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Abstract: Holographic models that consider classical vector fields in a 5-d background provide effective descrip-
tions  for  heavy  vector  meson  spectra.  This  is  true  both  in  vacuum  and  a  thermal  medium,  such  as  quark  gluon
plasma.  However,  the manner in which these phenomenological  models  work is  unclear.  In particular,  what  is  the
role  of  the  fifth  dimension,  and  what  is  the  relation  between  the  holographic  5-d  background  and  physical  (4-d)
heavy mesons? Hadrons, in contrast to leptons, are composite particles with some internal structure that depends on
the energy at which they are observed. In this study, a static meson is represented by a heavy quark-antiquark pair
with an interaction described by a Nambu Goto string existing in the same 5-d background that provides field solu-
tions  leading to  masses  and decay constants  of  charmonium states.  The resulting interaction potential  is  linear  for
large distances, with a string tension consistent with the effective Cornell potential. Introducing temperature T in the
background, it  is  found for the  case that  there is  a  deconfining transition at  some critical  value of T. The ob-
tained results indicate that the 5-d background effectively represents the internal structure of the (static) charmoni-
um (quasi) states.
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I.  INTRODUCTION

Quarkonium  states  produced  in  heavy  ion  collisions
are  important  sources  of  information  about  quark  gluon
plasma  (QGP).  This  state  of  strongly  interacting  matter,
which behaves like a perfect fluid [1−4], is not observed
directly. The reconstruction of QGP is based on the ana-
lysis  of  the  final  particles  that  reach  the  detectors  in  a
heavy ion collision. One important tool is the analysis of
suppression of charmonium states, relative to proton-pro-
ton  collisions,  which  is  interpreted  as  a  consequence  of
dissociation  in  the  medium [5, 6].  This  is  the  reason for
the  wide  interest  in  understanding  the  behavior  of
quarkonium quasi-states in a thermal medium.

The dissociation of quarkonium states in a plasma has
been described in the recent literature by means of holo-
graphic  models  for  heavy  vector  mesons,  inspired  by
gauge-string duality [7−16]. In particular, the holograph-
ic  model  of  Ref.  [10]  involves  three  energy  parameters,
associated  with  the  heavy  quark  mass,  intensity  of  the
strong  interaction  (string  tension),  and  scale  of  energy

change  in  the  non-hadronic  decay  of  quarkonium.  This
model provides good estimates for the spectra of masses
and  decay  constants  and  also  for  the  dependence  of  the
dissociation effect  on  temperature,  magnetic  field,  dens-
ity, and angular momentum [10−13, 17−19].

J/ψ

This phenomenological holographic model consists of
a  vector  field  in  a  5-d  space  with  some  background.  By
requiring the  field  to  be  normalizable,  one  finds  a  dis-
crete set of solutions corresponding to the meson states. It
is important to remark that mesons are bound states of a
quark-antiquark  pair.  The  normalizable  field  solutions
represent the  different  states.  For  charmonium,  the  solu-
tion  with  the  smallest  mass  corresponds  to .  The
background of the model is engineered such that the spec-
tra of masses and decay constants are provided. However,
it  lacks an interpretation for the relation between the 5-d
phenomenological  background  and  the  quark-antiquark
interaction.  The  masses  of  the  heavy  meson  states  are  a
result  of  both  the  heavy  quark  masses  and  quark-anti-
quark interaction.

The  question  we  address  in  this  study  is  as  follows:
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what  is  the  relation  between  the  5-d  background  and
quark-antiquark  interaction?  In  other  words,  what  is  the
relation  between  the  background  geometry  and  internal
structure of charmonium states? To answer this, we study
the holographic representation of the interaction between
heavy quarks,  consisting of  a  Nambu Goto string,  in  the
model  background.  We  start  with  the  vacuum  case  and
then  analyze  the  finite  temperature  situation,  where  the
metric develops a black hole (BH) geometry. The dissoci-
ation  process  of  charmonium  is  then  investigated  from
the perspective of the quark-antiquark interaction.

The  remainder  of  this  paper  is  organized  as  follows.
In  Sec.  II,  we  review  the  holographic  model  for  heavy
vector  mesons  and  present  a  different  version,  with  a
change in  the  sign  of  a  quadratic  term,  which  is  neces-
sary  to  obtain  a  confining  background.  In  Sec.  III,  we
study  the  quark-antiquark  interaction  by  considering  a
string,  with  fixed  endpoints,  in  the  background  of  the
model.  Then,  in  Sec.  IV,  the  finite  temperature  case  is
considered,  and  the  dissociation  process  is  investigated.
Some final remarks and conclusions are given in Sec. V. 

II.  HOLOGRAPHIC MODEL FOR
CHARMONIUM

Vm

jµ = ψ̄γµψ
z→ 0

In  gauge-string  duality,  the  massless  vector  field 
in  the  bulk  is  dual  to  the  current  operator ,
which represents a meson on the boundary ( ).  This
correspondence  provides  a  framework  for  describing
mesons  in  terms  of  bulk  fields.  Based  on  this  duality,  a
holographic model for quarkonium was proposed in Ref.
[10], with an action integral of the form 

I = − 1
4g2

5

∫
d4x

∫ zh

0
dz

√
−ge−ϕ(z)gmpgnqFmnFpq, (1)

Fmn = ∂mVn−∂nVm ḡwith . The metric  is given by 

ds2 = gmndxmdxn =
R2

z2

(
−dt2+ (dx1)2+ (dx2)2+ (dx3)2+dz2

)
,

(2)

x1 x2 x3where , , and are the spatial coordinates of the 4-d
space  where  the  meson  exists, z is the  holographic  co-
ordinate, and the dilaton field is 

ϕ(z) = κ2z2+Mz+ tanh
Å

1
Mz
− κ√
Γ

ã
. (3)

κ,MThe three parameters , and Γ are fixed in such a way
to provide the best fit for the masses and decay constants
of quarkonia states.

One  can  incorporate  the  dilaton ϕ into  the  metric
through the transformation 

ḡ = ge2ϕ(z). (4)

The new metric g is 

ds2 = gmndxmdxn

=
R2

z2
e−2ϕ(z)

Ä
−dt2+ (dx1)2+ (dx2)2

+ (dx3)2+dz2
ä
, (5)

and the action (1) takes the form 

I = − 1
4g2

5

∫
d4x

∫ zh

0
dz
√−ggmpgnqFmnFpq. (6)

ḡ

gtt gxx

With the metric and action written as in Eqs. (5) and
(6), one can interpret the dilaton as being part of the geo-
metry of the space. This interpretation does not affect the
solutions for the vector fields, as actions (1) and (6) lead
to the same equations of motion for the fields. However,
in gauge-string duality, it is possible to represent the po-
tential  energy  associated  with  the  interaction  between
heavy quarks by a string connecting two fixed points on
the boundary of the 5-d space and stretching into the bulk
[20, 21].  The  result  depends  on  the  metric  of  the  space;
thus, metrics g and  lead to different potential energies.
We  will  revise  this  point  in  Section  III.  If  the  potential
energy  increases  linearly  with  the  quark-antiquark dis-
tance,  one  has  confinement.  For  this  to  happen,  the
product of the metric components  and  must have a
non-vanishing  minimum,  as  we  comment  in  Section  III
and  as  shown  in  detail  in  Ref.  [21].  This  criteria  is  not
satisfied by metrics (2) and (5). However, if one changes
the sign of the quadratic term in z in metric (5), one finds
confinement.  For  a  similar  discussion,  in  the  context  of
the soft wall model, see Refs. [22, 23].

If one uses the new dilaton 

ϕ(z) = −κ2z2−Mz+ tanh
Å

1
Mz
− κ√
Γ

ã
, (7)

instead of (3) in the metric (5) when defining the metric
g, it is still possible to fit the masses and decay constants
of charmonium states,  and the corresponding quark-anti-
quark  potential  energy  will  increase  linearly  with  the
quark  distance,  showing confinement.  From now on,  we
consider the dilaton (7).

The action (6) leads to the equations of motion 

∂n(
√−ge−ϕFmn) = 0. (8)

Vm(t, x,z) =
To describe a meson at rest, we choose a solution cor-

responding  to  zero  spatial  momentum 
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vm(ω,z)e−iωt Vz = 0 and use the condition . Now, the equa-
tions of motion (8) become 

ω2v j(ω,z)−
Å

1
z
+ϕ′(z)

ã
v′j(ω,z)+ v′′j (ω,z) = 0 ( j = 1,2,3),

(9)
 

−
Å

1
z
+ϕ′(z)

ã
v′t(ω,z)+ v′′t (ω,z) = 0, (10)

 

v′t(ω,z) = 0, (11)

where the  prime  symbol  denotes  the  derivative  with  re-
spect to z.

vt = constant

ϵ vi = ϵiv ϵ
(0, ϵ1, ϵ2, ϵ3,0)

Eqs.  (10)  and  (11)  have  the  trivial  solution
,  and  this  constant  must  be  zero  to  ensure

normalization.  The  relevant  equation  is  (9).  Choosing  a
fixed polarization , one can write , with  a unit-
ary  vector  of  the  form . Then,  Eq.  (9)  re-
duces to 

ω2v(ω,z)−
Å

1
z
+ϕ′(z)

ã
v′(ω,z)+ v′′(ω,z) = 0. (12)

Meson states  are  represented  by  normalizable  solu-
tions of the field. The normalization condition reads ∫ ∞

0

R
z

e−ϕ(z) |v(ω,z)|2 dz = 1, (13)

which implies a boundary condition for the field: 

v(ω,0) = 0. (14)

mn

ωn

The  masses  of the  charmonium  states  are  identi-
fied  with  the  possible  energy  eigenvalues  of  the
meson at rest, obtained by solving the equation of motion
(12) with the boundary condition (14).

The  decay  constants  are  obtained  from  the  equation
[10] 

fn =
1

g2
5mn

e−ϕ(0) lim
z→0

R
z

v′(ω,z), (15)

g5where the constant  is determined in Appendix A.

ϕ = κ2z2

m2
n = 4κ2(n+1) (n = 0,1,2,3, · · · )

The equation of motion (12) with the dilaton field of
(7) has no analytical solution. If only the quadratic term is
present, for which , corresponding to the soft wall
model  [24],  the  solution  is  analytic  and  the  spectrum  of
masses  is  ,  providing  a
nice description of light mesons.

n = 0
However,  for heavy mesons, experimental data show

that  the  mass  of  the  state  is  considerably  greater

mn+1−mnthan  the  differences  of  mass . This  is  a  con-
sequence of the fact that the masses of the heavy mesons
have a very large contribution from the mass of the con-
stituent  quarks.  In  other  words,  the  masses  of  heavy
mesons  depend  not  only  on  the  strong  interaction
between the quarks but also on their masses. This is one
of the reasons why a dilaton with more parameters is re-
quired when dealing with heavy mesons.

Also,  heavy  meson  decay  constants  should  decrease
with n. This feature is not captured by the soft wall mod-
el [24], where the decay constants do not depend on n. In
the tangent  model,  the  solutions  to  the  equation  of  mo-
tion (12) are numeric, but the fit of the masses and decay
constants of heavy mesons is more precise.

ψ(z) =
√

R/z e−ϕ(z)/2v(z)With  the  definition , the  equa-
tion of motion (12) is transformed to the Schrödinger-like
form 

−ψ′′+Vψ = ω2ψ, (16)

with 

V =
3

4z2
+

1
2z
ϕ′+

1
4
ϕ′2− 1

2
ϕ′′ (17)

±Mz

This  form  of  the  equation  can  be  used  to  explain  the
dilatons (3) and (7) and why the fit of masses and decay
constants  is  better  with  these  dilatons.  The  hyperbolic
tangent in (3) or (7) adds a potential well to the potential-
like function V, which is responsible for rising the decay
constants of the first states. The presence of a  term
on the dilaton adds a constant term to the potential, which
guarantees  a  better  fit  for  the  masses  of  heavy  mesons.
The sign of  this  term was chosen in such a way that  the
potential  in  the  Schrödinger-like  equation  leads  to  the
best description of the charmonium states.

The  best  fit  for  the  masses  and  decay  constants  is
found using the following values for the model paramet-
ers: 

κ = 1.2 GeV, M = 0.91 GeV and
√
Γ = 0.32 GeV, (18)

and the obtained results  are shown in Table 1. More de-
tails on this procedure of finding masses and decay con-
stants can be found in Ref. [10].

fn

Γn→e+e−

The experimental values for the masses in Table 1 are
taken  from  the  Particle  Data  Group  (PDG)  [25].  While
the PDG does not directly show the decay constants , it
does  provide  the  decay  width .  The  relationship
between these quantities is given by the formula [26] 

f 2
n =

3mn

4πα2cV
Γn→e+e− , (19)
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α = 1/137 cV

cV = cJ/ψ = 4/9 mn

Γn→e+e−

where  is  the  fine  structure  constant;  is  the
square of  the  charge  of  the  quark,  which,  for  charmoni-
um, is ;  is  the mass of  the state  whose
radial  excitation  number  is n;  and  is  the  decay
width found by the PDG.

Let  us  define  the  root  mean  square  percentage  error
(RMSPE) as
 

RMSPE = 100%×
 

1
N

∑N

i=1

Å
yi− ŷi

ŷi

ã2

, (20)

N = 8
yi

ŷi

where  is  the  number  of  experimental  points  (4
masses and 4 decay constants),  the 's  are  the values of
masses and decay constants  predicted by the model,  and
the 's  are the experimental  values of masses and decay
constants. With this definition, we have RMSPE=12.7%.
 

III.  STRING AND QUARK-ANTIQUARK
POTENTIAL

AdS5

In the context of the gauge-gravity duality,  the inter-
action between two static  color  charges,  or  infinite  mass
quarks,  is  represented by a  string connecting the quarks.
The  string  stretches  to  the  fifth  dimension  of  the 
space, with a shape that minimizes its world sheet area or,
equivalently,  the  corresponding  Nambu-Goto  action  [20,
21]
 

S NG =
1

2πα′

∫ √
−gttgxxdx2dt2−gttgzzdz2dt2

=
t

2πα′

∫
dx

√
−gttgxx −gttgzz(z′)2, (21)

α′ −2
x1 ≡ x

x = ±r/2

where  is  a  constant  with  mass  dimension .  The
string endpoints are located on the axis  at the posi-
tions ,  and r is  the  quark-antiquark  distance,
from a gauge theory perspective.

C z→ 0

This  association was proposed by Maldacena in  Ref.
[20] to show that the minimal area is proportional to the
expectation value of the Wilson loop along a closed con-
tour , formed by the quark-antiquark pair at . This
relationship can be expressed as follows:
 

⟨W(C)⟩ ∼ e−S NG . (22)

∆t→∞
⟨W⟩ (C) ⟨∼⟩e−∆tE

Meanwhile, it is known from QCD that by taking the lim-
it , the Wilson loop of a quark-antiquark pair can
be written as , thus giving [23] 

E =
1
∆t

S NG. (23)

Following Ref. [21], one can define 

V(z) =
1

2πα′
√−gttgxx =

1
2πα′

R2

z2
e−2ϕ(z) (24)

and 

W(z) =
1

2πα′
√−gttgzz =

1
2πα′

R2

z2
e−2ϕ(z) = V(z). (25)

V(z) zminThe function  is  plotted in Fig.  1.  We designate 
as the point where the minimum of this function occurs.

S NG

There  is  no  time  dependence  on  this  problem.
However,  one  can  use  a  Hamiltonian-based  formulation,
but with the coordinate x playing the role of time, to min-
imize the functional . We define the Lagrangian 

L(z,z′, x) =
√

V(z)2+W(z)2(z′)2, (26)

 

Table 1.    Comparison of charmonium masses and decay constants obtained experimentally and from the tangent model.

Charmonium Masses and Decay Constants

State
Experimental
Masses/MeV

Masses on the
tangent model/MeV

Experimental Decay
Constants/MeV

Decay Constants on the
tangent model/MeV

1S 3096.900±0.006 2300 416±4 411

2S 3686.097±0.011 3445 294.3±2.5 259

3S 4040±4 4289 187±8 206

4S 4415±5 4982 161±10 180

 

V(z)α′/R2Fig. 1.    (color online)  as a function of the coordin-
ate z.
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which leads to the Hamiltonian1)
 

H(z, p, x) = − V(z)2

L(z,z′(z, p), x)
, (27)

where 

p =
δL
δz′
=

W(z)2z′

L(z,z′, x)
(28)

is the conjugate momentum. Note that now we are using
the prime to represent derivatives with respect to the co-
ordinate x.

z0

z0 = z(x = 0)

As the  Hamiltonian  does  not  depend  explicitly  on x,
its  value  is  a  constant  of  motion.  Designating  as  the
point  where  the  string  crosses  the z axes,  meaning  that

, we write 

H(z, p, x) =H(z, p) = H(z, p(z,z′))|z=z0 ,z′=0

= − V(z0)2

√
V(z0)2

= −V(z0) ≡ −V0, (29)

because,  for  a  symmetric  (even)  and  smooth  string,  we

z′(x = 0) = 0must have .
After  some  algebraic  calculations,  (29)  leads  to  the

equation of the geodesic 

z′ = ± V
W

»
V2/V2

0 −1, (30)

x < 0 + x > 0 −

z0

for  the  ( )  and  ( )  sides  of  the  string.  This
defines  the  shape  of  the  string.  Some  examples  of  this
type  of  string  for  different  values  of  are  shown  in
Fig. 2.

z0

z0

The string configuration is completely determined by
the value of  and the geodesic equation (30). In particu-
lar, the distance r between the quarks and energy E of the
string can be written in terms of .

z′ = dz/dx

V2/V2
0 −1

z0

V(z) z ≤ zmin

z0 ≤ zmin V2(z)/V2
0 −1

z > zmin

V(z)

At  this  point,  note  that x and z are  real  coordinates.
Thus,  cannot assume complex values. This im-
plies  that  the  argument  of  the  square  root  in  (30),

, must be non-negative. This condition imposes
a limit on the value of . From Fig. 1, note that the func-
tion  is  monotonically  decreasing  for .  Thus,
for strings that satisfy ,  one has that 
is  always  non  negative.  However,  for , Fig.  1
shows that  is  monotonically  increasing.  Thus,  for  a

 

z0Fig. 2.    (color online) Representation of four strings that are solutions of (30) with different values of , corresponding to different
distances r between quarks.
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z0 > zmin V2(z)/V2
0 −1

z0 ≤ zmin

string satisfying , the factor  assumes
negative values that would lead to a complex square root
in  Eq.  (30).  Thus,  one  concludes  that  the  condition

 must hold. 

A.    Effective potential
The distance between the quarks is 

r =
∫

dx = 2
∫ z0

0

1
z′

dz = 2
∫ z0

0

1√
V2/V2

0 −1
W
V

dz. (31)

z0→ zmin r→∞
It is important to note that, as we will see in the sequence,
when , the quark separation diverges, .

The  energy  of  the  configuration  is  the  length  of  the
string 

E =
∫
Ldx = 2

∫ z0

0

L
z′

dz = 2
∫ z0

0

W√
1−V2

0/V2
dz, (32)

which is just the Nambu-Goto action (21) divided by the
time interval.

The expression  (32)  is  singular  as  it  includes  the  in-
finite masses  of  the  quarks.  One  can  regularize  the  en-
ergy following a similar approach as in Ref. [20] of sub-
tracting  the  contribution  associated  with  two  straight
strings: 

E = 2
∫ z0

0

W√
1−V2

0/V2
dz−2

∫ zmin

0
Wdz

= 2
∫ z0

0

Ç
1√

1−V2
0/V2

−1

å
W dz−2

∫ zmin

z0

Wdz. (33)

V(z) z = zmin

The straight strings stretch from the boundary to the min-
imum of the metric factor , which occurs at .

Now, to compare the interaction energy of the quark-
antiquark pair  with the Cornell  potential,  we analyze the
asymptotic  behaviors  of  the  energy  for  large  and  small
quark separation. 

B.    Potential energy for large and small quark-anti-
quark separations

z0

zmin

The  asymptotic  behavior  of r and E for  close  to
 was  discussed  for  general  metrics  in  Ref.  [21].  For

the particular case of the present model, one has 

r(z0) = 2

 
V(zmin)

V ′′(zmin)
W(zmin)
V(zmin)

ln
1

1− z0/zmin
(z0 ≈ zmin)

(34)

and 

E(z0) = 2

 
V(zmin)

V ′′(zmin)
W(zmin) ln

1
1− z0/zmin

(z0 ≈ zmin).

(35)

z0

zmin

From  Eq.  (34),  note  that  the  region  of  close  to
corresponds to the region of large r. Dividing (35) by

(34), we see that, in this limit, 

E(r) = V(zmin) (large r). (36)

V(zmin) = 0
This  linear  potential  characterizes  confinement.  If  it

happens  that,  for  a  certain  geometry, ,  the
quarks  of  the  dual  gauge  theory  would  be  unconfined
[21].

The  Cornell  potential  [27], which  effectively  repres-
ents  the  quark-antiquark  interaction  for  the  static  case,
has the form 

E(r) = −4
3
αs

r
+σr, (37)

with a similar linear term in r in the large distance limit.
Comparing  Eqs.  (36)  and  (37),  one  finds  that  the  string
tension for the present holographic model is 

σ = V(zmin) =
R2

2πα′
1

z2
min

e−2ϕ(zmin). (38)

z0 0Meanwhile, for  close to , one finds [28] 

r(z0) =
2
√
π

3
Γ(7/4)
Γ(5/4)

z0 (z0 ≈ 0) (39)

and 

E(z0) =
2
√
π

3
Γ(7/4)
Γ(5/4)

R2e−2ϕ(0)

πα′
1
z0

(z0 ≈ 0). (40)

z0 0From Eq. (39), we see that the region of  close to  cor-
responds to the region of small r.  Therefore, multiplying
(40) by (39), we see that in this limit, 

E(r) = − (2π)3

Γ(1/4)4

R2e−2ϕ(0)

2πα′
1
r

(small r). (41)

αs

Again, this is in agreement, for the small r limit, with the
Cornell potential (37). The predicted coupling constant 
is 

αs =
3
4

(2π)3

Γ(1/4)4

R2e−2ϕ(0)

2πα′
. (42)
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C.    Numerical results
The parameters  of  the  Cornell  potential  were  estim-

ated considering a charmonium state as a static system of
heavy quarks and solving the non-relativistic Schrödinger
equation, 

− 1
mc
∇2ψ(r)+V(r)ψ(r) = Eψ(r), (43)

En

mn = 2mc+En mc

αs

for this two-body system (e.g., see Refs. [29, 30]). The ei-
genvalues  of the energy correspond to the binding en-
ergies of the system. The masses of the various charmoni-
um  states  have  the  form ,  where  is  the
mass of the charm quark. Using this approach, one is able
to  fix  the  parameters  and σ of  the  Cornell  potential
(37)  by  fitting  the  experimental  masses  of  charmonium
states.

R2/α′ R2/α′ =

Following a  similar  approach  but  using  our  holo-
graphic potential  parametrized  by  Eqs.  (31)  and  (32)  in-
stead  of  the  Cornell  potential,  we  were  able  to  fit  the
parameter .  The  results  obtained  were 
0.0226 and the masses shown in Table 2.

R2/α′

This approach for calculating the masses is not equi-
valent to the one used in Section II. In the ideal scenario
of perfect equivalence, these masses would coincide with
those  shown  in Table  1.  One  could  consider  fitting  the
parameter  using  the  tangent  model  masses  from
Table 1 instead of the experimental values. However, this
method  would  propagate  the  errors  inherent  to  the  mass
fitting within the tangent model.

Therefore, using Eqs. (38) and (42), one obtains 

σ = 0.163 GeV2 and αs = 0.00387. (44)

σ = 0.18
GeV2,0.18 GeV2 0.164 GeV2

αs

These are the estimates from the holographic model. The
value  of σ is in  a  reasonable  agreement  with  those  ob-
tained  by  the  methods  that  apply  the  Cornell  potential.
For  example,  the  authors  of  [29−31]  obtained 

,  and , respectively.  Mean-
while, the value of  is two orders of magnitude smaller
than the  typical  values  obtained  from the  Cornell  poten-
tial. This result is consistent with the fact that the stringy

αs

description of the quark-antiquark interaction is expected
to  be  appropriate  for  the  large r region,  while  is re-
lated to the small r region.

R2/α′

E(r) z0

Once  the  constant  is  fixed,  we  use  Eqs.  (31)
and (32)  to  plot  the  curve  parametrized by .  This
plot is shown in Fig. 3. As expected from the asymptotic
calculations, this graph resembles the Cornell potential in
the small and large r limits. The linear growth behavior in
the large r region indicates confinement, as it implies that
an infinite amount of energy would be required to separ-
ate the quarks. 

IV.  FINITE TEMPERATURE CASE
 

A.    Metric

AdS5

We  introduce  finite  temperature  by  adding  a  black
hole to our original  space (2). The new metric is 

ds2 = ḡmndxmdxn

=
R2

z2

Ä
− f (z)dt2+ (dx1)2

+ (dx2)2+ (dx3)2+
1

f (z)
dz2
ä
, (45)

with 

f (z) = 1− z4

z4
h
. (46)

The  fields  that  represent  the  mesons  are  subject  to  the
same  action  (1).  Then,  we  introduce  the  dilaton  into  the
metric, in the same way as for the zero temperature case,
so that the new action assumes the same form as (6) and
the new metric becomes 

ds2 = gmndxmdxn

=
R2

z2
e−2ϕ(z)

Ä
− f (z)dt2+ (dx1)2

+ (dx2)2+ (dx3)2+
1

f (z)
dz2
ä
. (47)

 

Table 2.    Comparison of charmonium masses and decay con-
stants  obtained  experimentally  and  from  the  Schrödinger
equation.

Charmonium Masses from the Schrödinger equation

State
Experimental
masses /MeV

Masses obtained from the
Shcrodinger equation/MeV

1S 3096.900±0.006 3168

2S 3686.097±0.011 3652

3S 4040±4 4048

4S 4415±5 4398

 

Fig.  3.    (color online) Energy  of  the  string  as  a  function  of
the distance between quark and antiquark.
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We assume that the dilaton parameters do not depend on
the temperature. The temperature of the plasma is identi-
fied  with  the  Hawking  temperature  of  this  black  hole,
which is 

T =
1

4π
| f ′(zh)| = 1

πzh
. (48)

Inverting  this  equation,  one  can  express  the  position  of
the horizon as a function of the temperature: 

zh =
1
πT

. (49)

 

B.    Dissociation

V(z)
Using the metric (47), we generalize the definition of

the  function  to include  the  dependence  on  the  tem-
perature: 

V(T,z) =
1

2πα′
√−gttgxx =

1
2πα′

R2

z2
e−2ϕ(z)

√
f (z). (50)

f (z) zhNote  that  the  function  depends  on  and con-
sequently on T. Meanwhile, the function 

W(z) =
1

2πα′
√−gttgzz =

1
2πα′

R2

z2
e−2ϕ(z), (51)

f (z) gtt gzzdoes not change, as the factors of  in  and  can-
cel out.

V(T,z)

z = zmin(T )
z = zh(T )

zmin zh

T = Td

The variation of the function  with the coordin-
ate z is strongly affected by the temperature. For low tem-
peratures, V presents  two  local  minima:  one,  which  is
similar  to  the  case  of  zero  temperature,  is  a  non-vanish-
ing  minimum  at  some  point ;  the  other  is  the
zero  of  the  function V at .  As  a  consequence, V
also  has  a  local  maximum,  located  between  and .
As  the  temperature  increases,  this  picture  changes.  For
temperatures greater than some value , V has only

z = zh(T )one minimum, which is zero, at . In this case, the
local  non-vanishing  minimum disappears,  as  well  as  the
local maximum.

V(T,z)

T < Td

T ≥ Td

T < Td

zmin(T )
Td

In Fig. 4, plots of  are shown for different val-
ues of temperature. In the left panel, one finds temperat-
ures ,  while  the  right  panel  presents  cases  with

.  These  plots  illustrate  the  different  behaviors.
When the temperature grows, starting from a small value

,  the  height  of  the  local  maximum  decreases,  and
its  position  approaches  the  point . The  temperat-
ure  is  the  one  where  both  of  these  points,  minimum
and maximum, coincide, becoming an inflection point.

V(T,z)
T ≥ Td

z = zh V(zh) = 0

Td

As  we  discussed  in  Sec.  III.B,  the  minimum  of z of
the function  is the key to determine whether there
is confinement or not. For a fixed , the function V
is  monotonically  decreasing  with  respect  to z,  with  only
one local minimum at , where . This indic-
ates the absence of confinement. For this reason, we call

 the  dissociation  temperature.  This  can  be  determined
graphically  by  the  disappearance  of  the  non-vanishing
minimum on plots like those in Fig. 4 or by imposing that
the local non-vanishing minimum and local maximum oc-
cur at  the  same  point,  which,  as  explained  before,  be-
comes an inflection point.

Td = 1.2 GeV

J/ψ 1.5Tc Tc

∼ 0.25 GeV

If  one  uses  the  set  of  parameters  shown  in  (18),  the
dissociation  temperature  obtained  from  this  method
would be . This value is unsatisfactorily lar-
ger  than  the  predictions  of  lattice  theory  [32] that  indic-
ate dissociation of  at approximately , where 
is  the  critical  temperature  of  the  QGP  formation  by  the
dissociation of the light flavor hadrons. This corresponds
to a dissociation temperature of the order of .

This  result  motivates  a  different  procedure  to  fix  the
the model parameters: to include the dissociation temper-
ature as  one  of  the  physical  quantities  to  be  fitted,  be-
sides the masses and decay constants. Following this ap-
proach, one finds the new set of parameters 

κ= 1.1GeV, M = 0.11GeV and
√
Γ= 0.26GeV. (52)

 

V(z) T < Td T > TdFig. 4.    (color online) Some illustrative plots of  for different temperatures. In the left panel, . In the right panel, .

Nelson R.F. Braga, Yan F. Ferreira, William S. Cunha Chin. Phys. C 49, 083105 (2025)

083105-8



These parameters  produce  the  results  of  masses  and  de-
cay constants shown in Table 3 and result in a reasonable
value for the dissociation temperature. 

Td = 316 MeV. (53)

The  errors  in  the  decay  constants  increase  considerably
with this  new approach.  The  new root  mean square  per-
centage error is RMSPE = 23%, with the temperature in-
cluded in the calculation.

Let us now analyze the behavior of the string and free
energy in detail. The distance between the quarks has the
same form as in the zero temperature case: 

r(T,z0) =
∫

dx = 2
∫ z0

0

1
z′

dz = 2
∫ z0

0

1√
V2/V2

0 −1
W
V

dz,

(54)

Tc

but  now V is  a  function  of  both T and z.  Because  the
string behavior is different depending on the temperature
being  lower  or  higher  than , let  us  analyze  these  situ-
ations separately. 

T < TdC.    Low temperatures: 
At  finite  temperature,  one  can  consider  an  extension

of the proposal of Maldacena, as discussed in Section III.
Now, the Nambu-Goto action is related to Polyakov loops 

⟨P(x1)P(x2)⟩ ∼ e−S NG(T ). (55)

As in the zero-temperature case, this expectation value is
known, and in this scenario, is proportional to the free en-
ergy1)
 

⟨P(x1)P(x2)⟩ ∼ e−
1
T F . (56)

This leads to 

F = TS NG. (57)

∆t = 1/T

Note  that  the  string  that  minimizes  the  area  of  the
world sheet also minimizes the free energy of the system.
Then, using , we write 

F(T,z0) = 2
∫ z0

0

W√
1−V2

0/V2
dz−2

∫ zmin(T=0)

0
Wdz

= 2
∫ z0

0

Ç
1√

1−V2
0/V2

−1

å
W dz−2

∫ zmin(T=0)

z0

Wdz,

(58)

where  the  same  regularization  of  the  zero  temperature
case was used.

z0 (0,zmin)
V2/V2

0 −1

0 < T < Td z0

(0,zmin) (z̄min,zh) z̄min

z̄min > zmin V(z̄min) = V(zmin)

At zero  temperature,  we  see  that  the  domain  of  pos-
sible values of  is . This is necessary to prevent
the quantity  from being negative, as it is inside
a square root in the geodesic equation (30). At finite tem-
perature,  for ,  can be  in  two  different  re-
gions:2)  and , where  is the point satis-
fying  such  that . One  can  un-
derstand  the  situation  by  looking  at  the  left  panel  of
Fig. 4.

(0,zmin)

z0→ zmin

z0 = z̄min(T ) z0 = zh(T )

Thus, in principle,  one should have to consider more
than  one  string  configuration  for  each  temperature.
However, we will see that one of them is dominant. Ap-
plying  Eq.  (54)  to  the  first  region, ,  we  find  that
the  distance  between  quarks, r,  increases  continuously
from zero, going to infinity when . This behavi-
or is  similar  to  that  found  at  zero  temperature.  Mean-
while, in the second region, r starts from a finite value at

 and goes to zero at . These two be-
haviors can be seen in Fig. 5.

(r(T,z0),F(T,z0))
r ∈ (0,r(z̄min)]

z0 ∈ (0,zmin)
z0 ∈ [z̄min,zh]

Now, using Eq. (58) for each of the two regions for a
given  temperature T and  making  the  parametrization

, we find the free energy profiles plotted
in Fig. 6. Note that, for , there are two pos-
sibilities of energy for each r: one corresponds to a string
with  and  the  other  corresponds  to  a  string
with . However,  the  string  assumes  the  con-
figuration  that  minimizes  the  Nambu-Goto action.  Be-

 

Table 3.    Comparison of charmonium masses and decay constants obtained experimentally and from the tangent model with paramet-
ers that give the best fit of the dissociation temperature.

Charmonium masses and decay constants

State Experimental masses/MeV Masses on the tangent model/MeV Experimental decay constants/MeV Decay constants on the tangent model/MeV

1S 3096.900±0.006 2399 416±4 298

2S 3686.097±0.011 3560 294.3±2.5 258

3S 4040±4 4011 187±8 239

4S 4415±5 4590 161±10 229

Holography and the internal structure of charmonium Chin. Phys. C 49, 083105 (2025)

1) We have ignored normalization terms.
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F(T,z0)
F(T,z0)

z0

(0,zmin)

cause  is proportional to the action, the dominant
configuration is the one that minimizes  for a giv-
en r.  For  this  reason,  only  the  strings  with  in the  re-
gion  will be  considered.  The  result  for  the  de-
pendence of the free energy on the quark-antiquark separ-
ation r is that of a confining potential again. The form is
similar to that found in the zero temperature case, with a
linear  behavior  for  large r.  A  small  difference  that  is
worth pointing  out  is  that  the  string  tension  slightly  re-
duces when temperature grows. The result is illustrated in
Fig. 7. 

T > TdD.    High temperatures: 
T > Td zmin

V(T,z) z = zh(T )
r(z0)

z0 = z∗

r(z0)
z0 = zh(T )

For ,  does not exist anymore, so the func-
tion  has  only  one  minimum  at .  In  this
situation, the distance between quarks, , does not go
to infinity but has a maximum value at some , from
which  decreases  until  it  reaches  the  value  zero  at

. One can see this in Fig. 8.
F(T,z0)

z0 = z∗ z0

z0 = zh(T )
(r(T,z0),F(T,z0))

T > Td

The  energy  also  presents  a  maximum  finite
value at . For higher values of , F decreases con-
tinuously  until  it  vanishes  at . Using  the  para-
metrization  for  some  temperature

, we plot  the  free  energy as  a  function  of  the  dis-
tance between the quarks in Fig. 9.

z0 ∈ [z∗,zh]
T > Td z0 ∈ [z̄min,zh]

Td

z0 ∈ [z∗,zh]
z0 ∈ [z∗,zh]

z0 ∈ [z∗,zh]

z0 ∈ [zmin,zh] Td

As one  can  see  from Fig.  8,  the  region  at
 plays a similar role as the region  did

in  the  case  of  temperatures  below .  In  both  cases, r
starts from a finite value and decreases to zero. Moreover,
from Fig.  9,  we  see  that,  when  comparing  two  strings
with  the  same  distance  between  quarks,  the  one  with

 has  a  value  of  free  energy  that  is  larger  than
that  for  the  string  with .  As  the  string  must
minimize  the  free  energy,  the  configuration  with

 is not formed, so we can disregard this region,
similarly  to  what  happened  with  the  region  of

 in the case with temperature below .

r(T,z∗)
Therefore,  we  obtain  a  Cornell  like  potential  again,

but this time with a maximum range of . From this
point on,  the quarks become free.  To represent  this  situ-
ation,  we must  consider  a  third  configuration:  two lines,

zh

which  represent  the  two  quarks,  going  straight  in  the z
direction up to , as sketched in Fig. 10. Note that these
lines do not involve any variation along the x coordinate.
Therefore, the corresponding energy is independent of the
value  of  the  quark  separation r. This  is  what  character-
izes freedom  in  a  two  body  problem:  changing  the  dis-
tance  between  these  bodies  does  not  require  any  energy
cost.

This  configuration  requires  a  different  treatment  to

 

z0 T = 0.6Td T = 0.95TdFig. 5.    (color online) Quark-antiquark distance as a function of . Left panel: . Right panel: .

 

z0 (0,zmin(T ))
z0 ∈ (z̄min(T ),zh(T )]

T = 0.8Td

Fig. 6.    (color online) Free energy F as a function of the dis-
tance between quarks r. The upper curve (red) corresponds to
strings  with  in  the  region  and  the  lower  one
(blue)  to  strings  with .  In  both  cases,

.

 

T = 0;
T = 0.7 Td; T = 0.9 Td T = 0.99Td

Fig.  7.    (color online) Free  energy F as  a  function  of  the
quark  separation r for  four  illustrative  temperatures: 

; and .
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obtain  the  energy.  Let  us  consider  the  Nambu-Goto ac-
tion but now for strings that are straight lines in the z dir-
ection: 

S NG =
t

2πα′

∫ zh

0
dz
√−gttgzz

= t
∫ zh

0
W(z)dz, (59)

where  we  used  the  definition  (51).  The  time  interval t
plays a trivial role for this static string.

Then,  the  energy  of  the  set  of  two  straight  lines,
which represents two free quarks, is given by 

F∞(T ) = 2
∫ zh(T )

ϵ(T )
W(z)dz, (60)

z = 0
ϵ(T )

F(r(z∗),T )
ϵ(T )

where,  to  avoid  the  singularity  at ,  we  introduced  a
regularization parameter  that depends on the temper-
ature. We numerically  set  it  to  a  value  such  that  the  en-
ergy of the non-interacting quark pair coincides with the
maximum energy ,  in  a  manner  similar  to  that
in Ref. [33]. In other words, the parameter  is chosen
in such a  way that  the  free  energy is  a  continuous  func-

tion of r.

Td

r(T,z∗)

zh

F∞

The physical picture that emerges from this approach
is  non-trivial and  very  interesting.  For  temperatures  lar-
ger  than ,  we have an interaction given by a  potential
similar  to  Cornell's  potential  for  small  values  of r.
However, when the quark distance is larger than the value

, the energy ceases to vary with r. The correspond-
ing string assumes the configuration of two straight lines
approaching , with energy given by Eq. (60). The string
configuration  corresponding  to  the  unconfined  quarks  is
depicted in Fig. 10. The energy associated to this config-
uration  does not depend on the distance r. The result-
ing  potential  is  plotted  in Fig.  11 for  some  illustrative
temperatures.

The potential obtained is similar to the Schwinger po-
tential predicted by QCD for quark deconfinement in the
presence of temperature [34−36].  The main difference is
that, in  the Schwinger  potential,  there  is  a  smooth trans-
ition,  characterizing  a  crossover,  whereas  we  observe  a
discontinuous  transition,  characterizing  a  first-order
transition.

Td

If  we  analyze  large  distances,  it  is  clear  that  for  any
temperature above , the mesons will be deconfined, be-

 

z0 z0 < z∗ z0 > z∗

T = 1.2Td T = 1.5Td

Fig. 8.    (color online) Quark distance as a function of the maximum value  of coordinate z. Regions:  (blue) and  (red).
Temperatures  (left panel) and  (right panel).

 

T = 1.01Td

Fig. 9.    (color online) Free energy as a function of quark dis-
tance at .

 

r > rd

T > Td

Fig.  10.    (color online) String  configurations  corresponding
to  free  quarks.  This  configuration  is  only  formed  for ,
and  above , the  energy  associated  with  this  configura-
tion does not depend on r.
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σ(T ) = V(T,zmin) = 0
σ(T )

σ(T )

σ(T ) Td

Td

cause in this limit, the string tension .
The variation of  is  shown in Fig.  12.  Note that  for
this  system,  serves  as  an  order  parameter  for  the
confined-deconfined  phase  transition,  being  identically
zero  in  the  deconfined  phase  and  non-zero in  the  con-
fined phase.  However,  in  contrast  to  lattice  QCD, which
indicates a continuous decrease of  to zero at  [37,
38], here, we observe a discontinuous jump to zero at ,
indicating the first-order transition.

rd

F∞(T )

Looking  more  closely  at Fig.  11,  one  can  observe
that, as the temperature increases, the maximum range of
interaction  decreases  due  to  the  screening  effect  of  the
medium.  This  maximum  range  is  known  in  literature  as
the  Debye  radius .  In Fig.  13(a), we  show its  depend-
ence on temperature. Another important observation from
Fig.  11 is the  decrease  in  the  free  energy  of  the  decon-
fined phase  with temperature, as shown in detail in
Fig. 13(b). These results are in qualitative agreement with
the results from lattice QCD in Refs. [36−39].

Note  that,  in Fig.  13(b),  a  region  of  negative  energy
appears  for very  high temperatures,  corresponding  to
complete  dissociation,  where  the  free  quarks  exhibit  a
Coulomb-like interaction [35]. 

V.  CONCLUSIONS

The  zero  temperature  spectra  of  masses  and  decay
constants as  well  as  the  thermal  properties  of  quarkoni-
um quasistates  in  a  plasma  have  been  successfully  de-
scribed  recently  by  means  of  holographic  models
[11−16]. In these models, the heavy mesons are represen-
ted  by  a  vector  field  existing  in  a  5-d  space  with  some
background. The main objective of the present study was
to elucidate the reasons behind the ability of such a mod-
el to reproduce quarkonium properties.

In  particular,  we  aimed  to  find  an  interpretation  for
the role  of  the  extra  dimension,  with  some non flat  geo-
metry, in the holographic models of heavy vector mesons.
The guiding line of our study was the fact that mesons are
not elementary particles in the strict sense but have an in-
ternal structure. A static meson can be viewed as consist-
ing of a strongly interacting quark-antiquark pair. From a
holographic  perspective,  the  interaction  of  static  color
sources  can  be  represented  by  a  string  existing  in  a  5-d
background  with  endpoints  fixed  at  the  position  of  the
sources. The  interaction  energy  of  the  quarks  is  propor-
tional to the world sheet area. For the charmonium case,
we proposed adapting the procedure of Refs. [20, 21] to a
background  geometry  corresponding  to  the  one  used  in
holographic models that successfully describe masses, de-
cay  constants,  and  the  thermal  behavior  of  quarkonium
states (or quasi-states) [10−13].

It  was  necessary  to  make  a  change  in  the  model  of
[10]  because  the  associated  background  would  not  be
confining and  therefore  not  appropriate  to  describe  had-

rons. For  a  geometry  to  represent  confinement,  it  is  ne-
cessary that  the product  of  the metric components in the
time and transverse directions have a non-vanishing min-
imum. Using a  set  of  parameters  that  fit  masses  and de-
cay constants and also provides a confining potential  for
the quark-antiquark interaction, we found a potential that
has the asymptotic form of the well known Cornell poten-
tial. For the limit of large quark separation, we obtained a
result  for  the  string  tension  compatible  with  the  values
considered in the Cornell potential in the literature.

Td

T > Td

Td

Considering the finite temperature case, it  was found
that  the  string  tension  decreases  with  temperature  up  to
some  dissociation  temperature . For  higher  temperat-
ures , the linear term in the potential disappears for
distances greater than some value that decreases with the
temperature,  as  shown  in Fig.  11.  The  initially  obtained
dissociation temperature  was  too  high  compared  to  lat-
tice predictions.  However,  it  was  shown  that  it  is  pos-
sible to obtain a new set of parameters that provide a 
compatible with expectations.

In  summary,  we  have  qualitatively  shown  that  one
can  associate  the  5-d background  of  a  previous  success-
ful  holographic  model  for  charmonium  as  representing
the internal structure of this composite particle. 

 

Td T = 0
Fig. 11.    (color online) Interaction energy for three temperat-
ures  larger  than .  The  energy  for  the  case  is  also
shown for comparison.

 

Fig. 12.    (color online) String tension variation with temper-
ature.
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g5

APPENDIX A: DETERMINATION OF THE
CONSTANT 

g5

v̄(ω,z)

To  fix  the  constant , we  follow  the  procedure  de-
scribed  in  Ref.  [40].  We  start  by  defining  the  bulk-to-
boundary field  as the one that  satisfies  the condi-
tion 

vµ(ω,z) = v̄(ω,z)v0
µ(ω), (A1)

where 

v̄(ω,0) = 1. (A2)

Equation  (A2)  is  known  as  the  bulk-to-boundary condi-
tion.

In the region of small values of z, the equation of mo-
tion (12) in terms of the bulk-to-boundary field takes the
form 

ω2v̄(ω,z)− 1
z

v̄′(ω,z)+ v̄′′(ω,z) = 0 (small z). (A3)

The solution of this equation is 

v̄(ω,z) = 1− 1
4
ω2z2 ln(ω2z2) (small z). (A4)

The two-point function in momentum space is calculated
by ∫

d4xe−ip·x
⟨

Jµ(x)Jν(0)
⟩
, (A5)

⟨
Jµ(x)Jν(0)

⟩
where  is given by 

⟨
Jµ(x)Jν(0)

⟩
=

δ2S on shell

δV0
µ (x)δV0

ν (0)
, (A6)

where the on shell action is the action (6) evaluated at the
field that minimizes it. Using the fact that this field satis-
fies the equation of motion, it  is possible to write the on
shell action as
 

S on shell = −
1

2g2
5

∫
z=0

d4x
√−ge−ϕgzzgµνVµ(x)∂zVν(x). (A7)

At the end, one can write the two-point function as
 ∫

d4xe−ip·x
⟨

Jµ(x)Jν(0)
⟩
= (pµpν− p2gµν)Π(p2), (A8)

with
 

Π(p2) = − lim
z→0

1
g2

5 p2

R
z

e−ϕ(z) v̄′(ω,z). (A9)

Using  the  bulk-to-boundary  field  obtained  at  (A.4),
we find
 

Π(−ω2) = − 1
2g2

5
Re−ϕ(0) lnω2, (A10)

ω2in the limit of large .
g5The constant  is fixed by imposing that the propagt-

or obained in (A.10) matches the perturbative QCD result
 

Π(−ω2) = − Nc

24π2
lnω2, (A11)

Nc = 3where  is the number of color charges. This gives
 

g5 =

 
12π2

Nc
Re−ϕ(0) = 2π

√
Re−ϕ(0)/2. (A12)

 

Fig. 13.    (color online) (a) Maximum range of the interaction between quarks as a function of temperature. (b) Free energy of the de-
confined phase as a function of temperature.
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