v, Z nn/
n=1 An

D+C
(S FD, ;) () (36)
1J=1
or
S(E,E")=18(E—-E")-2nis(E-E)F - M"™".F  (37)

in a simplified matrix form. For a more thorough deriva-
tion of the normalization and meticulous calculation of
the S-matrix, please refer to the Appendix A, where we
provide a detailed presentation of the calculations, offer-
ing a comprehensive and in-depth derivation of the nor-
malization condition and the S-matrix.

Subsequently, our attention turns towards the deriva-
tion of discrete eigenstates. The eigenvalues for the dis-
crete_states does not coincide with the spectrum of the
continuum states. Thus, using the condition E ¢ [q;, ) for

i=1,...,C, Eq.(23) one can solve Eq.(23) and obtain
@(E) = =3 AAE) (38)
Y(E,w) = (Z a(E) f(w) + Z Vi B (E)gu())

j=1 n’=1

(39

By multiplying Eq. (39) with fjn(a)) and v}, g} (w) separ-
ately, and subsequently summing over n and integrating
w.r.t. the variable w, we arrive at the following expres-

sions:

C
B (E)Z Vo / fjn("‘))gn(w) ’ (40)
n’=1 an
gn(w)g,(w)
) (1)
T _ Ay Ap
X' =Gy gy B BO)
(CZ], ) ..B],...,Bc)

Then Eqs.(40) and (41) can be expressed as

M-X=0.
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To obtain nonzero solutions for the vector X, it is essen-
tial to satisfy the condition that the determinant of M is
equal to zero, i.e., detM(E) = 0. By analytically continu-
ing this equations to different Riemann sheets and solv-
ing it on each sheet, we can determine the generalized
discrete eigenvalues.

Once the generalized eigenvalues are determined, the
vector X can be solved for each eigenvalue. Substituting
the solutions for @; and B, into Eq. (39), we obtain the
discrete solution from Eq. (21) for each generalized en-
ergy eigenvalue,

Sin(w)
E,‘ —wW

c
Z/ dw Iw;n))
n=1 Y dn

D
WOE) =D (E)(Ij)+
J=1

C
3 ) [ 0D om, @)

nn'=1

where the superscript (i) denotes the i-th discrete solu-
tion. The solution for X is only determined up to a nor-
malization. On the first Riemann sheet, the zeros of the
detM can only be located on the real axis below a; due to
the hermicity of the Hamiltonian. These zeros corres-
pond to the discrete eigenvalues E,. It is possible for the
associated states to have a finite norm, and we can im-
pose the normalization condition on the coefficients to
ensure

D Cc o0
1
1= la(E)P+> / dwi(Eb—a))z
i=1 n=1 v4j

D C 2
x ] ST CHEN @)+ Vi B (Ep)ga()
J=1

n’=1

=X(Ep)-M'(E) - X*(E}). (43)

Within the framework described earlier, each term in the
summation can be interpreted as the probability of find-
ing the corresponding bare state within the bound state.
However, there could also be complex energy solutions
present on different unphysical sheets. As the determin-
ant of M is a real analytic function, these complex eigen-
value solutions appear as complex conjugate pairs.

As already mentioned, there exist 2¢ distinct
Riemann sheets. However, for our specific purposes, we
focus solely on solutions Ej that reside on the lower half
Riemann sheet closest to the physical sheet. These solu-
tions have a significant impact on the physical S-matrix
elements. Since Ey lies on a nearby unphysical sheet, the
evaluation of the matrix value of M at this point requires
deforming the integral contours to the corresponding
sheet around Ej defined in the matrix V and M in Eq.
(30) as illustrated in Fig. 1 [5]. Also in the state solution
Eq.(42), the integral contours are also deformed similarly.

The normalization requirement of these states may re-
semble Eq.(43), but with E, replaced by Ef, and the in-
tegral contour adjusted accordingly following the deform-
ation depicted in Fig. 1. However, it is important to note
that there is no probabilistic explanations for each terms
in the sum, as they may not be real. Additionally, there
can also be real solutions below the lowest threshold a,
on unphysical sheets, which correspond to virtual states.
Similar to the resonant states, the corresponding integral
contours should be deformed in Eq. (42) and in Eq. (30)
for these states.

In the case where the coupling constant matrix v, is
degenerate, certain continuum states may decouple from
the contact interaction. This allow us to choose a suitable
set of continuum basis states in which the decoupled
states do not appear in the contact interaction terms. A
more general hamiltonian can be expressed as

D C 0
H=> Mliil+» / dwwlw;n)w;n|
i=1 n=1 Y dn
r C 00
+ Z Z Vin ( / dwgmm’ ((,L))|L(), ml>>

mn=1m’,n'=1 Am

x / wdwg:;,,,(w)w;n’l)

n

D C 00
N0 dwsieen)

j=1 n=1 ap

+ (/aw dwﬁn(w)lw;n))(ﬂ} , (44)

n

where 7 is the rank of the continuum-continuum coupling
constant matrix and v,,,, m,n=1,---,r is a non-degerate
matrix. Notice that in general, though we are discussing
the case for degererate case where r < C, this general in-
teraction even applies for the cases when r>C which
may correspond to the case we will discuss in the next
section. Since v is a hermitian matrix, it can always be di-
agonalized and be chosen as v,,=4,5,,, for
m,n=1,---,r. When g,,.» < 6,..», it reduces to the origin-
al case (20). The solution to the engenvalue problem for
this Hamiltonian is straightforward as before. The differ-
ence of the results from the nondegerate case is roughly
to change definition of B, in Eq. (24) by B, = Z,C:I [ gut
(n=1,---,r) and replace the factor v,,g, t0 > _; Vg in
each equation. For different continuum solution B, would
need another index m to denote the corresponding con-
tinuum solution, i.e. B,,, n=1,---,r;m=1,---,C). No-
tice that the range of the first subindex of g, and B,,, is
from 1 to » and the second one from 1 to C. Thus the sum
of the first subindex of g, of B, need to be from 1 to r.
A special case is when r=1 and we can set vy = 1
and g, =v,g.(E) = (g), where v, is a constant and g,(E)
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is a coupling function. Then the we can rename By, to
B:(E)=Bt, = .5 v, [ dwg,(E)E,(E). The M matrix in

Im

Eq. (30) can be represented as

M,,:( ZT _T>, for[,J=1,--,D+1, (45)
—_Tt g
[ (@)
mij(E) =6i(E — M;) - ;/ E-w=+i0’
forl'=1’...7D;j=1’...7D (46)
Vzgz(w)vz g/ (w)
() = Z | ) @)
/ Jun W)V 8o (a)), fori=1,---,D; (43)
= S E-w=+i0
T m(w)vm m(w) 7
fﬁ_z ijszO’ for j=1,---,D; (49)

m=1 " @m

For the continuum eigenstate solutions, «;, and B, are
solved as

Ajm ="' £+ ™! “1)iBm (50)
TIT ) 77_1 £+ (g*(E))m
m = n 5 = 1,...,C, 51
o B - i Gh
where we have defined the vector (£,); = fin, i=1,---,D.

Then the S-matrix can be obtained as

Sl E. E') =6,,8(E — E') = 2mis(E — E') (£, (7)™ -£3(E)
(52)

(f ) THE) + @E)) (- () -+ (g (E))n)>
gHE) =TT - ()t - '
(53)

With the S matrix, the observable scattering cross section
can be obtained to compare with the experiments.

In the spirit of effective field theory, a discrete state
Jjo become decoupled when its mass M;, greatly exceeds
the system's characteristic energy scale. This fundament-
al principle was exemplified in Weinberg's seminal work
[29], where two equivalent formulations were construc-
ted: the full theory contains the discrete state explicitly in
the free Hamiltonian, while the reduced theory elimin-
ates the discrete state by introducing a specific potential
renormalization. Weinberg demonstrated their equival-

ence when M;, — oo, provided the potentials satisfy the
matching conditions that encode the decoupling dynam-
ics. In our present scenario, we can also construct a low
energy effective Hamiltonian without this discrete state
and include an effective contact interaction of the con-
tinuum states after integrate out the intermediate discrete
state in s channel. The corresponding interaction term can
be expressed using separable contact effective interaction

terms as
_ Z / f}gm(w) >< .

m,n=1

i # (54)
This interaction is similar to the previous special case
with  r=1 by replacing v, —v;;=-1, and

Jon

gln gmn = M 5

Gt = O 1t effectlve adds one extra rank to the ori-
ginal v,,, matrix. To solve this eigenvalue problem, using
Eq. (30) and previous discussion below (44), there will be
arow and colomn in the V& from the (54), with

and the matrix elements v, , =0 and

C
Sin(w) fi (W) M},
Vin = | T sy
Z / vingl(w) [ ()] /Mj, 55)
Vi o (E—w=i0) '

For VA8, there will be corresponding matrix elements

iy / ful@) (@) /My 56)
1o — E-w=+i0
and similar for V5. For F, there is an element

Fjon=~fi./ /Mj,. Alternatively, we can start from the
original Hamiltonian with the discrete state and taking the
large M, limit. From Eq. (30), taking M; much larger
than £ in V% is to factorize the M, and take E/M;, — 0,

1
making the replacement V7 My (-1-——
S J d f,on( ) jon(@)

Jo
E -
M;, from V4

i.e.

wxi0 ). Similarly, after factorizing out
G and /M from Vi Vi, VB VR

these matrix elements are of the samejofomé0 as tlfé: correj;—
ponding matrix elements in VA2, VB4 V& in (56) and (55)
as if one is directly solving the decoupled Hamiltonian as
constructed above (54). One can then find out that the S

matrices obtained by the two approaches are the same.

IV. APPROXIMATING A GENERAL POTENTIAL
USING SEPARABLE POTENTIALS

In scenarios where the interaction potential can be
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reasonably approximated as separable potentials, wherein
the potential can be expressed as the product of two com-
ponents associated with the ingoing and outgoing states,
respectively, the problem can be effectively addressed
and hold practical significance. Now the problem is how
to approximate a potential using the separable potentials.
Before addressing this problem, let us review how a gen-
eral contact interaction can arise in the elastic and
nonelastic scattering.

As discussed in the previous section, the Hamiltonian
of a most general model with multiple discrete states and
continuum states and their interactions can be expressed
as

D C o0
H:ZM,-|1‘><1'|+Z / dw wlw; nXw;n|

i=1 . ) n=1 n

)

myn=1" dm

do’ / dwV, (', w)|w’; my{w;n|

/ doo( f(@)j)w;nl + fn(@)lw;m}il)-

j:] n=1 n

In the context of nonrelativistic scattering, i.e. when the
in-state and out-state are composed of the same two-
particle content, in the angular momentum representation,
these continuum states can be  expressed as
lw,n) = \uplp,JM;1S), where J,M,[;S are the quantum
numbers for total angular mentum, magnetic angular mo-
mentum, relative orbital angular momentum, and total
spin, respectively, and are collectedly denoted using »
and a, are the threshold. Here, p represents t2he radial mo-
2u
ents the total energy. The normalization of the con-
tinuum states is chosen such that the inner product
between two continuum states is given by (w’,n’|w,n) =
Synd(w—w’). The momentum space potential V,,,(w’,w)
can be derived from the coordinate space potential V(r).
For simplicity, we consider only the rotational invariant
potential. The potential function V,,(w’,w) arises from
the matrix elements Vn(',w) ={, 1 |V|w,n) =
VWP Aup{p’'IMI'S’|V|pJMIS). The simplest example is
when the in-states and out-states are composed of the
same spinless particles, i.e. elastic scattering. If we know
the coordinate-space potential V(r), then the momentum-
space potential V(k’,k) can be expressed in terms of the
coordinate-space potential V(r) as follows:

mentum, u is the reduced mass and w = — +a, repres-

l’lénl'nl

9 2., A
KU \VIk, Lm)y = — 2 / rPdr= j (k' V() jikr), (57)
T

where the j(z) represents the Riccati-Bessel function.
In the cases where the in-states and out-states can

have different particle compositions, we can generalize
the potential V(«w’,w) accordingly. In addition to the an-
gular momentum quantum numbers, the labels » and »’
can also denote the different particle compositions |w,n).
If the potential in coordinate space, V(r’,r), in the center-
of-mass system, is invariant under rotation, it can be ex-
pressed as a function of r?,r? and r-r’. Here, r and r’
represent the position of the in-state and out-state relative
coordinates,respectively. In the case of spinless particle
system, the matrix elements for in-states and out-states
can be expressed as follows:

Vn(w',w) = {n' ' Im|V|n, wlm)

= /drdr'(n’,w'lm|r’)V(r',r)(r|n,wlm)
2

W
= ”(

) / drdr’(pr)ji(p ¥V 1),
pp

Vit , P01 By = 17 / dQdQ'y;, (#)Y,®) V(. r).

The Wigner-Ekart theorem has been employed to ac-
count for the spherical symmetry of the potential V(r’,r).
When the in-state and out-state can have spins, the total
angular momentum are conserved but the orbital angular
momentum could be different. We can include the differ-
ent orbital angular momentum and total spin quantum
numbers IS and /'S’ into n and »’ to label different in-
states and out-states,

2 ’
Vinl@ ) = (' IMVIn, 0 My = = (EE) 2
mp'p
X/drdr/ Z T g (P YV 1),
wss’
Vi, (7 r)y=rr Z / dQdQ'y;, (#)Y,,(®)Vss (x',r)

mm’ mgm’y

JM JM
X ClmSmA- Cl’m'S'mf,. ’

where CjX, is the Clebsch-Gordon coefficients. To
make further progress, we also suppose that the potential
is square integrable for both «’ and w, and the same for
the interaction vertex between the discrete states and the
continuum states f;,(w), that is

/da)’/dw|V,,m(w’,w)|2=ﬁnite, /dwlfjn(w)|2=ﬁnite.

an

There are no exact solutions for Hamiltonian for gen-
eral potentals V,,(«’,w). However, it is well-known that
such a potential can be expanded using a sum of separ-
able potentials [30]. For continuum states |w,m), we can
choose a set of complete basis functions g,,(w), with
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[, dwg;, (©)8ns(w) = and 3 Zno(@)Ems(w) =
o(w’ —w). The basis sets for different continuum states,
1.e. for different m and »n, do not need to be the same. The
potential V,,,(w’,w) can then be expanded as

pé

an(w/, w) = Z an,pégmp(w)g;:a(w)'
po

In the following we will use the Greek letter p, J to label
the basis, and repeated Greek letters are summed over
without explicit sum symbol and the sum symbol for the
Latin letters would still be left explicit. The coefficient
matrix composed of v, s 18 hermitian vy, ps = v;,, 4, and
is supposed to be non-degenerate. In general, there are in-
finite number of bases, the sum of d and p is up to infin-
ity. Since the expansion coefficients v,,,; are small at
large enough order, one can make an approximation and
truncate the series to a finite order N, i.e. v,,,; =0 for
0,6 > N. Then, the general Hamiltonian for multiple con-
tinuum states and discrete states can be recast as

D C )

H= Mlixil+» / dw wlw;n){(w;n|
i=1 . n:IOo n

+ > Vg / des' B (@5 m) )

mn=1 am

X </“ dwg;(;(wa;nl)

n

+ZZ {l])(/ dwf]n(a))<w;n|)

Jj=1 n=1

o[ don@iom)i). (59)

n

One can take mp and nd as the row and column indices
and diagonalize the matrix v, ,;. Then, the problem re-
duces to the similar case in the last part of the last section
when the degenerate v,,, is discussed. Here the rank of
Vamps 18 greater than C just as we mentioned in last sec-
tion. Alternatively, we can also directly solve the prob-
lem as before in the following. The general eigenstate for
this eigenvalue problem can be expanded using the bare
discrete states and the bare continuum states

D C
W(E) = a(E)lid+Y / doy,(E,)lw;n).  (59)
i=1 n=1 ' an

Similar to previous sections, for |¥,,), the corresponding
a; and ¢, will have another index m, i.e. a;,, and ¥,,.

With the same procedures as the previous section, the
approximate properly normalized continuum states can be
solved as

D
WE(E)) = |Esmy+ Y o, (E)

j—l

|J>+Z [ o i)
(3 v () / D),

nn'=1

(60)

where o (E) and lﬂnmp(E)ELTlﬂn'm(w)gnp(w) can be

m

solved as in Eq.(B11). The S-matrix can then be obtained,

(WL(ENV(E)) = 0md(E—E')

—2mi6(E - E))(F,- (M) -F,)  (61)
where the matrix M* with dimension (D +NC)X
(D+NC) and vector F, with dimension (D+NC) are
defined in Eq.(B7). The detailed calculation is left to ap-
pendix B. The discrete eigenvalues can be obtained by
solving Eq. detM(E) = 0. The discrete state correspond-
ing to eigenvalue E; can be expressed as

PO(E,)) = XD: 0 : fin(@)
N= af (Ei)(|J>+ }

wE _wla);n))

+Zvnn’6pwnmp(E)/d gné(w)

. (62)

where the integral contour needs to be deformed for E; on
unphysical sheets as before.

It is worthful to mention that though we are choosing
gms as orthogonal function sets, we do not use this orgho-
gonal property in solving the problem. Thus, as long as
we can approximate the Hamiltonian using the separable
interaction like in (58) without orthogonal conditions for
gms functions, the solution applies.

Next, we could go further and also expand the inter-
action function f;,(w) using the same set of basis g,s(w)
as in the corresponding contact interaction involving the
continuum state |w,m),

f]m(w) = ijm&gmé(w)a fjmé = /dwfjm(w)grnd(w)’
o

and also make an approximation by truncating the series
to the N-th order the same as in the contact terms, that is,
fims =0 for 6 > N. This may reduce the dimension of the
matrix M and may also simplify the numerical calcula-
tion. Then, the general Hamiltonian for multiple con-
tinuum states and discrete states can be recast as
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D C )

H=" Mlixil+» / dw wlw;n)(w;n|
i=1 . n:l00 n

+ Z v,m.,pa( / dw’gmp(w’)lw’;m)

mn=1 Am

X (/m da)g:é(a))(w;nl)

n

+ZZ {f/mi'])(/ dwg,;(w)Xw; n|>

j=1 n=1

il [ oozl (©3)

n

This case is more like the cases discussed in [10, 26],
where the same form factor comes with the continuum
both in the discrete-continuum and continuum-con-
tinuum interaction. Using the eigenstate ansatz

D
(E) = au(E)liy+ / dwy, (E, w)lw;n)

i=1 An

D C
=) By + Y s(E) / dwgs()w;ny, (64)
i=1 n=1 an

one can proceed solving the eigenvalue problem similar-
ily to the previous section, of which the details-will be
left to appendix C. The properly normalized continuum
state can be solved and expressed as

D c C
WLE) = > ap (E)D+IEm)+ > > (B (E)

i=1

x/dw

where the «;;, and ¢, can be solved from Eq.(C9). The
S-matrix can be obtained

n=1 n'=1

B |
E-wxi0
(65)

(YL(ENY,(EN)
= 8,ud(E—E') = 2mis(E — E')

c C
X Z Z w;*mp(E )V nd’,n ;)(E/)gZJ’(E)

n=1 n'=1

= 6mO(E — E") = 2mis(E — E')(F! - (W™ F,) (66)
where the NC x NC matrix W* and NC dimensional vec-
tor F,, are defined in Eq. (C8) and Eq. (C7). Similar to
previous section, the generalized energy eigenvalues for
the discrete state can be obtained from the detM(E) =

and for each eigenvalue E;, ¢) can be solved from

MY =0, where the matrix M and Y are defined in Eq.
(C6) and Eq. (C7). Then we have the discrete eigenstates,

D

fo
OE)) = > vD (EN| Y =2j)
>S5
VasE) | oS )]

with YO'(E))- V(E;)- W'(E;)- V(E;)- Y?(E) = 1
(67)

with integral contour deformed for resonances and virtu-
al states as before.

V. APPLICATION IN ANALYZING THE DIS-
CRETE STATE POSITION UNDER INTERAC-
TIONS

Inthe case when there are contact interactions in-
volved, we can explore the effect of introducing small
couplings on the mass of the discrete states in a general
manner. Analyzing pole trajectories as couplings vary of-
fers valuable insights into particle properties. This type of
analysis proves useful in elucidating the origin of certain
states observed in the experiments utilizing Friedrichs-
like models or similar formulas derived from the dispers-
ive models. Notably, refs. [21, 31-34] demonstrate how
pole trajectories of various states provide valuable clues
regarding the possible nature of these particles.
Moreover, such analyses may also provide qualitative
guidance in understanding the interaction properties from
the spectrum. To illustrate this, we focus on the exponen-
tial form factor, a frequently employed form factor in the
literature. Using this form factor as an example, we dis-
cuss the properties of the bound states while varying the
couplings. For simplicity, we consider a two-channel case
where the threshold for the two continuum states are de-
noted as a; and a, with a; < a,.

The basic consideration is as follows: At the leading
order, where the interactions are absent, the discrete state
is determined by the condition E—u =0, with the bare
mass being the solution. When a small coupling constant
A is turned on, we must consider an equation of the form
E—u+Ax(E)=0 (1>0), where y(E) is real and small in
the vicinity of E = u. The next-to-leading-order solution
can be expressed as E =pu—Ay(u)+O0(1%). The sign of
x(u) allow us to determine the tendency of the solution's
behavior. If we know that y(E) is a monotonic function,
either positive definite or negative definite, we can de-
termine the direction in which the solution will shift as A
increases continuously. For example, if y(F) is a positive
decreasing function, it is evident that the solution will
move downward as A becomes increasingly positive.
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More generally, when we replace the left-hand side of the
leading-order equation E —u =0 with another increasing
function, i.e. £(E) = 0, the addition of another positive in-
creasing function will cause the zero point to shift to the
left. See Fig. 2 for an illustration.

We also need to examine the behavior of the disper-

ion integral defined a G(E):f‘”de When
sio eg efined as S oz .

E < a, the integral behaves as a purely negative decreas-
ing function. For E > a, the imaginary part is —x|f(E)]?,
which is purely negative in this region. The real part cor-
responds to the principal value integral in G(E). Near the
threshold, the real part is negative and increasing with E,
passing through zero point £ and reaching a positive
maximum, and then decreases back towards zero as E ap-
proaches infinity. See Fig. 3 for an example. Typically,
the integrand includes a phase space factor
o(E) < VE—a, which suppresses the integrand near the
threshold a, which causes a higher value of £. See Fig. 3
for the case with |f(w)]* = Vw—aje£/*. We observe that
ReG(E) becomes positive only when E approaches A,
which characterizes the inverse of the interaction range. If
the energy range of interest is significantly smaller than
A, then ReG(E) remains negative. We will primarily fo-
cus on this region below.

With this preparation, we can explore some interest-
ing and instructive simple cases that are relevant to the
phenomenological analysis of the spectrum.

[El+X[E]

Fig. 2. A monotonic increasing function ¢(E) which satis-
fies £(u) =0. The solution for {(E)+x(E) =0 is smaller than u
if ¥(E) is a monotonic increasing positive function.

Re G4 (E)

00 2
Fig. 3. The general behavior of the real part of G(E) = fa dw fl-ffﬂ,-g

terested energy region is much smaller than A, then ReG(E) < 0.

First, we consider the cases with only continuum states.

1. In the presence of a single continuum and self in-
teraction vy, if vy, is sufficiently negative (i.e. attractive),
a bound state will emerge at E, < a; .

This is the simplest case. The M matrix reduces to a
function,

My =vi (1 -v1G(E)),

o g1 (@)l . .
where G| = fa. dwﬁ and a; is the threshold. Since
G, (E) is negative and continuously decreasing for E < a;
with limg_,_, G1(E) = 0, as shown in Fig. (3), for M;; to
have a zero point at E, < a;, the coupling v;; must satisfy

the condition v; < 1/G(a)).

2. With a second continuum state included, we can
examine the coupled-channel effect on the dynamical
bound state of the lower channel discussed in previous
case when v;; <0.

The M matrix becomes

vit(1 =viiG1(E)) = viaPGo(E)
via(1 =v11G1(E)) = viavnGa(E)
Va1 (1 =v1G(E)) = vaava1 Go(E) (68)
V(1 =viGa(E)) — viaPG (E)

o0 ) 2
Gio / o i@
@ E-w+ie

i

where a; and a, are the thresholds for the two channels
with a; < a,. The determinant can be calculated to be

detM = (detv) (1= v G/ (E) - v12Ga(E)
+(detv)GI(E)GA(E) ),

Vii V2
V= .
Var Va2

Re G(E)

function, using |f(w)]? = Yo —ae /A, with A =5, a=0. If the in-
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It is worth mentioning that since vy, appears only in detv
in the form of |v;,|*, the phase or sign of vy, is irrelavent
to this result in this context.

There are four cases to consider progressively. In
each case we will first present the result and then provide
the reasoning behind it.

(a) When vy, #0 and vy, =0, the coupled channel ef-
fect will play a role of attractive interaction, causing the
bound state to shift from E, to a deeper energy level Ey,,
1e. Ey, < Ey.

This can be demonstrated by directly calculating the
determinant of M, yielding

detM = —[vpo*(1=v11G1(E) = vioPGI(E)GA(E)) . (69)

At E <a,, the last term —|v,>G,(E)G,(E) in the
bracket is negative and decreasing, while the term
—v11G((E) is also negative and decreasing. Following
similar reasoning as illustrated in Fig. 2, £ must be much
smaller in order to have a zero point of detM, denoted as
Eg,. This discussion does not rely on the smallness of the
coupling, and therefore it is also valid for strong interac-
tion.

(b) When a sufficiently small vy, is then turned on,
the result depends on the sign of vy. A negative vy
causes the bound state to shift to a deeper energy level,
while a positive vy, results in a shallower bound state.

The contribution from v, to the detM at the zero
point Ey, can be expressed as

— Vi P(vi1vas — V12l G i (Eop ) G5 (Eop)
~ v lvial* Gy (EOb)Gﬁ(EOb) + 0(V§2)~

When the v,, is negative, indicating a more attractive in-
teraction, this term contributes positively to detM for
E <ay, thereby negatively affecting the terms in the
bracket of (69). This results in the bound state shifting
deeper from E,, moving away from the threshold. Con-
versely, when vy, is positive, the bound state becomes
shallower, moving upward from Eg,. Therefore, when
both vy, and a positive v,, are present, the direction of the
bound state's movement from E, depends on the competi-
tion between the effects of vy, and v,.

(c) For large |vy|, when vy, > 0, we can conclude that
the bound state will be located to the left of E, but to the
right of Eq,.

This can be understood by expressing detM as fol-
lows:

detM = (detv)(1 —vpGo(E)) (1-v11Gi(E)

|\’12|2

- TGZ(E)GI(E)GAE))

(70)

and by considering the positivity of —v,,G»(F) in the last
term in the bracket for E < a,. As vy, increases, the abso-
lute value of the last term in the bracket deceases. Thus,
when positive vy, is turned on from 0 to oo, the bound
state moves from E, to E;.

(d) When negative vy, is introduced, starting from
zero and becomes increasingly negative, the bound state
will shift deeper from Eg;, to —co.

This occurs because, for fixed E, the term
1 —v»G»(E) in the denominator of the last term in the
bracket approaches zero, leading to a divergence of that
term. To cancel the first two finite terms, £ must become
increasingly negative so that |G,(E)| decreases suffi-
ciently, allowing the last term to remain finite and effect-
ively cancel ‘the first two terms in the bracket. Con-
sequently, this will cause the bound state to shift deeper
from Egy, to —co.

3. Similar to previous case, when there is only an at-
tractive interaction in the second channel, i.e. v,, < 0 with
vi1 = v =0, a dynamically generated bound state (E,)
can exist below a, and is assumed to be above a;, satisfy-
ing the condition 1/Ga(a;) < vy < 1/Gay(as). We can then
examine the effect of turning on the first channel on the
bound state spectrum of the second channel. There are
two cases to consider.

(a) When a small v, is introduced while keeping
vi1 =0, the bound state will transit to the second sheet.
Whether the mass of the state increases or decreases de-
pends on the sign of ReG1(E;). A negative ReG(E;,) will
cause the mass of the state tend to decrease, while a posit-
ive ReG,(E,) will lead to an increase in the mass.

In this case, we have

detM = —vpol (1= v1Ga(E) - v’ G1(E)GA(E)) . (T1)

Consider solving detM =0 in the powers of vy, using it-
eration. Since E, > a;, the G,(E) factor in the last term
contributes an imaginary term of —zilg,(E)*. Combining
this with the other factors yields a negative imaginary
part on the order of |v},|* in the bracket. For detM =0 to
hold, the state corresponding to E, must move into the
complex plane, allowing the term —v,,G,(E) to generate a
negative imaginary part of order 12, to cancel the imagin-
ary part of the last term in the bracket. Thus, £ must have
a negative imaginary part, and with the +ie in the defini-
tion of G;(E), the pole moves continuously to the second
Riemann sheet. This is consistent with the common
knowledge that the resonance poles can not reside on the
physical sheet. Whether the mass of the pole is increas-
ing or decreasing depends on the the sign of the leading
real part of the last term, which is determined by examin-

2
o0 w
ing ReGi(E,) = PV. [ dw "Z l,,(—ll)

. If this value is negat-
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ive(positive) the mass will decrease(increase). This is due
to G,(FE) being negative and decreasing for E < a,, lead-
ing to a negative (positive) contribution from the real part
of the last term in the bracket. In the example illustrated
in Fig. 3, when A is much larger than a, where ReG,(E)
is negative and monotonically increasing near E,, turn-
ing on the v, will cause the mass of the dynamically gen-
erated state (from E,) in the second channel to decrease.

(b) When a small |vyy| is also turned on, as long as
[v11] 1s small enough, the result will be the same as previ-
ous case.

Similar to previous case, detM can be expressed as

detM = (detv)(l —VllGl(E))((l —V22G2(E)

_ viol?
1=vnG(E)

= (detv)(1 = vi1G1(E)) ((1 - vaGa(E)
ol (1= v11 (ReGy (E) — G, (E)))

i 1=y G (B GIEG(E))
(72)

GI(E)Gy(E))

(E - p) = FA(E) = Fo(E)
M= { v 7 E) - v 7 E)

_ Jo(@)f; (w) . _ Ju(w)gn(w)
where 7. }{“")d(:)(E)—aHiO s A0
o W(W)gh(w
P = oy g0

We look at three different cases.

1. One bare discrete state coupled with two con-
tinuum states with v;; = 0.

When there is only the interaction between the dis-
crete  state and the continuum  states, i.e.
vi1 = 0,v15 = 0,v5 =0, we need only to look at

My = (E-p) = F1(E) - F2(E) = 0. (74)

By default, we will suppose u < A, and ReF (1) <0
similar to Fig. 3.

(a) When u < ay, since F1(E) and F,(E) for E < a, are
negative and decreasing, the solution, denoted as E,,, will
be less than u. This indicates that when the discrete state
lies below both continuum states, turning on the interac-
tion between the discrete state and the continuum states
causes the discrete state move deeper below the
thresholds.

v FLE) = vy F3(E)
vii(1=viiG(E)) - vi2?G2(E)
—szﬁgi(E) - szﬁgi(E) Vo1 (1 =v11G(E)) = v Go(E)

Compared to (71), there is an extra factor
1/(1=v{;G;) in the |v;,]* term. The difference is of order
O(viIvi2]?), and therefore, for sufficiently small |vy|, the
result would be the same as in the previous case.

4. There could also be a bound state generated from
pure v, interaction with no self-interaction, i.e.
vi1 = vap = 0, regardless of the sign of vy,. In this case, v,
acts as an attractive interaction.

If vii=vp=0, detM=—|v,*(1-|vi2l’GI(E)GA(E)).
Since both G(E) and G,(E) are negative and decreasing
for E below the first threshold, there can be a solution to
detM =0 when |v;|> is sufficiently large, specifically
when |[v5? > 1/(G(a;)Ga(a,))). When |vi,|* decreases, the
bound state will go up through the threshold to the second
Riemann sheet, becoming a virtual state or a resonance.
Thus, activating only vy, is equivalent to enhance the at-
tractive interaction when there are only two continuum
states.

Next, we add a discrete state of bare mass y with
coupling vertex functions to the two continua, fi(w) and
S (w). Now M matrix becomes

Vi FF(E) = v F3 (E)
Viz(1 =v1G(E)) = vi2vGa(E) (73)
v (1 =vnGy(E)) - via*Gi(E)

(b) For a; < u < ay, when the sufficiently weak inter-
actions f; and f, are gradually turned on, the discrete
state would move to the second sheet and the mass will
go down.

In this case, only #,, contributions near u are signi-
ficant to the shift of the zero point, as observed in the iter-
ation solution. With #5(u) < 0, and assuming Re#;(u) < 0
(as seen in the case of exponential form factor with
1 << A), a weak interaction between the discrete state and
the two continua will also lead to a decrease in the mass
of the discrete state. Since ¥7(u) has a negative imagin-
ary part, the energy of the discrete state solution and
—%>(E) will develop negative imaginary parts to cancel it.
As a result, the discrete state will move continuously to
the complex plane of the second Riemann sheet.

(c) When u > a,, similar to the previous case, the dis-
crete state will go to the third Riemann sheet and the
mass will decrease.

The discussion is similar to the previous item. When
u << A, we find that Re(F7,(u)) < 0, and these terms act as
attractive interactions, driving the mass of the discrete
state downward. The negative imaginary parts of ¥, (u)
result in the solution moving down to the third sheet of
the Riemann surface.
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This may provide an understanding of why most of
the open-flavor effects tend to cause the mass of the c¢
state smaller [35]: The A in the corresponding system is
large enough or the interaction range is so small such that
Re(Fi12(u)) <0.

2.One bare discrete state coupled with two con-
tinuum states with v;; # 0.

Now, proceeding from previous case, we gradually
turn on v;; # 0 and leave v, = v, =0. Then we need to
examine the zero point of the determinant of the first
2 x 2 submatrix, denoted as M,

detMy; =((E — ) = F1 = F2) i (1 =vi G (E))) — 0V FEFE)

(75)

O} FEF)
vii(l=viiG(E)) )
(76)

=v (1 -vG(E)) ((E—H)—(Fl —-F2-

(a) We first consider E, < a,. We continue to use E,
to denote the solution to M =(E—-u)—F —F> =0,
meaning that the discrete state is renormalized from the
bare mass u to E, by turning on f; and f,. There may
also be another bound state dynamically generated by the
continuum-continuum interaction v;;, denoted by E,,
which arises from the solution to 1-v;G,(E)=0 when
/1 =0, as discussed in case 2. We would examine the ef-
fect of turning on v;; on the bound state E, and then the
effect of turning on f;, on the bound state E,.

e The simplest case is when v;; >0, no bound state is
developed by pure continuum-continuum interaction.
Turning on v;; will cause the bound state move upward
toward the threshold from E,,.

This occurs because at E = E,, the last term in (75)
becomes |v FH(ENF >0 and (vii(1-v;1Gi(E,))) >0,
while #7,(E,) are negative. Thus, turning on v,; has the
opposite effect of 7, on the discrete state. So, the state
moves upward from the previous solution E, toward the
threshold.

e [f vj; <0, the bound state would always move down
from E,.

We first consider the case when |vy;| is sufficiently
small, such that |v;; 7 (E,)I*/(vii(1 =vi1G(E,))) < 0. This
condition will cause the discrete states corresponding to
E, to move downward. For larger |v|, there may be a
zero point of (1-v,;G|(E)) at E, < a,, indicating a bound
state at E, that moves down from the threshold a,, when

_0. Si vHIFE(E)P <0 if
filw) =0. Since at E, <E,, (= vGr(E,))) , 1
FE(E) continues to decrease similar to G,,(E) for E < E,
the previous result remains valid for large |vi;|. In this

case, when negative vy, is activated and becomes increas-
ingly negative, the bound state generated from x consist-
ently moves down.

e For the bound state from Ej, switching on a small
interaction f;(w) will cause the bound state to move up-
ward toward the threshold.

The reasoning is as follows. Since E, moves down
from the threshold as v;; becomes increasingly negative,
we have E, < Ey and (Ey —u) — F1(Eo) — F2(Ep) > 0. Then,

v117:187:1§’1
(E-p)-F1-%
bound state corresponding to E, to shift upward toward
the threshold. Therefore, in this case, turning on f; ap-
pears to activate a repulsive interaction that decelerates
the downward movement of the state at E, as v;; be-
comes more attractive. However, turing on f, will reduce

the negativity of the term causes the

this | deceleration effect, since —%, is positive and
2 7_-g7_-gi

Y o <8 WS will become smaller

(E—p)—F1—-F2 '

(b) Next we look at the case when a; < u < a,, fi2(w)
small enough, v, =vy =0, and ReF(u) <0, to see the
effect of turning on small v,;. By iteration once, we have
an approximation to the solution

_ v FF T ()
Ei=u+F(u)+F(w)+ T (77)
Expanding to O(v,;), we have
ReE; = i+ ReF () + Fo(u) +viu [IP.V.FF ()
- lfi(wewl1+007,), (78)

ImE; = -7 (/i@ +2viiRe[F (W) fi (g w]) + O07),
(79)

where P.V. means the principal value part. Thus, the ef-
fect of turning on vy; on the mass is determined by the vy;
term in Eq. (78). If it is positive (negative), it will play an
attractive (repulsive) role. Whether the width will be
broader or not depends on the positivity or the negativity
of the second term in the bracket of Eq.(79), respectively.
Using our example form factor, ReF § (u)Re(f; (w)g(w)) <0,
a positive (negative) vi; causes a broader (narrower) res-
onance.

(c) When u > a,, both #;, have imaginary parts and
Egs. (78, 79) change to

ReE,| = p+ReF; (1) + ReFa () + vi1 [[P.V.FE ()

-1+ 007), (80)
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ImE, = ~7(Ifi ()P +1 0P

+2v Re[FE (W) fi(wg" W1) + 0. (81)

The analysis and the result are similar to the previous
case.

3.One bare discrete state coupled with two con-
tinuum states with v, # 0.

Let us then discuss the effect of nonzero v;, and set
vi1 = va = 0. Now the M matrix becomes

(E-w)~FUE)~F2E) —vuF(E) —vioF{(E)
M= —v3, FFHE) ~VilPGaE)  vi
v, FEHE) Vi —vial’G1(E)
and

detM = vpol? (= ((E - )~ F1(E) ~ F>(E))
(1-v12PPG(E)GA(E))
+ vl (FEEFFHE)G(E) + FEEYFH(E)GAH(E))

VL FHEYFE(E) + v FEE)FS(E) )
(82)

This time vy, not only appears in |vi,%, but also in linear
terms.

When v, =0, the bare state at E =y 1S renormalized
to E, <a;, which satisfies (E, —u)—F1(E,) —F2(E,) =0.
When the coupling vy, is turned on,-the position of this
bound state will shift. The result depends on the sign of
the last line in Eq. (82) near the bound state. If this term
is negative, the effect of turning on vy, will be to pull the
bound state downward. Conversely, if it is positive, a
small |vj,| will initially cause the bound state from E, to
move upward. However, as |v| become sufficiently
large, the state will eventually move downward.

The reasoning is as follows. For E < ay, the |[v}5]* term
in the second line of Eq. (82) is always negative and de-
creases with E. The linear terms of v\ in the third line
takes the form 2Re[v,, ¢ (E)F (E)].

We first consider a special case when the two terms in
the last line are too small compared with the second line
and can be ignored, for example, |F5|<I|F| and
75| < |Gal.

e Then when |vj;> is small enough, the factor
1= vi2l*G1(E)GA(E) > 0 for E <E,, and the effect of the
purely negative second line is to push the discrete state
downward from E, as |vi,| increases from zero.

e When |v,[> becomes large enough, such that the

solution to 1—|v,>’G(E)G,(E) =0 generates E,, which
comes down from the threshold a,, we can expect
E, < E, since E, is already below the threshold a;. Giv-
en that G,(E)G,(E) >0 and increases with respect to £
below threshold a;, we still have 1—|v;,|>?G1(E)G,(E) >0
for E < E,. Thus, the discrete state generated from the
bare state always goes away from the threshold.

e We can also examine the effect of the second line
on the bound state generated from E,. Since we have
(Ep—u) —F1(Ep) — F2(Ep) > 0, the effect of the negative
second line is to decelerate the bound state from moving
down or to pull ittoward the threshold a;.

Thus, the second line of Eq.(82) plays the role of an
effective attractive interaction, dragging the bound state
generated from the bare discrete state downward, while it
functions as an effective repulsive interaction for the
bound state arising from the continuum-continuum inter-
action:

If the last two terms on the last line can not be ig-
nored, they will add complexity to the discussion. If the
sum of these two term is negative, it will play a similar
role to the second line, whereas if it is positive, it will
have the opposite effect and compete with the second
line. In fact, since it is of order vy,, it may contribute
more significantly than the second term for very small
vi». If this is the case, when v, is activated, the third line
will initially dominate the second line. If both interaction
vertices f; and g; are real positive exponential functions,
as in the exponential form factor example, the sign of the
last line will correspond to Rev;,. A small positive Rev,
will cause the bare discrete state to move upward toward
the threshold. However, as Rev, increases, the terms in
the second line will dominate, dragging the discrete state
down from E, and decelerating the one from E, from
descending. There is also the possibility that the third line
is sufficiently large such that the bound state from E, col-
lides with the bound state generated from E, as |vy,| in-
creases, and then they may separate again into two bound
state again, one moving downward and the other moving
upward.

In more complicated cases, the results may be intric-
ate, and may not present a simple picture. The previous
cases serve as examples for the analyzing the effects of
the different interaction in various situations and qualitat-
ively understanding the behavior of the pole positions.

VI. CONCLUSION

This paper presents several improvements to the
Friedrichs model, aiming to provide a more comprehens-
ive description of coupled channel scattering in real-
world scenarios. Firstly, we investigate situations in-
volving multiple discrete states and continuum states, fo-
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cusing on the general interaction between these discrete
states and the continuum states. Secondly, we consider
the inclusion of continuum-continuum interactions, em-
ploying a more general separable interaction that is inde-
pendent of the interaction between the discrete states and
the continuum states. Notably, this extended model re-
mains exactly solvable. Thirdly, we address scenarios
where the square integrable interaction between the con-
tinuum states takes a non-separable form, rendering it
non-solvable. However, we propose an approach to ap-
proximate this potential by expanding it in terms of a
chosen basis set, effectively expressing it as a truncated
series of separable potentials. Consequently, at a finite or-
der, this potential becomes solvable. To simplify the ana-
lysis, we also suggest utilizing the same basis set for ex-
panding both the discrete-continuum interaction and the
continuum-continuum potential. A few simple examples
are discussed to analyse the behaviors of the masses of
the discrete states when different interaction are turned
on, which may be helpful in qualitatively understanding
the spectrum in the coupled channel system. A few inter-
esting results may also be useful for the systems where
the couplings between states can be tuned such as the
cold atom systems.

This discussion establishes a theoretical foundation
for the application of the Friedrichs model in various con-

texts, including hadron physics and other areas involving
coupled channel scattering and intermediate resonances.
To utilize the model effectively, one must first model the
interaction between the discrete-continuum and con-
tinuum-continuum components. Subsequently, the con-
tinuum-continuum potential can be approximated using a
series of separable potentials, enabling resonance
searches or S-matrix calculations. An advantageous as-
pect of this model is the automatic preservation of unitar-
ity in the S-matrix, while avoiding the presence of spuri-
ous poles on the first Riemann sheet. In contrast, the con-
ventional K-matrix parameterization lacks control over
spurious poles on-the physical sheet.

However, a remaining challenge lies in determining
the continuum-continuum interactions in a reasonable
manner. Further research is required to develop suitable
approaches for obtaining these interaction terms in a
manner that meets the physical expectations and provides
reliable results in various real world applications.

APPENDIX A: THE DETAILED DERIVATION OF
THE NORMALIZATION AND THE S MATRIX IN
SECTION III

The normalization of the continuum state using the
coefficients in (25) and (26) can be calculated as follows,

R = S o : : 1 A*m(E)fn(E’ C -
(‘I’,;(E)PP;(E)):;aim(E)am(E)+6,,,,16(E—E)+E_Eliio(; m\ BN ZV BB ()
1 Ajm(E") fin(E)
+Ef—Eii0<Z “E-M, ZI w Bun(E)8(E)
1 A B @) K, .
+mz,_:l/am,dwE wFIOE — w+10(z E— I(/Ij +;er,,f3,,,m(E)gm,(w)>

1 (1 ____1
E’ - Exio (E wFi0  E’— wtiU)

7 n(E )f] m’ (w)

E-M,

(>

=1 n'=1

Notice that we have omitted the +

Z Vo Burn(E g (@)

(A1)

superscripts in the coefficients a;,, A;, and B,, since they all have the same super-

script of +. Using the definitions in Eq. (30), Egs. (32) and (33), the last two lines can be reduced as

1 D
m[z&;ﬁ@)(é (E-E-V3{(E)+Vi(E))ab (E'>+Zza;;;<E> ZWBA*(E)vm o+ VEB(E')) BE, (E')
h J=1 Jj=1 n"=1
D WARELEES SN Z B (E) (Vi Bt + Vi Vit (D) Bl (E))]
j=1n=1 m'=1 n'.n" m'=1

D
= —Z(f*(E)a (E)+ﬁ 1> - frmENas,
£i0 -4~

(E') +aj,,(E)

j'm

Fin(E)
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+ Z (_6mm’gm(E)Vm n’B (E ) + B:;*m(E)Vm 'n’ gm (E )6m n)]

n’.m'=1

Thus, they cancel with the terms in Eq. (A1) except for the §(F — E’) term. The S-matrix can also be obtained by

VLB, (E)) = § § @ (E)a; (E') + 6,0(E—E")
=1 i=1
1 .  m AMEVWED) S
+(7_i0—2m§(E—E))<§ E—7A4j+§ Vo By (E)E(E))

E—-FE < 2
1 A (E')ME) ¢
* E'—E+ZO(Z E — ZV”” nm(E )gn(E))
1 D AE @) KL
+;/a,dwE w+i0E —w+i0 <ZE7]{/IJ +;Vm’nf3n/m(E)gm/(w))

1 (L ___1
E’—E+i0 ( E-w+i0 ~ E7 7m+i0)

D C
Aj (E’)f/ w (W)
X e Ty wrn Bl (E') o . A2
(JZ: o Zjlv 1n(E)gu () (A2)
We have used E st Fet® = Euisﬂ'o (E—ulJ—iO D E’—Llu+i0) 21i0(E - ) g = E'415+i0 (E—al)+i0 - Eujmo) : Since
S(E'—E) (35 — 5—=75) =0, the {0 in the first factor does not have any effect. The last two lines can be reduced to

E+O[ZQ;L<E> (635 (E = EN=V(E) + V(B ()

D C
Z Z (B (=Y VP By + VitP(E)) B (E)

m’

D C
ZZ - V‘AB*(E)+vanV]+f,A b, (E)
=1 n’=1

m'=1

+ Z By (E) (=Y, s (B + Vi Vi (E)) B (E')]

n’,n" m'=1

. 1 ¢ o ,
= —Za (E)al, <E>+m[;(—mw»aww>+a,m<E>f,n(E )

+ Z (_6mm’gm(E)vm n’B;: n(E/) + Bn m(E)vm/n/gn(E’)(sm’n)] .

n'.m'=1

These terms cancel with the other terms except the terms with 6(E — E’). Notice that for £ = E’ and is real, the final sum
inside the square bracket will be zero,

D C
S i E) () + 5 (E)F3 (BN + > (=S 8BV By (E) + B (E)iy 81 (E)Syr)] = 0

j=1 nm'=1

which can be derived directly from Eqs. (32) and (33). Then the S matrix can be derived:
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A (E)fG(E")

S,,,,,(E,E’):6(E—E’)—27ri6(E—E’)<Z T
J

j=1
D
=§(E-E)-nis(E—E') (Z

J=

C

+ Z Vi

n’=1

C
(@ EVFR(E) + frmE)),(ED) + > (Vi

By (E)gi(E))

—%

By (E)S(E') + Vi B (E)gu(E)) ).

n'=1

From the definition of Y and F in Eq. (29) and solving Y from Eq.(31), we can reformulate the previous equation using

the matrices and obtain Eq. (36).

APPENDIX B: SOLVING THE APPROXIMATE
CONTACT POTENTIAL

This section we provide the details for solving the ei-
genstate problem for the Hamiltonian in section IV. After
approximating the general contact potential as the sum of
the separable potentials, the approximated Hamiltonian
for multiple continuum states and discrete states is shown
in Eq.(58) which is copied here for completeness

D C 00
H= ZM,—Ii)(i|+Z/ dwwlw;n)w:n|
i=1 n=1 v dn
C o0
> i / ey ())3m) )

mn=1 Am

x / " do, @)winl)

n

+ZZ{U>(/ dwf;, (w)wn))

Jj=1 n=1

+ ( / dw fjn(w)w;m)(jl} :

n

(B1)

The general eigenstate for this eigenvalue problem can be
expanded using the bare discrete states and the bare con-
tinuum states

D C
W(E) =) aE)lid+Y / dwy,(E,w)|w;n).
i=1 n=1 Y an

The proceeding derivation goes in parallel with the pro-
cess in section Ill. With this ansatz, the eigenvalue prob-
lem can be reduced to the following equations

dw

Jin()f,(w)

(M;—E)a(E)+A(E)=0, j=1,...,D

D
> aiE) fu(w)+ (@ = EW,(E,w)

=

C
+Zvnm,p6wm(5(E)gnp(w) :O, n= 1,...,C, anda) >a,

m=1

where we have defined

A(E)= Z / dw £ (Wa(E, w),

n=1

s (E) = / deon(E,)F5(w). (B2)

There are C continuum eigenstate solutions and [V(E)),
@;, Y,s and A;(E) need another index m to denote differ-
ent continuum solutions, i.e. |V, (E)), @in(E), Yums(E),
and A;,(E). Similar to section Ill, we require that |¥,,(E))
tends to |E,m) as the interactions are turned off and con-

sider the C continuum solutions for E >a.. Then the
above equations can be reduced to
at, (E) = _MjAj?'m(E), (B3)
@, (E) fin(w)
E SumO(E — e
Ui ©) = 6,1, 6(E - w) + 21) 0
n my (E)gn&’ (w)
+ ot 1 p e . B4
ZV T E—w=+i0 (B4)

By applying the operation Y, [, dwf;(w)x and the
operations D s Vaw ps fan dwg,s(w)x on (B4) respectively,
we obtain

s (E £ (@) (@)

D C
=~ E)+ Y ((E-Mp)s, =

j=1 n=1 * 4

E-w=+i0

)

E-M;

K2

an

) (BS)

) C
”Z Vo é’plan mp(E) E—-w=i0
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Jin(@)g,5(w) Gy (W)g,,5(w)
0= mm’ 0p" gm(S(E) ; ajm(E) ; vnm’ 00" / dw ]E w=+i0 Z lr//n mp(E) n'm’ pp’ ; vnm’ 5p V' 'p d m .
(B6)

These two equations correspond to previous Eq. (27) and (28). Notice that the differences are Greek letters and the sums
here. Similar to the vectors and matrices defined in Eqs.(29)-(30), we define

FEodurp = Vi o Bns(E)s - ()= fr(E), m=1,...,Cij=1,....D:6=1,2,....N
Yu(E))j=jn(E), Xpwp=Upn(E), j=1,...Dimn' =1,..Cip=12,. N (B7)

m'p’ np_

- Gy (W)Z3()
BB * * n né ror ) V) _
VB! Vet ppr E vnm,ﬁp,v,m/,(;/p/ do———, m',n'=12,....C;p"sp=1,2,...,N
n=1 a

. E-w=i0
C
- fin() [ (w)
AA _ J jn .oy
ij’—(E—Mjf)5jj’—; a”dwiE—wiiO . i =12,...,D
C ~
< ftk (w)gné’ ((/.))
AB  _ n . _ ! — oy —
Vjﬁ/p—_;vnn/,(glp/an a)m, ]—1,...,D,l’l —1,...,C,p—1,2,...,N
BA f/n(w)g:a(w) . o L
Vmp o _Zvnm’ép . E—w=+i0 s j—l,...,D,m —1,...,C,p —1,2,...,N
B VAA(E) VAB(E)
M, = i . 1J=1,...D,D+1,....D+NC. (BS)
VIE) VEE))

We still have M*" =M. With these matrices, Eqs. (BS) A before M is still independent of m, but F,, depends on
and (B6) can be expressed as

m. If there are infinite number of bases, the matrix M and
vector F,, and Y are infinite dimensional. Now we have
supposed that the bases chosen are well enough, and have
or made a truncation to a finite order N of the expansion of
the potential V,,, i.e. v,y 4 =0 for 6,0 > N. Then M is a
(D+NC)x(D+NC) matrix. In general, the matrix M is

non-degenerate for E > a,,, and Y,, can be solved,

ZV <E>a,m<E>+ZV,W<E>wn/mp<E>=f,;;<E>, (B9)

n’=1

Y. (E)=M"-F,. (B11)
Zvn§,(E>a,m(E>+Z VB (EWimp(E)= Vo () (E).
w=l With all the v, (E) and a7, (E) at hand, the approximate
(B10) continuum solutions are solved as
W (E)) = Za,m<E)|l>+ IE; m>+Z / do——— (Za,mwmn(wnzjvm oW (E)Zuy (@) ) 3 )

~IE; m>+Zajm<E) |J>+Z / L)+ (3 by (E) / 2O ym). B12)

n,n'=1
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It can be checked that the normalization is
(VZ(E)Y:(E")) = 6,m0(E—E’). The S-matrix can be ob-
tained,

(WL(ENY(EN) = 6,m6(E —E')

—2ni5(E—E')(F;-(M+)-1 F,,,) (B13)
For discrete eigenvalues and discrete eigenstates, there
will not be the delta function in Eq. (B4), and we have

equations,

M-Y=0,

where Y is defined similar to Eq. (B7) without subindex
m. The generalized energy eigenvalues for the discrete
state can be obtained from the detM(E) = 0 and the eigen-
vector Y can be obtained with proper normalization
chosen as in previous section. Then the i-th discrete state
can be expressed as

D
WOE) =Y oV (E)(1j)+ / d
i=1

an

C ~
) gmi’(w)
+  Vaw oW () / do 2 fwin),
n'=1 An !

with YO(E,)-M/(E;) - YP(E) = 1

f‘n(w)
iji _wlw;n))

(B14)

where M'(E) is the derivative of the matrix w.r.t. E; and
the integral contour needs to be deformed for E; on un-
physical sheets as before.

APPENDIX C: SOLVING THE EIGENVALUE
PROBLEM WITH BOTH APPROXIMATE VER-
TEX FUNCTIONS AND CONTACT INTERAC-

TIONS
This section serves to solve the eigenstates for the
Hamiltonian in Eq.(63) where both the contact potential

and the vertex are expanded using the function bases g,s,
which we reproduce here for completeness

da) w|w;n){w;n|

H= ZM|1><1|+Z

n=1

3 v [ a0/ erm)

mn=1 am

X </00 da)g,’jﬁ(w)(w;m)

n

an

+ZZ {f/msl])(/ dwg;s(@)wsnl)

j=1 n=1

ol [ dwga@lom) i ©n

n

This case is more like the cases discussed in [10, 26],
where the same form factor comes with the continuum
both in the discrete-continuum and continuum-con-
tinuum interaction. Using the eigenstate ansatz

IY(E)) = ZQ(E)IlH/ dwy,(E, w)lw; n)

i=1 an

D
Za<E>|z>+ZW(E> / dwgs(@)w;n), (C2)
i=1

n=1

and proceeding in solving the eigenvalue problem simil-
arly to the previous section, one finds that A; in Eq. (B2)
becomes

C
A(E) =" frstins(E).

n=1
For the m-th continuum solution |¥,,(E)), the coefficients

a;, ¥, and y,;s take another subindex m and Eq. (B3) and
(B4) becomes

1

TnlE)= o AnB) = 54 nzlf,npwnm,,(m (C3)
< (W)

Y (E, ) = 8, 0(E — w)+2;w,, o (EWVas n,,(E>g”07ﬂo
,, (C4)

where V,s,,(E) is defined as the matrix elements of a
NC x NC matrix V

D
f'n y ftﬂ J
(VED oy =Y 5t
J

J=1

Vnn’,(s'p,

which is supposed to be non-degenerate for general E.
Multiplying g:;(w) to above equation (C4) and integrat-
ing w.r.t w, we get

C
6mng26(E) = Z lﬁril mp (E) |:6n" 6/"5

_ né’np(E)/d gné’(w)gnd(w) ) (CS)
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Define NCxNC matrix M and NC dimensional vector
F,, Y, as

- Gy (w)8;5(w)
Mnd,n’p = 6nn’ 6/)6 - Vné’,n’p(E) /a:‘ dwﬁi‘élo’ (C6)
(Fm)nﬁ = 6nmg;*u§(E) ) (?m)n’p = l//j’mp(E‘) (C7)

Then Eq.(C5) can be expressed as F,, =M-Y,,. Notice
that M is independent of the m-th solution, but F,, de-
pends on m. To see the real analyticity of detM, we
define

(Wi)né,n’p = (Mi : Vﬁ])nﬁ,n’p

O / dw

n

gnp (U.))g:;g (0.))

=V} ,
E-w=i0

nén'p

(C8)

and then we have M* = W*=.V. Since (W*(E))" = W¥(E)
and V(E) is hermitian for real E, detM*(E) = detM~*(E).
So the analytically continued detM(E) with detM*(E)
and detM~(E) on the upper and lower edge of the cut
above the threshold satisfies the Schwartz reflection rela-
tion, detM*(E) = det M(E™).

Then, in general, the matrix M is non-degenerate for
E > a,, and Y,, can be solved,

(?m(E))np = (M_] : F‘m)np = (M_l)np,mﬁgmﬁ(E)-
(C9)

wrfmp(E) =

With all the y;; (E) for p <N at hand, all the o3, (E) and
¥ (E,w) can also be obtained. Then, the continuum state

can be approximated as

D C C
WEE)) = ab(E)ND+E.m)+ > > 4, (E)WVos o E)

i=1 n=1 n’=1

(W) |
X/andwE_wiiOIw,n).

(C10)

It can be checked that the normalization is

(YE(E)Y;:(E")) = 6,m6(E—E’). The S-matrix can be ob-
tained

WL(EY,(E)) = 6,0(E — E") = 2mti6(E — E”)
c C

XY W E Wy (BN (E)

n=1 n’'=1
=6,m0(E — E') = 2miS(E — E')
X(FL'(W+)_1 'Fn)~ (Cll)

Similar to previous section, the generalized energy eigen-
values for the discrete state can be obtained from the
detM(E) =0, and for each eigenvalue E;, ) can be
solved from M-Y = 0. Then we have the discrete eigen-
states,

D

C
WOE) = > i (E) [Z

n=1 j=1

C ~
gné’(w)
+ Vn’n' Ei d - 5 5
Zl 5o )/an Wy e

YOUE) - V(E) - W(E)- V(E)- Y(E) =1
(C12)

f;"/’

E-M, 17

with

with integral contour deformed for resonances and virtu-
al states as before.
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