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Abstract: A traversable wormhole generally violates the averaged null energy condition, typically requiring exotic

matter. Recently, it was discovered that a traversable wormhole can be realized with non-exotic matter in Einstein-

Dirac-Maxwell theories in flat space. This study extends the discussion to AdS spacetime and finds traversable

wormbholes with spherical and planar topologies. Furthermore, based on the AdS/CFT correspondence, we compute
the entanglement entropy of strips and disks on the two AdS boundaries of the wormhole. We find that the entangle-

ment entropy undergoes a phase transition as the subsystem size increases.
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I. INTRODUCTION

Similar to a black hole, a wormhole is a fascinating
solution to Einstein's equations that has attracted signific-
ant interest in the theoretical physics community. Notably,
it plays a crucial role in recent breakthroughs concerning
the black hole information paradox [1, 2]. Generally, there
are two types of wormholes: non-traversable and travers-
able. A well-known example of a nontraversable worm-
hole is the Einstein-Rosen bridge [3], which connects two
asymptotic regions of eternal black holes. According to
the "ER=EPR" conjecture [4], it is dual to entangled Ein-
stein—Podolsky—Rosen (EPR) pairs, indicating a profound
connection between wormholes and quantum entangle-
ment. Traversable wormholes were first studied by Ellis
[5] and Bronnikov [6] and then by Morris and Thorne [7].
However, these traversable wormholes generally violate
the averaged null energy condition (ANEC), raising ques-
tions about their existence. It is important to note that the
violation of ANEC can be accommodated through
quantum fluctuations, such as the Casimir effect, which is
considered acceptable. Nevertheless, the traversable
wormhole described by Morris and Thorne permits time
travel to the past, which contradicts the law of causality
[8]. The first traversable wormhole consistent with causal-
ity was proposed by Gao, Jafferis, and Wall using a
double trace deformation [9]. In this model, it takes longer
to travel through the wormhole throat than it does via the
typical path outside. Thus, this traversable wormhole ad-
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heres to the principles of causality and may be realized in
the physical world. A significant advancement in this area
is given by the humanly traversable wormholes proposed
by Maldacena, Milekhin, and Popov, which use Casimir-
like energy from fermions or the Randall-Sundrum brane-
world scenario [10, 11]. Following this, wormhole solu-
tions to Einstein's gravity coupled with Maxwell fields
and two Dirac fermions were discovered [12] and refined
in subsequent studies [13, 14]. Remarkably, this travers-
able wormhole is composed entirely of non-exotic matter.
See also [15—18] for recent developments on wormholes.
This study extends the findings of [12, 13] from flat
space to AdS space. We explored the CFT duals of tra-
versable wormholes within the framework of the
AdS/CFT correspondence [19]. We numerically solved
the AdS wormholes with spherical and planar topologies
according to Einstein-Dirac-Maxwell theories. We con-
firmed that these solutions violate the NEC. Therefore,
they are genuine wormhole solutions. Additionally, we
examined the holographic entanglement entropy (HEE)
[20] of strips and disks on the two AdS boundaries of
wormholes. As the size of the strip or disk grows, the
Ryu-Takayanagi (RT) surface [20] for entanglement en-
tropy undergoes a phase transition, transitioning from a
disconnected state to a connected one. Interestingly, for
the disk, the connected extremal surface only appears
when the disk radius surpasses a critical value. We valid-
ate this unusual phenomenon using a toy model, confirm-
ing its occurrence in the case of the planar wormhole as
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well.

Let us outline the motivations for investigating the
HEE in the wormhole background. First, HEE plays a
crucial role in AdS/CFT. It reveals a deep connection
between geometry and quantum entanglement [20]. From
the first law of entanglement entropy, one can derive the
linear Einstein equations in the framework of AdS/CFT
[21, 22]. Furthermore, recent breakthroughs in the black
hole information problem benefit from the development
of HEE, particularly the concept of entanglement islands
[1, 2]. Second, "ER=EPR" shows that the nontraversable
wormhole is closely related to the entanglement entropy
[4]. Thus, it is interesting to explore whether there are
any connections between the traversable wormhole con-
sidered in this study and entanglement entropy. Third, the
fermions on both sides of the flat wormhole are en-
tangled [12]. Thus, the entanglement exploration of both
sides of the AdS wormhole conducted in this study is of
interest.

This paper is organized as follows. In Section II, we
briefly review the Einstein-Dirac-Maxwell (EDM) model.
In Section III, we numerically solve the EDM model to
obtain traversable AdS wormholes with spherical and
planar topologies, respectively. Section IV examines the
HEE of strips in the AdS wormhole and discusses the
phase transition. Section V generalizes the discussion to
the HEE of disks. Finally, we conclude with a discussion
in Section VL.

II. EINSTEIN-DIRAC-MAXWELL MODEL

This section briefly reviews the Einstein-Dirac-Max-
well model, which contains one vector field, A,, and two
spinor fields, ¥; and W,. The action reads [12]

=5 J @z (Re 2) +£0- 57
I-4ﬂ/dx\/_g J(Rep )+ L0272 @

where we set Newton's constant as Gy = 1, R is the Ricci
scalar, [ is the AdS radius, ¥,, =4d,A, - 9,4, is the field
strength of the vector, and

i o i ,
Lp=) {E\PEVDV\PE — DYy We-m¥ ¥ (2)
e=1,2

Here, vy, = e,9"; % and v, are the gamma matrices in
curved and flat spaces, respectively; e,, are tetrad fields;
m is the spinor mass, and

D,=0,+T,—iqA,, (3)
|
r;t = _Zw,uah‘y Yb, (4)

where w,, denotes the spin connections. The gamma
matrices in flat space read [13]

~0 . 0 I 1 . 0 g3
=1 N =1 )
4 I 0 4 —03 0
0 o S 0 o
2 =1 , =i s Sa
Y <—m 0> 4 (_Uz 0) (5a)

where o; denotes the Pauli matrices:

o=t 0 (5b)
0 -1

From the action expressed in Eq. (1), we derive the equa-
tions of motion (EOMs):

(D =m) ¥, =0, (62)
d N L :
Y v o7 _ q]ll =0 with J = Z \Pe')/'ulpm (6b)
2 \/__g e=1,2
1 1 6
3 (Fom 380 (R+3) ) -7 =0. ©

where the stress-energy tensor is

Tw=Tm+T,,+T,, (72)

with the Maxwell and Dirac-field stress-energy tensors
defined as follows:

1
T;% = ﬂﬂf/pg/lp - Zg,uszv (7b)
75, =Im (¥oy,D,¥ +¥.y,D,¥,) . (7c)

We solve the EOMs (Egs. (6a)—(6¢)) in the next section
to obtain the traversable wormhole in AdS.

III. WORMHOLE SOLUTIONS

By solving the Einstein-Dirac-Maxwell model (Eq.
(1)), we obtain the traversable wormhole solutions with
spherical and planar topologies in an asymptotically AdS
spacetime, as explained below.
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A. Spherical topology

For the wormhole with spherical topology, we as-
sume the following ansatz of metric:

= dr’ +r2dQ?, (8)

1
ds? = —=N(r)?di* +
B(r)
where dQ? denotes the line element of unit sphere and
r>ry, with ry being the radius of wormhole throat. For
numerical convenience, we parameterize r as [13]

r=—C x=xy/1-2 )
1 —x2 r

Then, the metric becomes

2 20 T, 2102
ds® = =N(x)°dt" + —=dx* + r(x)°dQ". (10)
B(x)?

As x goes from —1 — 0 — 1, the radial coordinate r(x)
goes from oo — ry — oo, which moves from one AdS
boundary through the wormhole throat to the other AdS
boundary. To have an asymptotically AdS spacetime, we
impose the following boundary conditions:

2 2

. 2 r N

XILIEIN(X) —>l+l*2—>l+m, (lla)
> 2

- 2 r _To

lim BQO? = 1+ = 1+ (11b)

where a numerical cutoff of x = £(1 — €) must be applied.
We assume e=10"* in this section. Note that we have
lim,_,; N(x)> =lim,_,.; B(x)> > 00 for AdS wormholes
(see Fig. 1), while lim,. N(x)? =lim,,. B(x) = 1 for
flat wormholes [12—14]. This is the main difference
between our wormhole solutions and those presented in
[12—14] for flat space.

From the metric expressed by Eq. (10), we read off
the tetrad fields:

—-N(x) 0 0 0
rw-o 0
Cua = B(x) . (12)
0 0 r(x) 0
0 0 0  r(x)sin(d)

We employ the following ansatz for the vector,

A, dx* = V(x)de, (13a)
whereas for the spinors,
0
¢(x)cos 3
%)
- i¢*(x) sin 3
Pr=eE Ak (13b)
—i¢*(x)cos 5
.0
—¢(x)sin 2
. .0
ig(x)sin 3
o ¢*(x)cos Q
¥, = e 21 (130)
¢*(x)sin 2
. 0
i¢(x)cos 3
where
#(x) = F(x)e™* - G(x)e ™4, (13d)

with F(x),G(x) being real functions. Substituting the
above ansatzs into the EOMs (Egs. (6a)—(6¢)), we obtain
a set of ordinary differential equations for N(x), B(x),
V(x), F(x), and G(x) (see Appendix A). These are first-
order equations for F(x), G(x), N(x), and B(x) and
second-order equations for V(x).

L x

-1.0 -0.5

Fig. 1.

0.5 1.0 -1.0 -05 0.5 1.0

(color online) Wormhole with spherical topology. The theory parameters and initial values are given by Egs. (18) and (19).
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We apply the shooting method to solve the wormhole
solutions. To do so, we expand A = (F,G,N,V,B) around
the throat x =0,

A(X) = ag+a;x+ O0(x?), (14)

which means that B(x) = by + b, x + O(x?), with similar ex-
pressions for other functions (F,G,N,V). Solving EOMs
perturbatively, we obtain the following constraints:

bO = 09 (15)
o [b% + 16mrg(f3 _83)} —32n970 fogo
w=- 2( 424 o2 > (16)
32rg (fo +go)
P> —2+16m(g2 — f)r2] + 321 —6r2
v = VI, - [b} -2+ 16m(g] ;E)b)zro] +32F fogoro o
1

(17)

For any given set of initial values in Eq. (14), we can
numerically solve the EOMs (see Appendix A) to obtain
a solution. In general, this solution does not obey the
asymptotical boundary conditions (Egs. (11a) and (11b))
at [x| —» 1. We adjusted the initial values in Eq. (14) to
satisfy the boundary conditions (Egs. (11a) and (11b)).
This is the so-called shooting method. Without loss of
generality, we set the theory parameters as

ro=1,

q=0.03, (18)

and found the following initial values:

vo=0, np=0.025 b,=029, f=0.106, go=0.103.

(19)

The corresponding functions for the wormhole are repres-
ented in Fig. 1. As shown in Fig. 2, the wormhole solu-
tion obeys the boundary conditions (Egs. (11a) and (11b))

Fig. 2.

on the asymptotically AdS boundary |x|— 1.For in-
stance, numerically, we have

B(x)* o B(x)? o
1| =231x10°, 1| =2.04%x10°,
1+ (x)? ‘_ % 4002, %
(20)
Nl gsoxios. N | 2 go010
L+r(x)? | ol+r(x)? |, ’
(21

on the AdS boundary |x| = 1 - 10~*. Note that the last term
in Eq. (21) does not vanish perfectly. According to [12],
it implies that there is a slight redshift on the right AdS
boundary.

To examine the fermion distributions, we can calcu-
late the charge density given by

4(F(x) +G(x))

° = lPs O\Pe = >
1=y NI

e=1,2

(22)

which is represented in Fig. 3. This plot indicates that the
charge is distributed throughout the entire space, reach-
ing a maximum near the throat (x = 0) and gradually ap-
proaching zero at the AdS boundary (|x| = 1).

It is well-known that a traversable wormhole violates
the null energy condition (NEC). For the null vector

B(x)
r'(x)

K3, =N(x)"'0,+ 0., (23)

we verified that the NEC is violated for our wormhole
solution, i.e., T,,K*K* <0 (see Fig. 4). Thus, we ob-
tained a traversable wormhole in the asymptotically AdS
spacetime. Figure 4 shows that the NEC is most severely
violated near the throat of the wormhole, x — 0, while it
is essentially not violated near the AdS boundary,
x — +1. More precisely, we numerically observed that
the NEC is violated in the bulk region, —0.67 < x < 1.

(color online) Asymptotically-AdS conditions expressed by Eqgs. (11a) and (11b) satisfied.
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X
0.5 1.0

Fig. 3.
The charge is distributed throughout the space (consistent with

(color online) Charge density of spherical wormhole.

Pauli exclusion principle), reaching a maximum near the
throat (x=0) and gradually approaching zero at the AdS
boundary (|x| = 1).

TuwKHKY
0.01

-1.0 =
TuwKHKY

0.0006
0.0004
o.oooz{/\ -0.02f
0.0000

0.90 0.98°1.00 1.05 1.

—0.0002f -0.9-0.8 -0.7\-0.
-0.0004
-0.0006
-0.06"
Fig. 4.  (color online) Violation of the NEC for the worm-

hole with spherical topology, i.e., T, K*K” < 0.

B. Planar topology
Let us proceed to study the wormhole with planar to-
pology. Given that the calculations are similar to those
for spherical topology, we only highlight key points be-
low. We adopted the following ansatz for the metric:

r(x)?
B(x)

ds® = —-N(x)*d + d+ 2y +dy3), (24

where we set the AdS radius /=1 for simplicity. Eq. (24)
must be an asymptotically-AdS metric:

lim1 N(x)* = 1, (25a)
lim B(x)*> — r*. (25b)

x—x1

From Eq. (24), we obtain the tetrads:

—N(x) 0 0 0

r'(x) 0
€ = B(x) . (26)
0 0 rx)y O

0 0 0 rx

The ansatz for vector and spinors are given by Eq. (13a)
and

o)
0
-ig"(r)
0

P, =it (27a)

0
¢ (r)

0
i¢(r)

P, = e (27b)

Substituting Eqs. (13a), (13d), (27a), and (27b) into the
EOMs given by Egs. (6a)—(6c), we obtain a set of ordin-
ary differential equations for N(x),B(x),V(x),F(x), and
G(x) (see Appendix B). Solving these EOMs perturbat-
ively around the throat x = 0, we obtain

by =0, (28)

__ no(b? +16(f3 — ghymr (29)
32(f5 + 8o |

b= 2n(2) (—b% + 2r(2) (3 + 8(f02 - g%)m)) ‘ (30)

by

We set the parameters and initial values using the shoot-
ing method as follows:

ro=1,m=0.2, ¢g=0.03, vo =0, no =0.38,
by =0.023, fo=go=0.02. 3D

A typical solution of the planar wormhole and charge
density is shown in Fig. 5. We verified the violation of
the NEC shown in Fig. 6, i.e., T,,K*K” <0. We numeric-
ally found that the NEC is violated in the bulk region,
—0.76 < x < 1. We conclude that the shorter the distance
to the wormhole throat, the more severe the NEC viola-
tion.

As shown in Fig. 7, the wormhole solution properly
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F(x).G()
0.03¢

0. — Fx)
— G(x)

X
-1.0 -0.5 0.5 1.0

Fig. 5.

TuwKMKY

1.x1078
5.x10~7
0
-5.x1077
-1.x107%
-0.08}
-0.10-

Fig. 6.
hole with planar topology, i.e., T, K*K” < 0.

(color online) Violation of the NEC for the worm-

obeys the boundary conditions on the asymptotically AdS
boundary |x| — 1. For instance, we numerically have

B(x)? B(x)
O 4| = 3ax10, B9 4] C 540,
r(xy? | r(x)? |,
(32)
2 2
N 41 20026, MYy — _11ox 107,
r(x)? _ r(x)? .
(33)

where we have redefined time as z— 0.99r to make
(N?/r})|, — 1 on the right AdS boundary. Then, we have
(N?/r*)|- = 0.97 on the left AdS boundary, which can be
explained as a redshift [12].

X
-1.0 -0.5 0.0 0.5 1.0

(color online) Planar wormhole and charge density with parameters set according to Eq. (31).

IV. HEE OF STRIP

In this section, we investigate the HEE [20] of two
strips on the two AdS boundaries of the traversable
wormhole. For simplicity, we focus on the planar topo-
logy. As shown in Fig. 8, there are two phases for the RT
surfaces: connected and disconnected.

Recall that the HEE can be calculated using the area
of the minimal surface (RT surface) in bulk [20] as fol-
lows:

L= Area ofyA, (34)
4

where A denotes the subsystem on the AdS boundary,
and vy, is the minimal surface in bulk whose boundary co-
incides with that of A, ie., dy,=0A. For the strip
—L/2 <y, < L/2, the embedding function of RT surface in
bulk is assumed to be

(35)

t = constant, y; = y;(x).

Then, we derive the induced metric of the RT surface

7 2
ds* = ( nggz + r(x)zy'l(x)z) do® + r(x)*dy3, (36)
with area
ﬂ:/dxi:/dx r(x) r(x)ny(x)2+ r’(x)2 (37)
! B(x)?’
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Fig. 7.

(color online) Asymptotically-AdS conditions (Egs. (25a) and (25b)) are satisfied up to a redshift.

AD B — A >

—

— A B

.

B

Fig. 8.

(color online) Phase transition of RT surface. As the strip width (red line segment) increases, the RT surface (blue curve)

transforms from a disconnected phase (left) to a connected phase (right).

where we set [ dy, = 1. Given that£ includes no y(x), we
can define a conserved quantity:

oL ey,

W (1-x2) (1 -2+ 2

= constant.

(38)

Let us first discuss the disconnected phase (red curve
inFig. 9), which dominates for small strip widths. As
shown in Figs. 8 and 9, there is a turning point x,;, for
the disconnected phase. At this point, we have

disconnect phase: Y1 (Xmin) =0, ¥ (Xmin) =00.  (39)
Substituting Eq. (39) into Eq. (38), we obtain
i
E=—— 40
(1 _ x?nin) 2 ( )

On the right hand side of the wormhole (x> 0), we
can use Egs. (38) and (40) to solve y;(x) and obtain the
strip width:

1-€ 1-€
L=2/ '(x)dx=2/
X . Xmin B(X) \/xgnin -

min ‘mi

2x(1-x%) dx
. 40
X8+ 6xt —d4x2. — xS +4x0 —6x* +4x2

We set the same strip width Lon the left hand side of the wormhole (x < 0). Note that |x,;,| is slightly different on
the two sides of the wormhole given that |B(x)| is not exactly symmetric.

Substituting y'(x) into Eq. (37), we obtain the area of extremal surface, Agisco = Adisco.x>0 + Adisco.x<0, With

a 022/1—5 2rgx (1-x2;,) 2dx 42)
e s (1= 220" B(x) /xS, —4x8, + 604, —4x2, — x5 +4x0 —6x* +4x2

Aiscox<0 = 2/Xmm 2 (1 _x;in) & (43)
Cire (1= 22 B(Y) /xS, — 430, + 630, —4x2, — xS +4x6 — 6 + 422

where |xy;,|is not exactly the same on the two sides of the
wormbhole.

Let us proceed to discuss the connected phase (blue
curve of Fig. 9), which dominates for large strip widths.
According to Eq. (38), we observe that the solution for

[
the connected phase is y;(x) = 0. Then, the area of the ex-
tremal surface becomes

Zr(z)x dx

|
=2 — 44
Heo /1 (1-x2)° B(x) 9
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Fig. 9. (color online) Two types of extremal surfaces with
strip width L = 1.48. The red and blue curves correspond to the
disconnected and connected phases, respectively.

which is constant for fixed wormhole geometry.

By definition, the RT surface is given by the ex-
tremal surface with minimal area. As x.;, decreases, both
the strip width L described by Eq. (41) and the area of ex-
tremal surface Ay, described by Egs. (42) and (43) in-
crease. Thus, for sufficiently large L, Ao could be lar-
ger than A,. Then, there is a phase transition and the
connected phase dominates. The 6A— L relation is rep-
resented in Fig. 10, where 6A = Agisco — Aco. This figure
shows that the disconnected phase dominates for 6.A < 0
and small values of L, while the connected phase domin-
ates for 6A >0 and large values of L. A phase transition
of the RT surface occurs near the strip width, that is,
L~1.61.

To conclude this section, let us comment on the pos-
sible relationship between the NEC and phase transition
of holographic entanglement entropy. Recall that the
NEC is most severely violated near the wormhole's
throat. Similarly, the HEE undergoes a phase transition
when the RT surface extends deeply into the bulk region
near the wormhole throat. Thus, it is natural to ask wheth-
er the violation of the NEC causes the phase transition of
holographic entanglement entropy. This is qualitatively
correct. For instance, the turning point of the disconnec-
ted extremal surface at the phase-transition point is

&4
15}
10}
5f 1.61
5 4 A s strip width
—5F
-10
Fig. 10.  (color online) Area difference (6A = Agisco — Aco)

increasing with strip width L. The disconnected and connec-
ted phases dominate for L < 1.61 and L > 1.61, respectively.

|xmin] & 0.37, localized in the region violating the NEC.
However, we found no exact relation between the NEC
and phase transition of HEE. It lies beyond the scope of
this study. This is an open question to be addressed in fu-
ture studies.

V. HEE OF DISK

This section examines the HEE of disks on the two
AdS boundaries of the planar wormhole. A key feature is
that the connected extremal surface disappears when the
disk radius is sufficiently small. This is similar to the case
of an eternal black hole [23], where the Hartman-Malda-
cena (HM) surface of a disk vanishes after a sufficiently
long time. In contrast, for a strip, there is always a con-
nected extremal surface for a wormhole and an HM sur-
face for an eternal black hole. We first illustrate this un-
usual phenomenon using an analytical toy model and then
extend the results to our numerical wormhole.

A. A toy model
Let us start with a toy model with the metric

ds® = —(?2 + az)dt2 +

. di? + (P + r3)(dp? + p*de?),
(45)

2 +a

which violates the NEC

213 (P +a*)*

T, K"K’ =
# (7 +7r2)?

<0, K*=(1,+d%0,0), (46)

and approaches Poincaré-AdS for 7 — co. This is a worm-
hole in an asymptotically AdS space. Note that it is not a
solution to the Einstein-Dirac-Maxwell model (Eq. (1)).
We consider the unusual situation of HEE for a disk with
p < L. As in Section 2, we define

o
1-x2’

=P+, r=rx)=

(47)

and assume the embedding function of the RT surface in
bulk:

t = constant, p = p(x). (48)

Then, the induced metric on the RT surface reads

ds? = (gxx(x) + r(x)zp’(x)z) dx® + r(x)*p(x)*d6?, (49)
B ' (x)?
gxx(x) = rg — r(z)az . (50)

rx)?+a2-2r + o
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From Eq. (49), we derive the area functional of the RT
surface as

1-€
A =4n / dx r(0)p(x) v/ guu(X) + r(x2p (x)2, (5D

0,%min

where the integral is performed on one side of the worm-
hole and a factor of 2 is added to account for the whole
space. This area functional yields the following Euler-
Lagrange equation:

- =P | 65/ pay
rop(x) I-x p(x)
A (8r3xp'(x)* — (1 - x%)* g, (x))
2(1 = x?)3gx(x)

=0. (52

Similar to the strip case, there are disconnected and
connected extremal surfaces for the disk, where the cor-
responding boundary conditions read

disconnected phase :  p(xXmin) =0, o' (Xmin) = 0,
(53)
connected phase:  p’(0) =0. (54)

0.8

0.6+

041

02

Xmin

& L L Loy

0.2 0.4 0.6 0.8 1.0

Fig. 11.
the disconnected extremal surface and L = p(1) is the disk radius.

p(0) or Xmin

25¢

L(disk radius)
3.0

Fig. 12.  (color online) Disk radius of minimal value (green
point) for the connected phase. Generally, one disk radius cor-
responds to one disconnected surface and two connected sur-
faces.

Here, x,,is the turning point of disconnected extremal
surfaces; Fig. 11 shows an example. Without loss of gen-
erality, we set a=r;=1. The connected phase occurs
only if the disk radius is larger than a critical value, i.e.,
L>1.28. The critical value is represented by a green
point in Fig. 12, which shows one disk radius generally
corresponding to two or three different extremal surfaces.
We set the one with minimal area as the RT surface.

The area difference 6.A = Agisco — Ao 1S represented in
Fig. 13; note that 6A increases with the disk radius L.
The disconnected and connected phases dominate for
L < 1.40 and L> 1.40, respectively. Note that the critical
point, L. ~ 1.28, for the existence of the connected phase
is smaller than the phase-transition point, L, ~ 1.40. It
aligns with the expectation that, for a sufficiently large
disk size, the connected phase invariably dominates. In
such a scenario, the extremal surface would traverse
through the wormhole throat.

B. Planar wormbhole

Next, we study the HEE of disks for the planar worm-
hole obtained in Sec. III.B. Because the discussions are
similar to those of toy model, we list only key results be-
low. Similar to the toy model, the connected extremal
surface exists only if the disk radius is larger than one
critical value, L>L.. As shown in Fig. 14, we have
L. ~4.68. Besides, as shown in Fig. 15, one disk radius

L L L L Loy
0.2 0.4 0.6 0.8 1.0

(color online) Disconnected (left) and connected (right) extremal surfaces of disks for x > 0. Here, xy,;, is the turning point of

OA

0.15¢
0.10}
0.05}
L L disk radius
1.35 60
-0.05
Fig. 13.  (color online) Existence of phase transition (red

point); the area difference 6.A = Agisco — Aco increases with the
disk radius L. The disconnected and connected phases domin-
ate for L < 1.40 and L > 1.40, respectively.
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ren A

e disco

I I I I L,
2 3 4 5 6 7

Fig. 14.  (color online) Relation between the renormalized
area (A-— %) and right disk radius L. . For L, < L. ~4.68, only
the disconnected phase exists, and we set L_=L.. For

L. >L.~468, L_ can be determined by L, in the connected
phase, which is slightly different from L, owing to the slight
asymmetry of the two sides of the wormhole. Fig. 16 shows
the differences between L, and L_.

. . . Lox
-1.0 -0.5 0.5 1.0

Fig. 15. (color online) Extremal surfaces with disk radius

+~L_~543>L.. Note that the disk radius corresponds to
several extremal surfaces for L > L.. We set the one with min-
imal area as the RT surface.

corresponds to several extremal surfaces when L> L.
Unlike the toy model with L. < L,, the area of the con-
nected extremal surface, if it exists, is always smaller
than that of disconnected extremal surface. In Fig. 14, we

btract a universal UV divergence for all areas, i.e,
;(e = 107*). Thus, the critical radius L. is also the phase-

transition point L, of disconnected and connected phases.

Note that, according to the asymmetric wormhole
solution, the BC given by Eq. (54) results in slightly dif-
ferent disk radii on either side of the wormhole in the
connected phase; see Fig. 16 for example, where the dif-
ferences between L, and L_ are small. As shown in Fig.
14, when L, < L. ~ 4.68, only the disconnected phase ex-
ists, enabling the condition L, =L_ to be set freely.
However, for L, > L. ~ 4.68, the connected phase domin-
ates, and L_ is determined by L,, which generally differs
from L,. Fortunately, this difference is negligible, as

Ly
1.006 -
1.005}F
1.004F
1.003F
1.002f

1.001 -

1.000 I I I I Ly
4.5 5.0 55 6.0 6.5 7.0

Fig. 16.

nected phase. It shows that the differences between L_ and
L, are extremely small.

(color online) Differences in disk radii for the con-

demonstrated in Fig. 16. Similar to the toy model dis-
cussed in Section V.A, the connected extremal surface
appears only when the disk radius exceeds a critical
value, L > L.. Unlike the toy model, the critical disk radi-
us represents the phase-transition point between the dis-
connected and connected phases, thatis, L. = L,.

VI. CONCLUSIONS AND DISCUSSION

Traversable wormholes have recently been obtained
in the Einstein-Dirac-Maxwell model without exotic mat-
ter. In this study, we extended the discussion to AdS
spacetime and derived traversable wormholes with spher-
ical and planar topologies. Additionally, we investigated
the holographic entanglement entropy of strips and disks
for traversable AdS wormbholes. As the size of the strip or
disk increases, the Ryu-Takayanagi (RT) surface for en-
tanglement entropy undergoes a phase transition, shifting
from a disconnected phase to a connected phase. Interest-
ingly, for the disk, the connected extremal surface exists
only when the disk radius exceeds a critical value. We
validated this novel phenomenon using a toy model, con-
firming its occurrence in the case of the planar wormhole
as well. Furthermore, we express interest in exploring the
hyperbolic wormhole and examining the quantum entan-
glement of dual conformal field theories (CFTs) in future
research.
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APPENDIX A

This appendix lists the EOMs of the Einstein-Dirac-
Maxwell model for the AdS wormhole with a spherical
topology.
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APPENDIX B

This appendix lists the EOMs of the Einstein-Dirac-Maxwell model for the planar AdS wormhole. Here, we set
I=1.
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_ , (B2)
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