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Abstract: For even Th and U nuclei, the description of the energies of yrast bands in the Harris variable moment of

inertia model is studied in its phenomenological application. For some of these nuclei, the results obtained in the

IBM microscopic version are presented, in which high-spin excitation modes are also considered. For other nuclei, in
cases where high-spin orbits are not so significant in describing the properties of yrast bands, in addition to the Har-
ris model, IBM with a full standard Hamiltonian constructed only from s, d bosons is utilized. Since the Harris mod-
el is considered with no more than four parameters, it can be used for both heavy and superheavy nuclei to approx-
imate the energies of high-spin states. The study of the properties of nuclei in various models will reveal the possibil-

ities of describing different behavior of the moments of inertia in IBM and-outline additional criteria for the imple-

mentation of band crossing.
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I. INTRODUCTION

Visualization of the behavior of the energies of states
E in a band becomes more qualitative if we move from
energies to effective moments of inertia J. This also al-
lows us to improve the method of comparing experiment-
al and calculated energies of states of one band.

In addition, the backbending effect can be used to
form judgments about the spin values-at which the bands
cross. Comparison of the J(w?) curves obtained from ex-
perimental energies with those given by various nuclear
models, including microscopic ones, can reveal the cap-
abilities of the corresponding models and provide more
reasoned judgments about the nature and character of the
states.

One of the methods of reproducing and predicting en-
ergies is based on the expansion of the moment of inertia
in powers of the rotation frequency w, as in the Harris
model [1]. This is justified when the transition to a new
band has not yet occurred in the rotation band. As a rule,
such a transition occurs quite quickly in one or two states
of the yrast band. In this case, this is shown on the graph
of the moment of inertia versus the square of the rotation
frequency in a specific way through backbending. Among
heavy nuclei, starting with thorium isotopes, three such
nuclei are known today: **Th, ***Pu, and ***Pu. This is
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why in [2], within the framework of the IBM1 [3] phe-
nomenology (hereinafter referred to as IBM), a good de-
scription of the energies of yrast bands up to extremely
high spins / in heavy nuclei from Pu to No was obtained.
The effective moment of inertia and the square of the ro-
tational frequency are defined as
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This paper presents a description of the energies of
yrast bands in even-even heavy nuclei in the Harris mod-
el, considered not from the point of view of the cracking
model, but as a phenomenological model with a number
of parameters no more than four. The possibility of IBM
in its phenomenological aspect to describe moments of
inertia is also considered. IBM phenomenology is under-
stood as a description of the energies of collective states
in nuclei through fitting the parameters both of the boson
Hamiltonian and the maximum number of quadrupole bo-
sons. The moments of inertia obtained in the two models
are compared with each other. Finally, the task is set to
develop a criterion for determining the spin at which the
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crossing of bands occurs. This can be done based on a
comparison of the behavior of J(w?) according to experi-
mental data and what the Harris model gives. It should be
noted that in some cases, although backbending may not
be observed, the crossing of bands is still possible. This
was revealed by microscopic description of the chain of
isotopes *"#°Th [4]. The microscopic version of IBM
developed by us is presented in [4] and in the references
therein. In it, based on the effective factorized forces, the
boson parameters are calculated. In addition, due to the
expansion of the boson space by bosons with multipolar-
ity up to to J = 14", it becomes possible to describe the
phenomenon of band crossing in nuclei. Calculations
within the Harris scheme are made for all the presented
nuclei. For *°?#Th the results are presented also within
the IBM microscopic framework. For for *Th and U iso-
topes the IBM phenomenology also was used in calcula-
tions.

In order to increase the calculated moment of inertia
at high-spin states in deformed nuclei (‘**'Er), in [5], a
new term was incorporated into the Hamiltonian of IBM,
so that I(I+1) = I+ 1)/(1+ fI(I+1)). This part of the
Hamiltonian is always diagonal for any values of the
parameters Higy. This addition is motivated by the fact
that a decrease in superfluidity, the gap parameter, leads
to an increase in the moment of inertia, and the gap para-
meter decreases with increasing rotation frequency. This
should lead to dJ/dI > 0 and dJ/dw > 0. Here, however, it
should be kept in mind that the growth of the moment of
inertia from the rotation frequency-is achieved with arbit-
rary values of the traditional and full Hamiltonian of
IBM, except for the one that corresponds to the case of
the SU(3) limit of IBM. In addition, with the growth of
the spin of the collective state, the influence of two-quasi-
particle states on the energy of this state increases. One
example of a band built on a two-quasiparticle mode is
the S band. This also leads to an additional increase in the
moment of inertia or a decrease in the energies of intra-
band transitions.

Analysis of the dynamic moments of inertia of the
lowest superdeformed (SD) bands in even-even Hg, Pb,
Gd, and Dy [6] and "**'**Hg, *>'**Dy [7] isotopes led to
the need to extend the coefficient f so that considering
only the relative excitation of the states in a rotational
band, the energy of the state with angular momentum /
can be simply expressed as

Co
1+ fil(+ 1)+ fol2(I +1)?

E() = I+1).

Introduction of an additional modification of the Ar-
ima coefficient f shows that J can change nonmonoton-
ously with rotational frequency. Up to the point that as
the spin increases, the positive slope of the moment of in-
ertia from the rotation frequency can change to negative.

The latter, by analogy with the terms *“backbending" and
“upbending", can be called downbending.

Calculations on this basis belong to semi-phenomeno-
logical approaches.

In [8], a novel modification is introduced, extending
the Arima coefficient to the third order. The computed
outcomes of the rotational bands of ***Pu and ***Cm
demonstrate an exceptional degree of agreement with ex-
perimental observations. Moreover, the used parameteriz-
ation of the Arima term and its modification successfully
describes such behavior of the moment of inertia from
frequency as backbending, upbending, and the downturn
(down bending).

Commenting on the considered series of works [5-8],
it should be kept in mind that the phenomenon of back-
bending istraditionally associated with the intersection of
bands of different nature, namely, the collective one, built
on the ground state, and the one that has a two-quasi-
particle pair with a sufficiently high spin at its base.

The upbending phenomenon may be due to the fact
that'the crossing of bands has not yet occurred com-
pletely, but the situation is close to it. In addition, the
growth of the slope of the moment of inertia from fre-
quency within certain limits is reproduced within the
framework of the traditional, but at the same time com-
plete IBM Hamiltonian.

From a microscopic point of view, as the spin of
states increases, the average number of quadrupole bo-
sons increases, and this leads to some weakening of pair-
ing. Accordingly, the introduction of the Arima modifica-
tion of the IBM Hamiltonian was motivated by this de-
crease in pairing correlation due to the increase in rota-
tion. At the same time, this leads to an increase in the en-
ergy of the quasiparticle vacuum or a decrease in the cor-
respon ding depth.

In this case, with an increase in the spin of the collect-
ive state, a decrease in the microscopically calculated en-
ergy of the d boson g, occurs (the corresponding term
also arises when using only the Q- Q interaction by redu-
cing the last operator to the normal order over bosons).
Since IBM assumes that the energy of the boson vacuum
is constant, a redistribution of the variable part of the en-
ergy of the quasiparticle vacuum is made over two boson
parameters g, and k; (see below (8)). This results in the
d-boson energy practically ceasing to change, and the en-
ergy of the boson vacuum remaining unchanged. This
procedure is described in [9-11] and clearly demonstra-
tedin [11].

Thus, the weakening of pairing during the unwinding
of the nucleus by the values of the parameters of the bo-
son Hamiltonian is significantly leveled out.

There is one more effect left, this is the weakening of
the growth of the moment of inertia with frequency at
high spins — downturn or downbending. It can be as-
sumed that the IBM specificity, namely, the finiteness of
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the maximum number of quadrupole bosons, can repro-
duce this phenomenon [12] without introducing the Ar-
ima modifications to the boson Hamiltonian. Introducing
the Arima modification is convenient if we remain in the
S U(3) approximation of the IBM limit. In this case, this
modification approximates a more complex dynamics of
collective motions in the nucleus, described in the gener-
al case by the S U(6) group.

In [13], the structure of yrast bands in the transurani-
um nuclei ***Pu and ***Pu was investigated within the
framework of the projected shell model. This approach is
completely microscopic.

The description of rotational bands at ultra-high spins
within the framework of covariant density functional the-
ory for the A > 242 actinides was presented in [14].

The rotational bands properties of plutonium isotopes
236-296py were studied [15] via projected shell model. The
results of the calculated energy levels of the yrast band
were compared with experimental data and a good agree-
ment has been found. The crossing between two-quasi-
particle (2qp) excited bands and the ground state band (g-
band) in the high-spin regions has been analyzed in terms
of band diagrams. The upbendings are observed in the
kinematic moments of inertia curves for **?*Pu isotopes.

The objectives of this work are defined as:

1) obtaining a precise description of the energies of
yrast bands in even-even heavy nuclei in the Harris mod-
el;

2) comparison of the behavior of J(w?) in the Harris
and IBM models both in its phenomenological aspect and
in the aspect of its extension by taking into account high-
spin modes;

3) development of a criterion for determining the spin
at which the crossing of bands occurs without resorting to
microscopic calculations;

4) identification of the causes, conditions and values
of the spins of collective states when the downturn or
downbending effect occurs.

II. PHENOMENOLOGICAL VARIANT OF THE
HARRIS MODEL

We will use the Harris model [1] in its phenomenolo-
gical aspect. If we assume that the following decomposi-
tion is valid

2 3 4
VII+1) = w(]o + §J1w2 + §J2w4 + 7J3w" +.. ) )

then the effective moment of inertia will have the form
J=Jo+ 110" + Lo + 0 +... 3)

With fixed values of parameters Jy,J;,J5,J3, the rotation

frequencies are found from the equation
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For each value of the spin of state /, the value w = w;y is
found. The energies of the states of the main band are
found as

Er=E o+ (IT+ D) - /U= -1)hw,  (5)
where E, = 0. The parameters that determine the moment
of inertia (3) are found by minimizing the value

X =Y (EfV-E) (6)
1

or standard deviation

SMEST ~ Ep)? o
I ﬁt/ 2 ’
where Iy, is the maximum spin of the states and the bands
by which the parameters Jy, J1, /5, J5 are determined.
The results obtained in the Harris model will be re-
lated to the results in the IBM phenomenology. The para-
meterization of its Hamiltonian is taken as

Hipy = &4 g +ki(d"-d*ss+H.c)+k ((d*d)? -ds+H.c.) +
1
(L) (L)
+3 §L C(d*dh)? - (dd)®,
(®)

H.c. means Hermitian conjugation, the dot between the
operators corresponds to the scalar product, the quantit-
ies &4,ki,k2,Co,C,,Cy are the parameters of the model.
The total number of bosons or the maximum number of d
bosons will be denoted as Q. For several nuclei, results
will be presented within the framework of the extended
microscopic version of IBM, where high-spin excitation
modes are also considered, without disclosing its content
here, but only making a reference to the work [4].

The next section discusses the energies of the yrast
band states of even thorium isotopes in comparison with
the results of the Harris model phenomenology, and for
several nuclei with IBM.

III. ANALYSIS OF MOMENTS OF INERTIA FOR
EVEN ISOTOPES OF Th

Figure 1 presents a visual systematics of the energies
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Fig. 1. (color online) Energies of states of the yrast band in

even isotopes of thorium

of the corresponding states. It is evident that the energies
of states with spins 7 < 10" decrease at first to A =224
rather quickly, and at large nucleon values, the energies
decrease quite smoothly, so that E(2}) =484 keV for
236Th. The minimum energy of states with spins 7 > 12*is
achieved in the ***Th nucleus.

In Fig. 2, for all even thorium isotopes considered, the
effective moments of inertia obtained from the experi-

mental and calculated energies in the variable moment of
inertia model, designated as Harr, are compared. For two
nuclei, 22%?22Th, the results of calculations in the IBM mi-
croscopic version, extended by high-spin excitation
modes up to spins 14*, are also given and is designated as
IBM-gp. The parameters determining the values of the
moments of inertia are given in Table 1, where the stand-
ard deviations of the calculated values of energies from
the experimental ones are also given relative to the states
for which the parameters were selected, the spins of the
states to which the parameters were selected, and the
maximum spin in the band. For the *°Th nucleus, the res-
ults of calculations within the framework of the IBM phe-
nomenology are also presented. IBM parameters are giv-
en in Table 6.

For the lightest of the thorium isotopes under consid-
eration, *’Th, backbending is observed starting from spin
10*, and since the Harris model does not claim to de-
scribeit, the parameters were determined from trans-
itions until the state with 8*. The energies in **°Th in the
lower part of the spectrum up to spin 8* are perfectly re-
produced by the SU(5) limit of IBM. Therefore, these
states have no relation to the rotation of the deformed
core. This corresponds to the negative value of the para-
meter Jy in Table 1. Nevertheless, the representation of
the energies of collective bands through moments of iner-
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(color online) Effective moments of inertia from experimental and theoretical energy values of yrast bands in Th isotopes
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Table 1. Parameters determining the effective moments of inertia for Th and U isotopes
Nucleus 2J0/R? 20, /H4, 20, /1O 203 /18 o I Tnax
MeV"! MeV? MeV? MeVv?’ keV
20Th -78.027 5627.16 -100806 1032727 0.14E-02 8 22
227p 11.116 2788.26 865.45 0 9.59 26 26
17.465 3172.00 -85959.8 1995659.8 0.172 10 26
24Th 57.965 2058.09 -7175.0 9656.4 0.33 18 18
26Th 82.233 1369.23 4017.6 15137.6 0.33 20 20
28Th 102.731 1474.68 -12333.3 349536.8 0.59 22 22
20Th 112.141 1038.92 -2054.2 94199.8 0.175 24 24
22Th 121.107 928.66 10424.0 -50092.3 0.89 30 30
24Th 120.341 984.69 -10471.4 212984.7 0.63 24 24
26Th 123.400 844.93 772.3 0 0.18 10 10
26y 71.87581 1598.41785 6953.44873 -118350.98438 0.294 14 14
g 115.33965 1119.44153 -3171.23999 121410.60156 0.262 22 22
»y 125.72275 944.34747 3252.86279 64539.00781 0.124 20 20
2y 137.59946 1030.29688 14549.98926 -126356.42969 0.35 30 30
Boy 133.45268 385.92599 19432.23242 -89088.77344 1.90 30 30
zey 132.30104 781.21796 -1048.02319 172107.54688 0.155 24 30
By 133.00563 941.80017 -9015.27832 267665.18750 0.468 28 34
2oy 132.39108 388.02209 14673.71387 0.00000 0.413 12 12
tia is very convenient in these cases also. In the follow- = 1.0 N
ing isotopes, this parameter is positive and as the col- .S N
lectivity increases, i.e., as the energy of the states de- ﬁ 0.8 C
creases, Jy increases. In this case, in the theory that expli- & -
citly considers the elementary modes of two-quasi- 206
particle excitations with high spins [4, 16], the behavior S r
of the moment of inertia assc.)ci.ated with the ﬁr'st b.ack- 2 04L
ward bend is reproduced. This is demonstrated in Fig. 2 2 -
associated with this nucleus. Figure 3 shows the composi- _8 L
tion of wave functions, whose components include col- b 0.2 N
lective states constructed only from d bosons correspond- ﬁ C
ing to the lowest quadrupole excitations, as well as com- 0.0k
ponents including bosons by with high multipolarities. In 0 4 8 12 16 20
Fig. 3 and the following one for ***Th, the only compon- It
ent with bg that makes noticeable contributions to the Fig. 3.  (color online) The composition of the wave func-

wave functions of states, in addition to the collective one
determined only by d bosons, is the component with bs.
There is no direct channel for the interaction of collect-
ive states with those containing the bg boson. The interac-
tion is realized through the components with by,
J =2,4,6. The latter components contribute to the renor-
malization of the traditional IBM Hamiltonian. It is for
thorium isotopes that only two components were distin-
guished in the boson representation. If the wave function
were represented in terms of D and B phonons, the com-
ponent with only D phonons would be smaller, and the
components with By and Bs phonons would be signific-

tions of the states of the yrast band obtained on the basis of
the microscopic model for *°Th

ant. It should be emphasized that in the presented calcula-
tions, the strong indirect interaction of the two compon-
ents weakly depends on a reasonable change in the posi-
tion of the By phonon energy. According to this figure,
for the 8" state, the collective component composed only
of d bosons is greater than 50%. The second backbend-
ing, corresponding to the 18* spin, should be attributed to
the four-quasiparticle excitation.

For the **Th isotope, no manifestation of the bands
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crossing is observed. However, the average discrepancy
between the calculated energies within the Harris scheme
and the experimental ones is significantly larger than for
heavier thorium isotopes, as follows from Table 1. The
reason for this is that although no backbending is ob-
served in this nucleus, a smooth crossing of bands still
occurs, as was shown in [4]. This is demonstrated in Fig.
2, corresponding to ***Th, where the moments of inertia
obtained on the basis of microscopic calculation are also
given. Figure 4 shows the composition of the wave func-
tions. According to this figure, for the 12+ state, y*(coll)
is approximately equal to 50%. Therefore, according to
the Harris method, in addition to calculations for all en-
ergy differences up to the state with spin 26*, calcula-
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Fig. 4.  (color online) The composition of the wave func-
tions of the states of the yrast band obtained on the basis of
the microscopic model for **Th

tions were made taking into account the states up to the
state with spin 10". In the first case, the difference
between the calculated and experimental values up to
spin 8% is less than 1 keV, and for 10%, it is already 5.5
keV. In the second case, this difference for 2*, 4* is
about 2 keV, but for the rest, up to 147, it is less than 1
keV. Together with the previous thorium isotope, this
shows that the Harris energy calculation procedure can be
successfully applied if the collective component in the
wave function is definitely greater than 50%.

For all nuclei, starting with ***Th, in the Harris
scheme it is achieved such an accuracy of reproduction of
experimental energies that the difference between the cal-
culated energies and the experimental ones does not ex-
ceed 1 keV on average, as can be seen from the ¢ values
given in the same Table 1. This corresponds to the work
[4], where it was found that in thorium isotopes, starting
with this one, in all observed states of yrast bands, the
collective component remains the main component. The
calculated energies obtained in the Harris scheme in
Tables 2-5, 9-15 are designated as E.,.. Table 2 presents
the experimental energies of states and the difference
between the calculated and experimental energies for ***-
24Th. For ******Th nuclei, a comparison of the experi-
mental and calculated ones is given in Table 3, for »*
22Th — in Table 4, for 2*%°Th — in Table 5. In almost
all of these nuclei, the difference between the calculated
energies and the experimental ones does not exceed 1
keV, and for the *** %*STh nuclei, the calculated energy
values differ from the experimental ones by a smaller
amount than the experimental errors. Therefore, anom-
alies in the behavior of J(w?) for #°Th in Fig. 2 should be
attributed to the experimental errors. This anomaly will

Table 2. Comparison of experimental [17] and theoretical energy values in keV for 2***2***Th nuclei

20Th 22Th 24Th

r exp. Ecal — Eexp exp. Ecal — Eexp exp. Ecal — Eexp
2% 386.5(1) —-0.001 182.9(2) —-0.06 98.1(3) -0.12
4+ 759.80(15) 0.002 439.2(3) 0.22 284.1(5) 0.58
6" 1166.03(17) -0.002 749.3(4) -0.29 534.7(5) -0.30
8+ 1598.16(20) —-0.0005 1092.8(5) 0.09 833.9(6) -0.46
10* 2012.73(23) 38 1460.8(5) -0.01 1173.8(6) -0.01
12+ 2441.9(3) 78 1850.6(5) -3.8 1549.8(6) 0.43
14+ 2885.0(3) 118 2259.7(6) =12 1958.9(7) 0.21
16* 3376.4(6) 121 2688.0(6) —28 2398.0(7) -0.27
18+ 3867.1(6) 136 3133.9(6) =51 2864 0.01
20" 4319.6(7) 198 3596.8(7) -82

20+ 4716.1(12) 324 4078.6(7) -124

24+ 4579.2(7) =177

26" 5099.2(9) —244
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Table 3. Comparison of experimental [17] and theoretical Table 5. Comparison of experimental [17] and theoretical
energy values in keV for **Th nuclei energy values in keV for ****Th nuclei
ZZGTh 228Th 234Th 236Th
I” I”
exp. Eca— Eexp exp. Eca — Eexp exp. Ecal — Eexp exp. Eca — Eexp
2+ 72.20(4) -0.27 57.773(3) 0.17 2+ 49.55(6) 0.14 48.4(3) 0.09
4+ 226.43(5) 0.36 186.838(3) 0.08 4+ 163.05(12) 0.14 160.0(6) -0.36
6* 447.32) 0.69 378.195(12) —0.46 6* 336.45(24) —24 329.47) 0.14
8* 721.9Q2) 0.38 622.5(3) -0.85 8* 564.7(3) -0.80 553.4(7) -0.06
10+ 1040.3(3) -0.10 911.8(3) -0.78 10* 842.5(4) -1.03 826.1(9) ~0.04
12+ 1395.2(4) -0.24 1239.3(4) -0.21 12+ 1164.9(6) =0.81
14+ 1781.5(5) 0.02 1599.4(5) 0.55 14+ 1526.6(7) 0.11
16+ 2195.8(6) 0.22 1987.9(6) 0.64 16* 1923:4(8) 0.80
18+ 2635.1(7) 0.32 2400.5(8) 0.23 18+ 2351.0(9) 0.72
20*  3097.1(8) 0.15 2834.4 -1.2 20" 2805.1(11) -0.13
20+ 3283.4 -0.15 22+ 3281.4(12) ~1.04
24+ 3775.1(13) -0.15
Table 4. Comparison of experimental [17] and theoretical
energy values in keV for #°#*2Th nuclei
&y quency. The monotony of such a dependence at suffi-
" “°Th 2’Th ciently large spins of states can be violated, leading, for
exp. Ecal — Eexp exp. Ecal — Eexp example, to backbending, and this invariably occurs in
o 53.230011) 0.04 49.36909) e medium nuglel. Also, an ar.lomally in the behavior of.the
174119017 L2 1202 moment of inertia can manifest itself through upbending,
+ . . .
4 A15017) 0.019 122) 0.9 when the intersection of bands is not fully completed.
6" 356.54(12) 0.01 333.26(8) 0:29 And finally, downbending. This effect can manifest itself
8+ 593.89(17) -0.27 556.9(1) 0.23 at spins of at least 26* and in those cases when, for ex-
10+ §79.36(24) 039 $26.8(1) —om ample, a stgte yvlth the same spin, but in the S band, turns
. 1206.7(5 13718 out to be significantly higher and the observed state re-
12 76) 0.06 1) 095 mains mainly collective. Moreover, the energies of such
14+ 1571.9(6) -0.05 1482.2(6) -11 high-spin collective states may turn out to be somewhat
16% 1969.6(7) 0.13 1858.5(7) -12 higher than those that would be obtained based on the
18+ 2396.4(9) 0.09 2262.4(9) -0.56 trends corresponding to llower spins. Th§re may be two
- 2848.7(10) 0.09 2691(1) 0.95 reasons for such a behavior of the energies of collective
0 ’ : ' states at high spins. One is associated with the reduction
2t 3324101 -0.32 31441) 1.5 of the configuration space of two-quasiparticle states that
24+ 3819.1(15) ~0.05 3620.0(15) 0.89 form the D phonon, in the presence of multibosons,
26+ 411702) ~0.50 which is realized to a greater extent at high spins. To
- 46332) 18 quantitatively evaluate this phenomenon at the energy of
' collective states, it is necessary to carry out self-consist-
30+ 5164(3) -0.15

disappear if the experimental value E(4*) = 160 keV is re-
duced by a value from 0.358 to 0.37 keV. Such a high
quality of description of the energies of states in the mod-
el of variable moment of inertia in heavy nuclei is
achieved given that excitation energies can reach up to 5
MeV, and the spin of states — up to 30*.

Heavy nuclei in the majority have a stable deforma-
tion, and the deviation to the smaller side of the energies
in the band from the dependence /(I + 1) has a number of
reasons, partly discussed earlier. This corresponds to the
growth of the moment of inertia from the rotation fre-

ent solutions for each of the collective states separately,
as was done for medium nuclei [9]. However, for heavy
nuclei, such a procedure is difficult to implement due to
the high sensitivity of the calculated energies to the IBM
Hamiltonian parameters. Another reason for some addi-
tional growth of energies of collective states at high
spins, which is what downbending gives, may be the spe-
cificity of the description of collective states in the gener-
al case of the SU(6) symmetry, which consists in the fi-
niteness of the maximum number of quadrupole bosons
Q.

In the variable moment of inertia model, the growth
of the slope J(w?) is effectively reproduced. One of the
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Fig. 5. (color online) Effective moments of inertia from experimental and theoretical energy values of yrast bands in U isotopes

reasons for this growth is the gradual increase of the non-
collective component in the states of the yrast band. This
explains why in deformed nuclei the quality of the de-
scription of energies in the Harris model is better than in
the IBM phenomenology. The situation regarding IBM
changes if we move from its phenomenology to the mi-
croscopic version, when the IBM parameters are calcu-
lated and high-spin excitation modes are explicitly taken
into account. This also allows us to determine the limits
of applicability of the Harris scheme in the region of
spins where the bands cross. For example, a microscopic
calculation of the structure of the states of the yrast band
in **Th showed [4] that the Harris scheme successfully
reproduces collective states in which the collective com-
ponent is noticeably larger than any of the others, and it-
self can be somewhat less than 50%.

IV. ANALYSIS OF MOMENTS OF INERTIA FOR
EVEN ISOTOPES OF U

The parameters determining the moment of inertia for
U isotopes are given in Table 1. The corresponding mo-
ments of inertia are given in Fig. 5. In addition to the ex-
perimental and calculated values of the moments of iner-
tia according to Harris, the results of calculations in ac-
cordance with the IBM phenomenology are given, ex-

cluding high-spin modes.

The parameters of the boson Hamiltonian (8) for the
U isotopes are given in Table 6 and the corresponding
moments of inertia with others are also given in Fig. 5.
The parameters of the boson Hamiltonian given in Table
6 are given with an accuracy of 1 eV. To justify the need
for such high accuracy, the partial derivatives
OE;/0¢ey,...,0E;]0C, were calculated in the vicinity of the
parameter values determined for #*°U. They are given in
Table 7. In accordance with these values, the maximum
deviations of the parameters were obtained when the de-
viations of the calculated energies do not exceed 0.1 keV.
These values are given in Table 8. The change in the
Hamiltonian parameter (8) k; reacts most strongly to the
energies of the states under consideration. And as can be
seen from Table 8, at high spins its values should be giv-
en with greater accuracy than 1 eV, but since at high
spins the experimental uncertainty of energies exceeds 1
keV, this can be avoided for now.

The IBM Hamiltonian parameters, including the Q
number, for 2**U were determined from states up to the
limiting observed spins and are given in Table 6. Let us
discuss the quality of the description of the energies of
states consistently in all uranium isotopes under consider-
ation.

For U, the experimental data show a practically lin-
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Table 6. IBM Hamiltonian parameters for “*Th even U nuclei
Nucleus &d ki ko Co Cy Cy Q
26Th 0.367969 -0.030993 0.003373 -0.080729 -0.022919 -0.035625 28
26y —0.080461 —0.030253 0.009227 0.005134 0.060668 0.001103 20
26y 0.036599 —0.038003 0.004841 -0.010224 0.033211 —0.034492 28
26y 0.040505 —0.036817 0.004122 0.136447 0.035798 -0.031713 34
26y —0.059896 —-0.037406 0.004168 0.001010 0.011875 —-0.020448 25
By —0.614828 —0.058595 0.032967 0.899961 0.061097 0.045202 21
=y —-0.725962 —-0.058227 0.032505 0.739341 0.034253 0.054798 19
»y —0.594347 —0.049232 0.032013 0.674469 0.076536 0.039112 22
»u —-0.580119 —0.049519 0.034100 0.637994 0.071404 0.038430 21
By —-0.626829 —0.059598 0.051147 0.713640 0.042979 0.019237 25
=y —0.634858 —0.060349 0.053701 0.687343 0.039218 0.016058 25
oy —0.634453 —0.059500 0.050521 0.717118 0.029825 0.022396 25
Table 7. Partial derivatives of IBM energies with respect to boson parameters in the special case of parameters adopted for U, E»,
are understood to be the excitation energy, and E; — the total boson energy, measured from the energy of the d-boson vacuum
rr 0t 2% 4* 6" 8+ 10* 12+ 14+ 16* 18* 20* 22% 24* 26" 28* 30*
OE/0¢gq 11 0.071 0.23 0.48 0.8 1.2 1.7 2.2 2.7 33 4.0 4.7 54 6.2 6.9 7.7
OE1/0k 316 -2.5 -8.1 -16.7 28 417 -574 -748 -93.7 -—113 -—134 —I55 —-175 -196 216 234
OE;/dky —138 0475 -154 -309 -50  -71 -93 -114 -134 -15 -16 -166 -163 -152 —-13 -95
OE[/dCy 12 -0.067 -0.23 -047 -0.8 -1.21 -1.7 -2.2 -29 36 42 -5.1 -5.8 -66 -74 82
OE[/0C,  —17 0.071 0.23 0.48 0.8 1.19 1.7 22 2.7 33 39 4.6 53 6.0 6.7 73
OE[/0Cy 23 0.65 2.16 4.55 7.8 11.9 17.0 229 29.6 374  46.0 55.6 66.2 77.7 90.2 104
Table 8. The required accuracy of the parameters in eV so that the accuracy of calculating the energy of the yrast band states is not
less than 0.1 keV in the particular case of the parameters adopted for 2°U, for I # 0, the energies are considered relative to the ground
state
I 0+ 2% 4* 6* 8+ 10* 12+ 14+ 16% 18* 20 22% 24* 26% 28* 30*
AEq 9 1400 430 210 125 83 59 45 37 30 25 21 18 10 14 13
N 0.32 40 12 6 3.6 24 1.7 1.3 1.1 0.88 0.75 0.65 0.57 0.51 0.46 0.43
sky 0.72 210 65 32 20 14 11 8.8 7.5 6.7 6.2 6.0 6.1 6.6 7.7 10
ACy 8 1492 435 213 125 83 59 45 34 28 24 20 17 15 14 12
ACy 6 1408 435 208 125 84 59 45 37 30 26 22 19 17 15 14
ACy 4 154 46 22 13 8.4 59 4.4 3.4 2.7 22 1.8 1.5 1.3 1.5 1.3

ear dependence of J(w?) and this is naturally reproduced
in the Harris scheme. This could not be obtained in the
description in IBM. The calculations were carried out in a
wide range of Q from 14 to 34. In this case, if the quality
of reproduction of energies for states with 7 < 12* is satis-
factory, and this is evident from Table 9, where the val-
ues of energies with Q =20 are given, then the energy of
the state with 14* turns out to be underestimated by 7
keV, and this leads to the calculated increase in the value
of J. If we degrade the quality of the energy description,
the linear dependence J(w?) is approximately reproduced,

which is reflected in the corresponding Fig. 5. The ques-
tion of the possibility of quantitative reproduction of the
energies of the *°U nucleus in IBM remains open. This is
despite the fact that the question concerns the description
of states up to relatively low spins. It should be borne in
mind that the experimental errors for this isotope are the
highest of all those considered.

For the next nucleus, 2*°U, the description of energies
in the Harris scheme is precise and the difference
between the calculated and experimental values of ener-
gies, as can be seen from Table 10, does not exceed 0.4
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Table 9. Comparison of experimental [17] and theoretical Table 11. Comparison of experimental [17] and theoretical
energy values in keV for 2°U nuclei; for IBM, Q =20 energy values in keV for %*?U nuclei; for IBM, Q = 19
26y =y
rr I
€Xp. Eca Ecal = Eexp Egm Egm — Eexp €xp. Eca Ecql—Eexp  EmBMm Egm — Eexp
2+ 81.3(6) 81.464 0.16 81.510 0.21 2+ 47.573(8) 47.590 0.017 47.533 —-0.04
4+ 250.009) 249.682 —-0.32 248.46 —1.54 4+ 156.566(10)  156.545 —0.021 156.49 —0.076
6" 483.2(9) 482.79 —-0.41 482.24 —0.92 6" 322.69(7) 322.76 0.065 322.80 0.11
8+ 766.4(10) 766.51 0.11 768.45 2.05 8+ 541.1(1) 540.97 —0.13 541.23 0.13
10* 1091.6(10)  1091.98 0.38 1095.9 43 10* 805.88(16) 805.68 —-0.20 806.16 0.28
12* 1453.8(10)  1453.42 —0.38 1455.7 1.9 12* 1111.6(2) 1111.59 —0.01 1112.1 0.50
14* 1847.0(13)  1846.93 —-0.07 1840.1 -6.9 14* 1453.8(3) 145391 0.10 1454.1 0.30
16 1828:2(4) 1828.39 0.19 1828.0 —0.20
Table 10. Comparison of experimental [17] and theoretical 18+ 2231.6(6) .~ 2231.39 -0.21 2230.4 -1.2
energy values in keV for *°U nuclei; for IBM, Q =21 20t 126598(9)  2659.78 _0.02 2659.3 05
=y
"
exp. Eca Ecal — Eexp Egm Eim — Eexp Table 12. Comparison of experimental [17] and theoretical
2+ SL73723) 51797 0.060 51.623 —0.114 energy values in keV for ***U nuclei; for IBM, Q =21
4+ 169.35(4)  169.356 0.006 169.17 —0.18 By
6% 346.96(20) 346.85 —-0.11 347.04 0.08 " exp. Ecq Ecal = Eexp Egm Ergm — Eexp
8+ 578.1(3) 577.76 -0.34 578.59 0.49 2+ 43.4981(10)  43.501 0.003 43.517 —0.195
10* 856.3(3) 855.91 —-0.39 857.24 0.94 4+ 143.352(4) 143.362 0.010 143.34 1.92
12+ 1175.6(4) 1175.68 0.08 1177.0 1.40 6% 296.072(4) 296.12 0.046 295.89 0.97
14* 1531.5(4) 1532.07 0.57 1532.7 1.20 8+ 497.04(3) 497.06 0.02 496.63 0.17
16" 1921.0(5) 1920.65 -0.35 1920.1 -0.90 10* 741.2(5) 741.13 -0.07 740.75 0.54
18* 2337.6(6) 2337.56 —-0.04 23359 -1.7 12* 1023.8(7) 1023.56 —0.24 1023.6 0.60
20 2779.6(11)  2779.47 —-0.13 2777.6 -2.0 14+ 1340.5(12) 1340.22 -0.28 1340.9 1.50
22+ 3243.6(15) 3243.54 —-0.06 3243.7 0.1 16+ 1687.8(16) 1687.70 -0.1 1689.1 1.90
18+ 2062.8(17)  2063.20 0.4 2064.9 2.20
keV. Within the IBM framework, this is 1.4 keV, which 20" 2464.0(18)  2464.49 0.49 2465.9 230
also indicates a high quality of the description. This is 22+ 2889.5(18)  2889.78 0.28 2890.3 2.0
despite tgg fact that states are observed up to 22*. 24t 33385Q21)  3337.64 ~0.86 3336.9 19
.F(.>r U, stgtes are observed up to 20* .and t.he dp— 26+ 3807.523) 380698 05 3805.0 39
scription of their energies in the two calculations is quite
satisfactory. Thus, in the Harris scheme, the discrepancy 287 4296.5(25) 429695 045 4294.8 32
is no more than 0.21 keV, and for IBM — no more than 30* 4807 4806.98 —0.02 4807.1 3.2

1.2 keV, as follows from Table 11. The quality of the en-
ergy description is especially clearly manifested through
the moments of inertia for **°U and ***U in Fig. 5.

For #*U, states are observed already up to 30*. In the
Harris scheme, the discrepancy is no more than 0.86 keV.
Within the IBM framework, as can be seen from Fig. 5,
calculations were made with two values of €, these are
21 and 22. The results of the calculations of the moments
of inertia closely cover the moments of inertia from the
experimental energies on both sides. Taking into account
the influence of high-spin modes on the energies of
states, we give preference to Q=21 and it is with this
value that the calculated values are presented in Table 12,

from which it is clear that the corresponding differences
are no more than 3.2 keV.

In the *°U nucleus, the observed states also extend to
I =30". The observed moments of inertia at / = 28" and
I=30* definitely give a decrease in the slope of J(w?).
More precisely, starting from spin 26*, a slower growth
of the moment of inertia — downbending — is manifes-
ted. That is why the parameters in the Harris scheme were
determined by the states up to spin I =24* and for these
states, the difference between the experimental and calcu-
lated energies does not exceed 0.74 keV, as follows from
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Table 13. The moments of inertia at high spins, as can be
seen from Fig. 5, for this nucleus significantly exceed the
experimental values. The calculation in IBM reproduces
this experimental trend and this is achieved at Q =25.
This can be associated with a decrease in the collective
configuration space at the corresponding spins, as well as
the presence of s bosons or square roots, due to which the
closure of the SU(6) algebra of boson operators is real-
ized in comparison with other collective models. This is
the case when the variable moment of inertia model with
the used parameterization cannot describe this phenomen-
on, and the IBM phenomenology describes the corres-
ponding increase in the energies of collective states. Such
a phenomenon is realized, as can be judged by ¢ U
nuclei, starting with spin 28*. For all states of this nucle-
us, the difference between the calculated IBM and experi-
mental energy values does not exceed 2 keV.

The effect observed in the 2*°U nucleus of weakening
the growth of J from w? at I =28*, 30" is even more pro-
nounced in the Z**U nucleus, since the spins observed for
it extend to I = 34*. The parameters in the Harris scheme
were determined by the states with 7 <28* and for these
states, as can be seen from Table 14, the difference
between the experimental and calculated energies does
not exceed 0.76 keV. For large spins, this. difference
grows rapidly, and the calculated energy values are no-
ticeably lower than the experimental ones. As can be seen
from Fig. 5, for this nucleus, the calculation in IBM re-
produces the experimental situation and this is realized at
Q =25. If we use large values of Q, for example, 30, then

J will be significantly larger, approaching those given by
the Harris scheme. The difference between the experi-
mental and calculated energies within the IBM frame-
work for all spins does not exceed 4.6 keV.

It should be noted that the description of the energies
of states in a number of uranium nuclei is so good that the
discrepancies with experimental values sometimes give
smaller values than the experimental uncertainties, espe-
cially for calculations in the Harris scheme.

As a rule, the quality of description in the Harris mod-
el is higher than in IBM, this is evident from 226230-232234(y
(there are no experimental data for **U). This can be ex-
plained by the method of determining the parameters. For
the Harris scheme, they are determined by the least
squares method, which makes them clearly optimal, while
for IBM, other methods for determining the parameters
have to be used, which are not so effective. For >*°U, as
can be'seen from Fig. 5, both models reproduce the ener-
gies equally qualitatively.

For **°U, states are known only up to spin 12*. In Fig.
5, for **°U, a strong anomaly of the moment of inertia for
the first excitation is visible. It cannot be reproduced by
any of the models and its presence is associated with a
large experimental error in the energy of the first excita-
tion (see Table 15). If, when describing energies within
the IBM framework, the determination of parameters is
carried out without the 2} state, then its energy turns out

Table 14. Comparison of experimental [17] and theoretical
energy values in keV for ***U nuclei; for IBM, Q =25

Table 13. Comparison of experimental [17] and theoretical ¥y
energy values in keV for *°U nuclei; for IBM, Q = 25 r exp. Ecal Ecal—Eexp  Emm EmM—Eexp
By 2+ 44.916(13) 45.004 0.0883 44.785 -0.131
r exp. Ecal Ecal — Eexp Esm EM — Eexp 4+ 148.38(3) 148.394 0.014 148.10 —0.28
2+ 45.2431(20) 44915 -0.33 45.204 —0.0391 6t 307.18(8) 307.12 —0.057 307.26 0.08
4+ 149.480(5) 148.921 —-0.56 149.43 —-0.05 8t 518.1(3) 517.45 —0.65 518.49 0.31
6" 309.788(6) 309.85 0.062 309.87 0.082 10t 775.9(4) 775.32 -0.58 777.25 1.35
8* 522.26(4) 523.77 1.5 522.58 0.32 12+ 1076.7(5) 1076.38 -0.32 1078.7 2.0
10* 782.4(5) 785.39 2.99 782.93 0.53 14+ 1415.5(6) 1415.94 0.44 1417.9 2.4
12* 1085.4(7) 1088.97 3.6 1086.0 0.6 16 1788.4(6) 1789.15 0.75 1790.1 1.7
14* 1426.4(9) 1429.25 2.8 1426.8 0.4 18+ 2191.1(7) 2191.41 0.31 2191.0 -0.1
16 1801.0(10) 1801.74 0.74 1800.8 -0.2 20* 2619.1(8) 2618.62 —0.48 2616.7 2.4
18+ 2204.0(12)  2202.78 -1.2 2203.7 -0.3 22+ 3068.1(9) 3067.34 -0.76 3064.1 —4.1
20 2631.8(13)  2629.43 2.4 2631.7 —-0.1 24+ 3535.3(12) 3534.76 —0.54 3530.7 —4.6
22+ 3081.0(14) 3079.34 -1.7 3081.9 0.9 26t  4018.1(16) 4018.57 0.47 4015.1 -3.0
24+ 3550.0(17) 3550.57 0.57 3552.0 2.0 28+ 4517 4516.92 —0.084 4517.1 0.1
26% 4039.0(20)  4041.55 2.6 4040.9 1.9 30t 5035.1(21)  5028.27 —6.83 5038.0 2.9
28+ 4549.0(22)  4550.99 1.99 4548.4 —-0.6 32+ 5581(3) 5551.37 -29.6 5580.7 -0.3
30" 5077(4) 5077.80 0.8 5075.8 -1.2 34+ 6146(4) 6085.16 —60.8 6149.9 3.9
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Table 15. Comparison of experimental [17] and theoretical
energy values in keV for **°U nuclei; for IBM, Q = 25
240U

I”

exp. Eca Ecal — Eexp Esm Egm — Eexp
2+ 45(1) 45.274 0.27 45.599 0.6
4+ 150.60(10)  150.112 -0.49 150.80 0.2
6" 313.19(14) 312.41 —-0.78 31291 —0.28
8+ 528.69(18) 528.43 —-0.26 528.12 -0.57
10* 792.9(3) 793.00 0.1 791.95 —0.95
12* 1100.5(4) 1100.32 —-0.18 1099.6 -0.9

to be equal to 45.6 keV, that is, 0.6 keV higher than that
suggested by the experiment. In this case, the experiment-
al error for this state is equal to 1 keV, i.e., such a correc-
tion is within the experimental corridor of admissible val-
ues, and the anomaly in the effective moment of inertia is
the result of a large experimental uncertainty. If the mo-
ments of inertia are determined with the corrected energy
of the 2* state, the value of ¢ will decrease significantly
and become equal to 0.08.

V. CONCLUSIONS

A comparison of the effective moments of inertia for
heavy even nuclei, namely, thorium and uranium iso-

topes, with the variable moment of inertia model and
IBM, both in its phenomenological aspect and in its mi-
croscopic version, allowed us to draw the following con-
clusions.

1. The Harris model effectively reproduces the exper-
imental situation if the collective component in the wave
function remains at least 50%. The standard boson model
cannot do this; for this, it must be extended by explicitly
taking into account high-spin excitation modes up to
J < 14*. However, the Harris scheme does not reproduce
the decrease in the slope of J from «w?.

2. If the energies of collective states increase signific-
antly at spins greater than 28*, this may be due to a re-
duction in the collective configuration space. This situ-
ation is reproduced in the IBM phenomenology, but can-
not be reproduced in either the Harris model or classical
geometric collective models.

In this paper, the Harris scheme is not considered
through the use of the cracking model, but only as one of
the convenient and visual representations of the excita-
tion-energies in the bands. In a number of cases for the
lowest states, when there are large experimental uncer-
tainties, it can give clarifying estimates. For large values
of spins, when the experimental values of the moments of
inertia are noticeably greater than the Harris estimates, it
is possible to make judgments about the extent of the in-
fluence of noncollective modes with high spins on these
states.
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