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Application of the Woods-Saxon potential in studying quadrupole and
octupole excited states using machine learning”
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Abstract: In this study, the energy bands of quadrupole and octupole excited states are investigated. This is
achieved by employing the Bohr Hamiltonian, incorporating quadrupole and octupole deformations whose variables
are accurately separated. Subsequently, the Woods-Saxon potential is added to the problem. Given that this problem
cannot yield suitable solutions using conventional approximations, we solve it numerically using machine learning.
A detailed description is given of how wave functions and their associated energies are obtained. It is demonstrated
throughout this procedure how machine learning helps us and makes it easier to-accomplish our objective. We have
examined and analyzed the energy spectrum and possible multipole transitions for candidate isotopes 22°Ra and
226 Th.
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I. INTRODUCTION

The study of protons and neutrons is the primary fo-
cus of atomic physics, which studies nucleons and their
constituent parts. Nuclear deformation is one of the most
thoroughly researched topics in which the non-spherical
shape of a nucleus is described by quadrupole and octu-
pole moments. Nuclear dynamics and organization are
known to be significantly impacted by such deformation.
The study of quadrupole [1] and octupole [2—4] deforma-
tions in nuclei has advanced recently, especially in cases
when these two anharmonic forms interact. Nonuniform
spatial charge distributions are the driving force behind
this interaction, and deformations affect nuclear charac-
teristics including energy levels and electromagnetic mo-
ments. To investigate the collective dynamics of nuclei,
several models have been presented [5—8] (such as those
with Davidson potentials and the analytical quadrupole-
octupole axially symmetric model enclosed in an infinite
well potential). Alternative possibilities are still being in-
vestigated, even though these models have drawbacks
and don't always perform better than others.

Quadrupole deformations have long been linked to
nuclear rotational spectra, and octupole deformations, or
pear-shaped nuclei, are known to happen in some places,
most notably among light actinides. A negative-parity
band with levels L”=1-,37,57,..., etc. that are near in
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energy to the ground-state band and form a single band
with L™ =0%,17,2%,37,4%,..., etc. is one of the character-
istics of octupole deformation [1]. Octupole vibrations
are indicated by a negative-parity band that is higher than
the ground-state band. Numerous authors have examined
the shift from octupole vibrations to octupole deforma-
tion [9—11]. Although it has movable parameters, the sp-
df-interacting boson model (IBM) [12, 13]is a compre-
hensive algebraic classification of states in the presence
of both quadrupole and octupole degrees of freedom.
According to a recent review [14] and its references,
machine learning (ML) has been combined with statistic-
al techniques in the past ten years to address a range of
nuclear physics problems, ranging from fundamental
particles to the behavior of dense celestial bodies. A few
of the applications concentrate on teaching machine
learning models to predict nuclear observables directly,
including fission yields [25], nuclear masses [15—19],
charge radii [20—22], and beta-decay half-lives [23, 24].
Other applications of ML seek to enhance nuclear many-
body simulations by using ML models to replace compu-
tationally intensive procedures. For example, collective
Hamiltonians for low-lying nuclear states have been re-
fined using deep neural networks [26], and density pro-
files for nuclear radii and binding energies calculations
using density functional theory have been determined us-
ing back-propagation neural networks [27] and kernel
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Ridge regression [28].

One of the most well-known potentials in nuclear
physics is the Woods-Saxon potential [29]. This potential
has deep roots in nuclear physics studies. However, this
potential presents a significant challenge: the lack of an
appropriate analytical solution. In other words, there is no
exact analytical solution for such a potential for general
angular momentum. One way to address this issue is to
use the Pekeris approximation, but this approach leads to
solutions involving Jacobi polynomials. Due to the limit-
ations on the arguments of Jacobi polynomials, it is not
possible to use these solutions for our purposes and mul-
tiple bands [30]. However, the aforementioned problem
can be resolved using a different method, which we will
discuss in detail later in the paper.

Our goal in this paper is to use the Woods-Saxon po-
tential to investigate excited states resulting from quadru-
pole and octupole deformations. We aim to investigate
the nuclei ?*Ra and ?*Th by considering the Woods-
Saxon potential in a Hamiltonian that includes quadru-
pole and octupole deformations. Additionally, the optim-
ization process required to reproduce experimental data
relies on optimization algorithms, for which we will em-
ploy machine learning techniques. Furthermore, the steps
for obtaining eigenvalues and eigenvectors will be imple-
mented using a numerical approach. Therefore, we have
organized the paper as follows: In Section 2, the theoret-
ical foundations necessary for investigating such states
are presented. To reproduce the experimental data, which
is the subject of Section 3, we first examine the founda-
tions of numerical calculations based on machine learn-
ing algorithms, and then proceed to reproduce experi-
mental data, including the excitation spectrum and multi-
pole transitions.

II. THE ANALYTIC QUADRUPOLE-OCTUPOLE
AXTALLY SYMMETRIC MODEL

Two basic assumptions underlie the analytic quadru-
pole-octupole axially symmetric model [5, 6]. First, the
axes of the quadrupole and octupole deformations are ex-
pected to align. In other words, the y degree of freedom is
ignored, but axial symmetry is assumed. Moreover, be-
cause they occur at extremely high energy levels, levels
with none zero K (where K represents the projection of
angular momentum along the body-fixed z-axis) are ex-
cluded [31]. On the other hand, this simplification makes
the system easier to analyze. Thus, the form of the corres-
ponding Hamiltonian is [31, 32]
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where the quadrupole and octupole deformations are de-
noted by B, and s, respectively. The related masses that
are connected to these distortions are B, and B;. In the
intrinsic reference frame, L is the angular momentum op-
erator.

The following consideration can be used to find the
answers to the Schrodinger equation [32]

D (B2.53,0) = (Ba3) /> W5 (B2, 53)|LMO, £), 2)

where the set of Euler angles, 6, is necessary to under-
stand and illustrate how the body-fixed coordinate sys-
tem, defined by the axes x’,y’, and 7/, is oriented concern-
ing the fixed laboratory coordinate system, defined by the
axes x,y,; and z. This model uses the mathematical ex-
pression |LMO, +) to illustrate the rotation associated with
an axially symmetric nucleus, focusing on the angular
momentum projection M along the laboratory-fixed z ax-
is and maintaining a projection K equal to 0 along the
body-fixed 7’ axis [1]. The explicit form of the functions
|LMO,+) and |[LMO,-) are provided in [1, 5]. These func-
tions transform in accordance with the irreducible repres-
entations (irreps) A and B, of the group D,, respectively

[31, 32].
2L+1
ILMO,+) = \/;(1 (=)D 44(6)

in which Wigner functions of Euler angles are represen-
ted by D(6). The + label indicates positive parity states
with L=0,2,4,..., whereas the — label denotes those
with L=1,3,5,....

It is possible to simplify the Schrodinger equation by
taking into account new deformation variables.

~ B, ~ B3 B_Bz+B3
ﬁz—ﬂz\/B, ﬂa—ﬁ%\/B, =5

the polar coordinates in the range of 0<fB <o and
—n/2 < ¢ <n/2 with the goal of the new deformation
variables

€

4)
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with the reduced energy e=(2B/i*)E, and the reduced
potential u = (2B/1*)V. Then we have

B> =Bcosg, B = Bsing,
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As a simplification, let us assume that the potential
energy u(B,¢) can be separated into the form
u(B,¢) = u(B)+u(p)/F*: a function of only, u(B), and a
function of ¢. Such a hypothesis permits us to separate
Eq. (6) into two independent equations. We further as-
sume that u(¢) is a very steep, double-well potential
centered around +¢,. Then we have

L & 1d N N 3
F {‘ B Bap uPB (L) | ¥ (B) = -0’y B, (1)
and
d2
LW —u(@) = ur($)| x*(#) = =0°x*(9), (8)
_ LIL+D) 3
ur(¢) = 31 +sin’g)  sin’2¢ )

where the total wave function has been assumed- as
WE(B,¢) = W (B)xi(¢), the separation constant o®>. Here-
after, for the sack of simplicity, the + will be omitted.
There is an important, exciting a periodic term, u;(¢). It
will impact the later calculation of the electromagnetic
transitions.

Equation (8) contains the function u;(¢) in this separ-
ation process. It is obvious that having a term like that in
the equation makes it much more difficult to solve and
analyze. Given that it is a well-defined, smooth, and dif-
ferentiable function, this problem can be solved by apply-
ing the Taylor expansion of this function around its min-
imum value, as described in [33]. Consequently, we have:

u”(¢r)

: (10)

ur(¢) = ur(dr) + (6—¢1),

where, for a given L, ¢; is the minimum of u;(¢). It is
worth noting that since u;(¢) attains its minimum value at
¢, the first derivative of u;(¢) at ¢, will be zero. Con-
sequently, the first derivative does not appear in the
Taylor expansion for this reason. To transform the differ-
ential equation into the familiar form of the harmonic os-
cillator differential equation, we must not only substitute
the Taylor expansion into the differential equation (8),
but also, as outlined in [33], neglect the potential u(¢).
Thus, we have:

dz)(

- (11)

+x = ey,

which introduces the following new parameters:

LI i, 1=

V2 —ui(¢r)
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This differential equation has eigenvalues given by
g =2n+1, where n is the oscillation quantum number.
Therefor we may have

HOE (12)

2 _ 2

S RY. “L(z‘“)(zm 1) +ur(dy).

Additionally, it should be noted that, moving forward,
we will restrict our analysis to the case n=0. We em-
phasize here that the parameter p is dependent on the an-
gular momentum, p;. This dependence is evident in our
calculations of electromagnetic transitions. This is be-
cause that this parameter appeasers in the eigen function
of the ¢ part

(13)

(o)
2

X"a‘nL(¢) = ]vng;,L exp <_ ) HI’% (gl%(¢)) s (14)

where N,,; is the normalization constant, and Hermit
polynomials are shown by H,,. If the Hermite and poly-
nomial functions' arguments were independent of angu-
lar momentum, the normalization constant could end up
simplified to a function of n,. Unfortunately, this is not
the case in our case. The angular momentum dependence
adds difficulties that prevent us from obtaining an analyt-
ical solution for the normalizing constant. However, nu-
merical calculation can be easily used to calculate its
value

/2 =172
Ny, = { / !xn¢,L(¢)|2d¢} . (15)
-n/2

Now that the separation parameter has been determ-
ined based on the problem's known information, we can
analyze the beta part of the differential equation.

It is now appropriate to present the potential that we
are interested in: the Woods-Saxon potential. [1, 29, 30]

_UO
1 + eaB~Bo)

uB) = (16)

where the non-negative parameters U,, a, and Bo are
present. This potential makes it clear that it lacks a hard-
core, and its shape simplifies to a square well potential in
the limit of a — co. The Schrédinger equation including
such potential cannot be solved correctly and analytically,
even though it satisfies physical predictions well. This is
another significant mathematical point regarding this po-
tential [30]. Naturally, approximations like the Pekeris
approximation have been used to present analytical solu-
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tions for this purpose. However, the final answer con-
tains Jacobi polynomials, and those polynomials impose
restrictions on their parameters. Upon numerical evalu-
ation of the physical constants, we will find that these re-
strictions are not satisfied, and practically, we are unable
to extract appropriate experimental data from those ana-
lytical solutions. Stated differently, we are only able to
address a limited amount of the experimental data using
those answers. This is because the system in question
cannot be sufficiently described by such mathematical ap-
proximations.

We employ an alternative approach to obtain the solu-
tion of the differential equation (7) in the presence of the
Woods-Saxon potential (16). This method has been ap-
plied to a number of problems. The problem of single-
particle levels in deformed nuclei is among the most sig-
nificant of them [34—36]. In essence, we want to use this
method to estimate the solution to a specific degree of
precision. We start by assuming appropriate the bases
functions in order to accomplish this. We indicate whole
sets of functions that allow us to fully expand a function
by using the proper base functions. We may save only a
few chosen terms of this infinite expansion, as the name
approximation implies. This is achieved when the results
no longer differ significantly for a certain number of
terms considered in the expansion. Therefore, we must
start by adopting suitable basic functions. A strong basis
is one that can accurately characterize the system's states
across the same domain. The harmonic oscillator the
basis provided by is among the most often used bases.

2y!

0 —Bz/zcgg 32
Thv+o+1) ¢ V6B,

gv,rm,L(B) = (17)

where the number of nodes in the 3 direction is indicated
by v in this equation. I" represents the gamma function, a
known special function, and . displays the correspond-
ing laguerre polynomials. By solving Eq. (7) for a sys-
tem with the potential u(8) =2, this particular basis set
can be directly obtained.

Actually, we can get the answer as follows by apply-
ing this principle. [37]:

buB =3 Ve B Y () =1 (i)

It is clear that the numerical values of the free para-
meters in the differential equation (7) have a substantial
impact on the coefficients Cir"”. Essentially, for any
distinct state of Eq. (7), we will have an appropriate lin-
ear combination of the harmonic oscillator basis func-
tions. The matrix eigenvalue problem is solved to get the
coefficients of this expansion, and the elements are com-
puted as follows:

B = [ BB g Bl (19)
0
2 2
p=-d 1d e U (20)
@B BB B Tret
as one knows
HB|n7L;¢L;a7BO7U0> = EB|n,L;¢L;a7BOa U0>' (21)

The following is a description of the methods used to
address this issue: The matrix elements, as expressed in
equation (19), must be calculated for each quantized an-
gular momentum inside each nucleus. Then by solving
the eigenvalue problem, one may obtain the relevant ei-
genvalues and eigenvectors, which in turn can be used to
determine the energy levels of states with different num-
bers of nodes according to the given angular momentum.
The way the solution's numerical precision is taken into
consideration is another important aspect of this. The
number of terms taken into account in the expansion (18)
has a direct correlation with accuracy. It is easy to see
that the results converge to a certain value when more
terms are added to this expansion. The degree of preci-
sion needed to solve the problem determines the degree
of convergence. As a result, we estimate 10 terms in this
expansion based on the facts taken into consideration in
this study. This number of terms gives our answer a level
of precision that is sufficient. On the other hand, finding
the ideal values for the free parameters is necessary for
this process. Although the factors involved in this meth-
odology will be explained in the next part, the observa-
tions of this segment are summarized in the appendix, the
specifics of which are left for the section on numerical
calculations.

The experimental results can now be reproduced by
numerical computations. In the part that follows, this will
be discussed.

III. NUMERICAL RESULTS

In this section, we aim to reproduce the experimental
data of some nuclei using the information gathered in the
previous section. As mentioned in the introduction, ma-
chine learning techniques form the basis of the computa-
tional investigations in this work. Specifically, our goal is
to use a machine learning optimization technique to find
the optimal values for the problem-relevant free paramet-
ers so that we can reproduce the experimental results.
Gradient descent [39], an algorithm for determining a
function's minimum value that is frequently used to lower
errors in prediction models, is one of the most significant
optimization strategies in machine learning. Gradient des-
cent reduces the difference between the model's predic-
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tions and the real empirical data (i.e., the loss function or
the deviation function) by progressively changing the
parameters during the model's training phase.

Gradient descent systematically refines the model
parameters from an initial approximation by moving to-
ward error minimization. According to [39], if we gather
all of the parameters that affect the deviation function or
the loss function in a vector notation & = (¢4,%»,...), they
are revised after each iteration

d—-d-n-Vo, (22)

where o is the deviation function defined in accordance
with our objective and 7 is the learning rate.

et

- \/ L (sl EulL)- Etheo(o+)>2
N b

N \Ewp(2")  Eneo2*) = Eneo(0%)
(23)

where N is the number of data used for each isotope, and
Eep (from Ref. [38]) and Ey,, stand for the experimental
and theoretical energies, respectively. By determining
how steeply the loss function changes in relation to each
parameter, it shows the slope or rate of adjustment. The
method basically "descends" towards a minimum, error
threshold by traveling in the opposite direction of the
gradient in order to arrive at an optimal or nearly optimal
solution.[39] Unlike instructional resources like [39],
textbook optimization tasks usually employ a simple
mathematical function. But the function we are trying to
improve is not a mathematical function and does not have
a continuous domain. This is due to the fact that in order
to retrieve the energies, the matrix of each angular mo-
mentum in (19) must be found first, and then the pertin-
ent energies must be calculated using diagonalization.
Consequently, the optimization technique needs to incor-
porate district theoretical data.

A. Energy spectrum

After describing the fundamental computations in the
previous section, we now go on to the findings. Only the
isotopes of 2?Ra and ?*°Th are examined in this article.
Table 1 displays the values that were acquired during the
optimization procedure for every isotope. Each row in the
table corresponds to a distinct isotope since the isotopes
are identified in the table. The number of digits in free
parameters to the right of the decimal point is a highly

special feature of the machine learning approach. In oth-
er words, using more basic approaches, such as search al-
gorithms, to obtain free parameters with such accuracy
would have required time that cannot be quantified in
normal units of time to accomplish the level of accuracy
offered in the preceding equations. The last column also
states the o parameter for each isotope.

The appendix to this paper provides a summary of the
outcomes obtained using these values. These tables dis-
play the state's angular momentum value in the first
column, the experimental normalized energy value in the
second, the theoretical normalized energy in the third,
and the coefficients in'the wave function expansion in the
remaining columns. These tables are organized accord-
ing to the isotopes covered in this work, and it is reason-
ably simple to locate the information required for each
isotope ‘and angular momenta value in each of them. Note
that only the level of nz =0, and hence n, =0, has been
included in the energy level computations. Therefore, in
the subsequent discussions, these will not be included
when using the aforementioned numbers as indices.

Plotting the potential that produced the best fit for
each isotope will be the first step in analyzing the study's
findings. Figure 1 was drawn using the information in Ta-
ble 1 and equation (16). Each isotope's potential is shown
in a different color in this picture. An interesting pattern
is seen: the potential shape shifts from the well-known
Woods-Saxon form to a finite well as the mass number
increases. The reason for this behavior is because as the

0 - —
226Ra ’

226
—~ _5 I ]
NS
S
—10 J .
| | | | |
0 2 4 6 8
Fig. 1. (color online) A visualization of the potential energy

shape for each isotope after optimizing the parameters.

Table 1. Values of free parameters for each isotope.

Isotope a Bo Uy O Ours ORef. [33]
226Rq 5.558247546040683 5.836410397132373 10.03477806863556 0.949 1.163
226TH 19.654234566878788 6.574464293524817 12.356356546357798 0.942 1.093




Hadi Sobhani, Yan-An Luo

Chin. Phys. C 49, (2025)

optimization process progressed, the value of the para-
meter a increased.

The following step shows the experimental and ex-
pected spectra for the nuclei under consideration in Fig-
ure 2. The precision of the theoretical predictions in com-
parison to the experimental data is better shown in this
picture. The graphical representations display the theoret-
ical predictions in red and the experimental data in black.
Additionally, to better compare excitation states with dif-
ferent parities, they are plotted separately. For better
comparison and understanding of the discrepancy
between the theoretical prediction and experimental data,
these levels are connected by dotted lines. Naturally, the
steeper the slope of these dotted lines, the greater the dif-
ference between them. Furthermore, we have shown the
predictions from Ref. [33] (named as PFM) in green in
this figure to offer a visual comparison between our cal-
culations and that reference.

One noteworthy finding from this figure is that, in
every instance, the trend of the experimental values in the
positive parity band is correctly predicted. However, in
the negative parity band, this tendency is a little different.
The theoretical predicted is typically marginally lower
than the experimental results for the lowest few levels of
the negative parity band. This is because, as other invest-
igations have shown, these levels need a little more en-
ergy to reproduce, which is not achievable with this
Hamiltonian structure and potential [30].

Before beginning to calculate electromagnetic trans-
itions, it is useful to examine the wave functions that have
been computed for these isotopes. The ¢ part's wave
functions were Hermite polynomial expressions, while
the 8 section's wave functions were obtained by using lin-

226Ra

70.779

68.875
66.812

27~ 65.080 65.099

62.940

59.164
— 25 57.931 57.793

55.483

48410 9ot 47750 17461

018 1n waan

20" 41.375

41.004

19— 38.099

18 35.300 34.900

16" 29523 29.155

15~ 26.536

14* 24,061 23.776

137 21.388

127 18931
11— 16.743

10" 4.185

9.980

8" 9891
6* 6.155
3.200 4+ 3.127
1.000 2+ 1.000

0.000 07 0.000
PEM Exp.

6.207 6.279 5 :
1657 3~ 749
1,967 1= 2560
0.337

3.196
1.000
0.000
WS

PFM Exp.

Fig. 2.
er-free model [33] (PFM).

ear combinations of the basis functions given in Eq. (17).
To illustrate their differences, we have included both the
basis functions and the wave functions for ?*Ra in Fig-
ure 3. This figure consists of four panels. The upper pan-
els show positive parity, while the lower panels show
negative parity. The left panels display the wave func-
tions as a function of 3, and the right panels display the
basis functions. The difference between the basis func-
tions and the wave functions is evident. For instance, The
wave and basis functions have different values at differ-
ent places. To understand this, consider the size of the
vertical axis.

B. B(EL) transition rates

The electric dipole, quadrupole, and octupole operat-
ors in the presence of axial symmetry are [31]

B ,sin2¢
(E1) (1) — 2 (1)
T, " =1p5:D,,(0) =t ——p D, (0),
VBB, 2
(24a)
T = 0 D20, =1 - Peos¢DE0 24b
py =50 ,1,0( ), =1t Eﬁ005¢ O,lu( ), (24b)
2
TE = 1B, DEN0) =1 2 fsingDEL® (24c)
u =D, (0) =13 E551n¢ 0y (6),
where ¢, is a constant and
3Ze 3Ze
L=""R, t="—R, R=(12A7. (25
2 3
47 4
226Th
41794 207 42.806 12,387
38,507 197 39.627 39.160
35498 .48 36497 36.029
32.427 1 33418 32.994
29.526 160 30413 30.053
26.724 15~ 27.554 27.205
24,023 4% 24675 24.451
yiaos 137 22105 21,793
18.928 120 19324 19.234
16.537 - 17.152 16.779
14.254 10" 14400 14.434 .
12.081 9~ 12785 12.206
10.025 8t 9999 10.103 s _ 011 i
8.09 100
6.207 6" 6195 6.317 5 6200 ]
3.200 45 3136 3.201 5T G 3 1,25 f;(;.j
1.000 2 1000 1.000 LOGT 3101 1967
0.000 0+ 0.000 0.000
PFM Exp. ws PEM Exp. ws

(color online) Comparison between predicted and experiments spectra of the considered nuclei and predictions of the paramet-



Application of the Woods-Saxon potential in studying quadrupole and octupole excited...

Chin. Phys. C 49, (2025)

0.8F
061 - g&o,o(é)
' — gio,o(ﬁ)
04 9;,0,0(/3)
= p2f .
!
ks 0
k=
—0.21 A
—04 |- -
—0.6 & I } | | | |
0 1 2 3 4 5 6
s
(a) Basis functions for positive-parity of 225Ra
0.8 i a
— Go0. (B
06l 9%0,1() i
- 91,0,1(@
04| 9201(8) ||
= o2f 8
!
hy
[ ; 0
i~
—02] i
—04 |- .|
—-0.6 & I | | | | 8
0 1 2 3 4 5 6

3

(C) Basis functions for minus-parity of 226Ra
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Fig. 3. (color online) Graphical comparison between the bases and actual wave function obtained as a linear combinations of basis

functions.

Combining equations (3) and Wi (8, ¢) results in the fi-
nal wave function. To get the transition rate B(EL) for
this wave function, use the formula below:

B(EL; La; — Lyay) =

|(Lyas || TP Liai) |
2L;+1

(26)

in which Wigner-Eckart theorem [40] is applied to calcu-
late the reduced matrix element.

(Lfusar| T™ | Liyyasy =

(LiLLy|uipapy)

w/2Lf+1

(Lyag||T™ || Liay)
(27)

where (L;LL|u;puys) stands for the Clebsch-Gordan coef-

ficient.

In Eq. (26), the integration over angles 6 uses a typic-
al integral over three Wigner functions [40], yielding
(L:LLf|000). The remaining integrations are carried out
across [[B3dB, B3dBs, where the B3 and B3 factors come
from the volume element. The integration is over
[BdBdg, up to constant factors, as per Egs. (4) and (5)
and the relevant Jacobian.

By examining the formulas in (24), we can see that
the calculation of the electromagnetic transition can be
decomposed into four factors. The first factor is a purely
constant parameter that depends only on the fundamental
properties of the isotope in question. However, the other
three factors depend entirely on the initial and final state
information and the transition order. Thus, the formula
for calculating the electromagnetic transition can be writ-

ten as follows [6]:

BEALL — L) = C (1) (189) (LLLA000Y,  (28)

where C is a constant and

II(}EQ) _ IéES) — / le//ni,Lilﬁn/v,L_/ da,
IéEl) = /BSl,bni,Lilpnf’Lde’

z
I(;El) = / sin 2¢/\/il¢l-,L[Xn¢/ L d¢7

x
2

29)

(30)

31)
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:
[ = / COS Gy £ 1, 40, (32)
-2
%
15 = / SN B X 1, 46, (33)

z
2

and at the end of this part of the article, we suggest read-
ers to Ref. [6] for more valuable information on the integ-
rals and equations.

Unfortunately, we were unable to find sufficient ex-
perimental data for electromagnetic transitions of the con-
sidered nuclei in reference [38]. However, a comparison
of the trends obtained in this study would still be interest-
ing and informative. If readers refer to the section on
solving differential equations in this article, they will see
that, unlike the case of approximate separation, electro-
magnetic transitions are influenced by both parts of the
solution, namely § and ¢. In the case of approximate sep-
aration, since the ¢ part was merely a constant factor, it
was automatically eliminated by calculating the ratio of
electromagnetic transitions. However, this is no longer
applicable here. Although we have limited ourselves to
ng =0 and in the Hermite functions we have H, =1, the
normalization constant will be a function of the angular
momentum value because the argument of the exponen-
tial function /? contains ¢, , and this value takes a specif-
ic value for each value of angular momentum. This is
what causes the difference in the trend of theoretical pre-
dictions in the calculation of electromagnetic transitions
in the present model.

To illustrate the trend of theoretical predictions of our
model, we have plotted the calculated electromagnetic
transitions in Figures 4, 5, and 6. In Figure 4, we have
calculated the electromagnetic transitions B(El,L —
L—-1) for the model [33] and our results, and finally nor-
malized them to the value of B(E1,1~ — 0*). We believe
that the authors of [33] used the same approximate separ-
ation [5] formulae of B(EL) transitions because the val-

L 25 .
.
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Fig. S.
sates, while the right panel is for the minus-parity states.

ues of their electromagnetic transitions were obtained in
the same way. In this case, the theoretical prediction pre-
dicts an upward trend with increasing L, but this is not the
case for the predictions made by the results of this article.
If we look at this trend more closely, the theoretical pre-
dictions for the B(E1l) transition suggest an oscillatory
trend, but overall this trend is upward. The change in this
oscillatory trend is more significant and severe in 2?Th
than in 22°Ra, while for the parameter-free model, the the-
oretical prediction trend for the B(E1) transition is strictly
upward.

For the B(E2) electromagnetic transition, a behavior
different from the parameter-free model is predicted. In
this case, for transitions involving positive parity states,
an initial increase in the transition value is predicted, fol-
lowed by a decrease. On the other hand, for B(E2) elec-
tromagnetic transitions involving negative parity states,
an initial  decrease is predicted followed by a relative
growth. In contrast, the parameter-free model does not
predict any decrease in B(E2) transition values with in-
creasing angular momentum. This is clearly illustrated in
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Fig. 4. (color online) Comparison of theoretical calculations
of B(E1) electromagnetic transitions in parameter-free and WS
models
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(color online) The same as Figure 4, but for B(E2) electromagnetic transitions. The left panel belongs to the positive-parity
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(color online) The same as Figure 4, but for B(E3) electromagnetic transitions. The left panel shows transitions with a AL of

three units between initial and final states, while the right panel shows transitions with'a AL of one unit.

Figure 5. The transition values in this figure are normal-
ized B(E2,2* — 0%). The left panel of this figure shows
electromagnetic transitions involving states with positive
parity, while the right panel corresponds to states with
negative parity.

However, the predicted trends for B(E3) electromag-
netic transitions in the parameter-free model and' the
model discussed in this paper are somewhat similar. We
have examined these transitions in two different categor-
ies. All values considered in this figure are normalized to
the B(E3;3~ — 0*) transition. This category includes
transitions where the difference in angular momentum
between the starting and ending states is three units. In
the left panel of Figure 6, you can see the predicted beha-
vior for these transitions. The figure shows that the mod-
el predicts an increasing trend for these transitions, and
the slope becomes gentler as the angular momentum
value goes up. However, in our calculations, although the
overall behavior is upward, the rate of change is quite dif-
ferent. For 2*°Ra, for angular momenta less than 15, the
slope of this change is gentle, but for angular momenta
greater than 15, the slope of this trend becomes steeply
upward. In contrast, for °Th, in the angular momentum
range of 4 < L; <9, this trend experiences a relative de-
cline, then either a steep upward slope.

The second category of B(E3) electromagnetic trans-
itions is those with a one-unit difference between the ini-
tial and final states. The result of this investigation is
shown in the right panel of Figure 6. The overall trend for
all three cases is similar but not identical. In all three
cases, the values of these transitions initially experience a
decrease, and then this trend increases. This trend for the
parameter-free model has a nearly uniform rate, while for
our model, both the decreasing trend is more pronounced
and the slope of the increasing values is steeper.

IV. CONCLUSION

In this study, we aimed to investigate the application
of the Woods-Saxon potential to describe excited states
arising from quadrupole and octupole deformations. To
this end, we employed a numerical method to compute
the eigenfunctions and eigenvalues of the Hamiltonian.
This process was simultaneously coupled with a machine
learning optimization algorithm to evaluate the optimal
solutions. Subsequently, we proceeded with the analysis
of the results. Energy levels with different parities for
226Ra and ??°Th were examined using both this model and
the parameter-free model. Afterwards, we proceeded to
calculate electromagnetic transitions and discussed how
the exact separation of variables in the model presented in
this paper could affect the calculation of electromagnetic
transition values. Electric dipole, quadrupole, and octu-
pole transitions were extensively analyzed and visualized.
We observed that the trend predicted by our model was
significantly different from that predicted by the paramet-
er-free model. The reason for this difference was invest-
igated, and it was found that the angular part of the
Hamiltonian becomes a function of angular momentum in
the exact separation. This manifests itself in the overlap
of wave functions during the calculation of electromag-
netic transitions.
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APPENDIX

The appendix contains a detailed list of each isotope's
normalized energies and wave function expansions. For
more information on how to understand this data, return
to the main text of the article.
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