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Abstract: The rotational metric provides an exact solution to Einstein's clock-rate problem in curved spacetime,
specifically, whether time flows more slowly at the equator of a compact object such as a neutron star than at its

poles. It features a curvature singularity, an event horizon, a potentially evolving ergosphere, a rigidly-rotating nor-
mal space, and two stationary limit surfaces. Although derived from the Schwarzschild metric through rotational
transformations, it includes an additional ergosphere. Given the equivalence of inertia and gravity, this demonstrates

how non-inertial transformations, such as rotational transformations, can introduce new spacetime structures into a

gravitational system. In particular, the additional physical degrees of freedom carried by rotational transformations

are eaten by the gravitational system to form an additional ergosphere. Furthermore, the rotational metric effectively

models a rigidly-rotating gravitational system and is applicable for describing rotationally-induced gravitational ef-

fects in various rotating magnetospheres.
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I. INTRODUCTION

By Einstein's 1905 article on the special theory of re-
lativity, it was concluded that, under identical conditions,
a balance-clock placed at the equator must run more
slowly than an identical clock located at one of the poles
[1]. In 1909, Einstein constructed a metric for a uni-
formly rotating disk [2] that contributed to the develop-
ment of a key idea in general relativity (GR): the relev-
ance of curved geometry in the presence of gravity [3-5].
Notably, this metric includes non-inertial effects, such as
centrifugal (inertial) forces, that arise from rotation. By
Einstein's equivalence principle, inertia and gravity are
identical. In GR, gravity distorts Minkowskian spacetime,
and so does inertia. Therefore, the geometry of a uni-
formly rotating disk is curved; for example, its circumfer-
ence is shortened owing to this curvature. Approximately
six years later, in 1915, Einstein proposed the complete
GR field equations and developed the general theory of
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relativity [4]. Then, in 1916, Schwarzschild found the
first exact solution to the Einstein field equations [6],
which can be used to describe the highly curved space-
time around a compact object such as a neutron star (NS).
Given the rotation of the compact object, observers stand-
ing on its surface must confront the clock-rate problem in
curved spacetime: For a spinning compact object, does
time pass more slowly at the equator than at the poles? In
light of the highly curved geometry of spacetime, this
problem should be addressed within the framework of
GR. Conversely, the solution to this problem may have
direct applications in everyday life. For instance, when
accurately measuring how time passes at two locations on
Earth, we must account for the spacetime effects caused
by the Earth's mass and rotation. In fact, precisely resolv-
ing the clock-rate problem in curved spacetime is particu-
larly important for technologies that depend on accurate
time measurement, such as the BeiDou Navigation Satel-
lite System and Global Positioning System.
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NSs were first discovered in 1967, and it quickly be-
came apparent to astrophysicists that the picture of a ro-
tating magnetic NS existing in an empty space was not
realistic [7]. Early in 1969, Goldreich and Julian argued
that a rapidly spinning, highly magnetized NS would cre-
ate a magnetosphere around the star [8]. Charged
particles are pulled out from the NS surface, form a mag-
netospheric plasma, and then become frozen into the NS's
magnetic field, resulting in steady and rigid corotation
with the star [7, 8]. A magnetosphere is generally as-
sumed to be the source of various emissions [9], e.g., the
well-known fast radio bursts [10, 11], giant flares
[12—15], magnetar X-ray bursts [16—18], and super flares
[19, 20] observed in magnetized NSs. To date, the corota-
tional effects of this gravitational system have not been
fully studied. To better understand the origin and nature
of these high-energy phenomena, it is essential to con-
struct or employ a metric that effectively describes the
gravitational or non-inertial effects induced by rotation
within any corotating magnetosphere. It is worth noting
that, in addition to NSs, magnetospheres exist around the
Earth, normal stars, white dwarfs, quark stars, and vari-
ous other exotic astrophysical objects.

Generally, the Kerr metric can describe rotating grav-
itational systems [21] such as black holes (BHs). Regret-
tably, the Kerr metric cannot account for rigid corotation,
as the angular velocity varies with radius [22]. Notably,
the standard model of magnetospheres typically involves
a space volume that maintains a rigid corotation with a
spinning mass [8]. The rotation in this case differs from
that described by the Kerr metric. However, it is possible
to introduce rigid rotation into the Schwarzschild metric
through rotational transformations that carry additional
physical degrees of freedom. In this study, by applying
such transformations, we developed a metric that de-
scribes the gravitational system of a rigidly-rotating space
volume. This metric remains a valid solution to the Ein-
stein field equations. Interestingly, it can be used to re-
solve Einstein's clock-rate problem in curved spacetime.
Additionally, the metric includes an angular-momentum
parameter that may evolve over time, corresponding to
additional physical degrees of freedom. Given the inertia-
gravity (or the gravity of inertia) [4] induced by rotation,
it can also be used as an example to demonstrate the non-
inertial effects associated with rotational transformations.
We investigated the geometric structures of the metric as
well as its gravitational effects and direct applications.
We summarize our findings at the end of this paper.

II. ROTATIONAL METRIC AND ITS
INTERPRETATIONS
The Schwarzschild metric is the unique static and

spherically symmetric vacuum solution in GR. In spheric-
al coordinates (¢,7,0,¢), it has the form

M
ds* =—(1—2—) dr?
r

1
+ AP+ 2 (AP +sin’0dg?), (1)

(=)

where M is the mass of the gravitational system. The geo-
metrized unit system G =c =1 is adopted. In general, the
Schwarzschild metric can properly describe a static grav-
itational system.

A gravitational system that rotates rigidly can be ef-
fectively described by a stationary metric, which can be
expressed in the canonical form [4],

dsi =¥ (dt -y dxi)2 +kij dx'dx’, (2)

with i,j=1,2,3, where ¢, x', and x/ are the time-like and
space-like coordinates, while the functions y, v;, and k;;
are independent of time.

To determine the specific form of the metric given by
Eq. (2) for a rigidly-rotating system, we rewrite the
Schwarzchild metric given by Eq. (1) in cylindrical co-
ordinates:

M
2— 0
ds2=_(1—2—>dt2+ 1+ rM = | dp?
r 1_oM | r
r
M
2=\ 4,
+2 rM ﬁ dde
1-2—
,
M
2— 2 s
+ |1+ rM r—zdz+pdg0',
1-2—
,

where p = Vr?—22 is the cylindrical radius, z is the height
over the equatorial plane, and ¢’ is the azimuth angle
measured by a static observer at spatial infinity.

For a rotating gravitational system with a constant an-
gular velocity w, the azimuth angle ¢ is expressed as

p=¢ +wt, 3)

where the angular coordinate ¢ is measured from the
(p,2)-plane that rotates about the z-axis, which is em-
ployed for deriving the Einstein's metric for a uniformly
rotating disk. However, if w is a function of time, i.e.,
w = w(t), one sets
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dy = d¢’ +wdt, 4)

which notably differs from Eq. (3). From this point on,
our derivations and analysis are carried out based on Eq.
(4) instead of Eq. (3). Applying the transformation given
by Eq. (4), one obtains the canonical form of the metric
expressed by Eq. (2) for a stationary system,

M
ds? = — <1 -2— —p2w2>
r

r 2

2
X | dt+ g/l—w do
1-2— —p?w?
L r
1—2ﬂ
+ M—r p2 d(p2+d0'2, (5)
1—27—p2w2

where p < ric = 1/w, and do?is expressed as

M
+2 VM % dpdz
1-2—= /) 7"
p
M
2— 2
+ 1+ 1 er g dz?. (6)

M
1-2—
dP? = k;;dx'dy’ = g p*| dg’ +do?, (7)
1-2— —pw?

where ric is the light cylinder radius [7, 8], widely used
in the physics of NSs. We use » (u=0, 1,2,3) for
(t, p, z, ). The general form of the stationary metric giv-
en by Eq. (5) in cylindrical coordinates is

M 2 ds2 = good + gordrdx’ + g dx' dr + g dxidx/,  (8)
do?= |1+ r 7|2 dp?
1 _27 where go; = g and g;; = g;;. The components of the met-
ric are exactly expressed as
- M -
—1+— +w*p? 0 0 —wp*
r
2Mp? 2Mpz
0 1+ 0
2M 2M
() ()
S Mpz | 2m2 ’ )
: e
T
r
i —wp? 0 0 .

which imply that the metric is flat at spatial infinity in the
direction of the z-axis, whereas it is not asymptotically
flat in any other direction. The metric ds?, has been
presented in its full form for a 1+3 dimensional space-
time, without being limited to its equatorial plane.

In analogy with the original Schwarzschild metric, the
rotational metric ds? has a genuine curvature singularity
at r = 0, which is confirmed by deriving the Kretschmann
invariant,

M2

K = R#VQO-R”V@U- = 48 rT’

(10)

where R*%” and R,,, are the curvature tensors of types

(4,0) and (0,4), respectively. Note that the metric ds? ex-
hibits a similar characteristic near the curvature singular-
ity as the original Schwarzschild metric does before
transformations.

For any stationary gravitational system, its angular
velocity Q can be generally expressed in cylindrical co-
ordinates as [4, 5, 22]

803

Q=-==,
833

In our case, the quantity o in the metric ds? is simply
the angular velocity of a corresponding rotating system.
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Indeed, one finds

Q=w, (11)

which means that the gravitational system associated with
the metric ds? rigidly rotates at angular velocity @ with
respect to the z-axis. As expected, it can reduce to the ori-
ginal Schwarzschild metric in the zero-rotation limit
w — 0 and to Einstein's metric for a uniformly rotating
disk [4] at the zero-mass limit M — 0. Hence, the rota-
tional metric is an extension of the Einstein's metric for a
uniformly rotating disk which rigidly corotates with a
spinning mass around a fixed axis. It is straightforward to
demonstrate that the rotational metric ds? remains a va-
cuum solution of the Einstein field equations; more inter-
pretations and derivations about the rotational metric are
presented in appendices.

Although derived from the Schwarzschild metric
through coordinate transformations, the rotational metric
includes additional effects of inertia-gravity arising from
rotation. Hence, the rotational and Schwarzschild metrics
can describe two different gravitational systems: a ri-
gidly-rotating system and a static system, respectively.
When o is a constant, the transformation given by Eq. (4)
leads to the asymptotic non-flatness of the rotational met-
ric ds?. The condition of asymptotic flatness is necessary

in the unicity theorem for the Kerr solution [23]. There-
fore, for a constant w, the existence of the rotational met-
ric ds? does not contradict the uniqueness of the Kerr
metric in an asymptotically-flat stationary spacetime. In
the general case of w = w(t), the rotational metric ds? is a
time-evolving metric. However, the time evolution of the
rotational metric ds?, may arise from the energy conver-
sion of the rotational energy of the gravitational system
into other forms of energy through non-gravitational in-
teractions or quantum-mechanical processes, which is far
beyond the scope of this study.

III. HORIZON STRUCTURES AND NON-INER-
TIAL TRANSFORMATIONS

According to GR, gravity distorts flat spacetime. Giv-
en that inertia and gravity are equivalent, non-inertial ef-
fects, such as rotation, may have influence on the space-
time structures of a BH. In particular, for a BH described
by the rotational metric, such influence should be care-
fully investigated. In general, the event horizon of a BH
is a null surface defined by f = f(p,z) =constant. The
gradient 9, f is normal to the null surface; it is a null vec-
tor. By definition, one obtains a null surface equation,
i.e., 0,f0"f =0. From the rotational metric, we obtain the
components of its inverse:

0
2M
1 -
' 2Mp?
o 1-=F
p
g’ = 2Mpz
0 -
w
0
M
1-==
L r

Substituting these components into the null surface
equation yields

(5 () () oo

which is symmetric in p and z and hence also f’s expres-
sion. When f = f(r), Eq. (13) can be rewritten as

()& o

w
0
2M
1- ==
2M, "
%pz 0
73
| 2m2 0 . (12)
73
2M
1-==_ w2p2 1
0
1— M p
r d

Thus, the event horizon occurs at radius rgy = 2M,
where rgy is the same as the Schwarzschild radius. Note
that the Kretschmann invariant remains finite there.

Besides, the BH system has two stationary limit sur-
faces (SLSs), which can be obtained by solving the equa-
tion

2M
goo=—<1—7—w2,02) =0. (15)

2
For each of them, one always has 1-— (%) >0, ie.,
LC
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wp < 1. Therefore,

oM
r=———— > g, (16)

=)

which clearly indicates that the two SLSs are outside the
event horizon. Two SLSs are approximately found at
r~rgn and r ~ ric, which will be referred to as the inner
and outer SLSs, respectively. In spherical coordinates,
p=rsind and z=rcosd. For wp < 1, Eq. (15) becomes a
univariate cubic equation in 7, yielding one negative solu-
tion and two positive solutions. Clearly, the negative
solution is physically unfeasible, whereas the positive
solutions represent the two SLSs, which can be paramet-
rized using spherical coordinates (r,6) as

1+ivV3 /. . 1
— 1+ =1
2 272

rg=M v
0
1—(i)i\/§31_i L
2 273
+ 73 , 17
Xo

where ”—" and ”+” represent the inner and outer SLSs,
respectively. Here, the quantity y, canbe further ex-
pressed as

Xo = — ——siné. (18)

Note that the two terms in Eq. (17) are complex con-
jugates of each other. Thus, both r; and r; are real func-
tions. In the range of 0 <y, < 1/3V3, both are positive.

TEH

For 8 = n/2, when xo = Er 1/3V3, the inner and out-

LC
er SLSs begin to touch each other at the point (o, z) =

1r
(3/2 gy, 0). It means that oM = ?fi has an upper limit
LC
of 1/3V3. Let wus define A=r,,—rg. Then,

0 < A/rgy < 50%, and equality holds if and only if wM
takes the upper limit.

A massive test particle travels along a time-like path.
If the movement of the test particle is constrained to
p = constant and z = constant, the spacetime experienced
by the particle should be time-like. Consequently, one has
(ésf, = goodr* +2gp3dtdp + g33dp? < 0. Let us denote w, =

¥

e the angular velocity of the test particle. From this

point on, we assume w >0 without loss of generality.

Therefore, we have

g00+2g03(’-)p+g33w§ <0. (19)

This can be equivalently expressed as

1 M 1 2M
a)_:a)—f\/:<0)p<w+:w+*\/:v (20)
P r Y r

which imposes constraints on the angular velocity of the
test particle. In the region defined by rgy < r <r;, we al-
ways have w_ > 0. Thus, this region is where the time-
like path of the test particle is inevitably dragged along
with the BH's rotation. In GR, this region is known as the
ergosphere. We have rigorously demonstrated the exist-
ence of an ergosphere between the event horizon and the
inner SLS. Note that this result remains valid even if the
dynamical parameter w is time-dependent. Therefore, the
evolution of the ergosphere over time can be demon-
strated based on the rotational metric.

As Fig. 1 illustrates, from inside out we have a
curvature singularity (origin), a horizon (red), an ergo-
sphere (light blue), an inner SLS (blue), a normal space
(white), and an outer SLS (black). Similar to the McVit-
tie metric [24], the rotational metric could evolve over
time. Compared with other well-known metric solutions,
such as the Schwarzchild, Kerr, and Schwarzschild-de
Sitter metrics [25], the rotational metric given by Eq. (5)
exhibits a different horizon structure. Nonetheless, the ro-
tational metric ds?> can be easily compared with these
solutions in geometry. For instance, the solution behaves
as that of Schwarzchild [6] at the poles, where the inner
SLS is tangent to the event horizon [3-5], but also as that
of Kerr [21] in the ergosphere, where massive particles
are necessarily dragged along with the BH's rotation, and
finally as that of Schwarzschild-de Sitter (SdS) in the
faraway region outside the outer SLS, where it is not
asymptotically flat [25-27]. Interestingly, there is still a
normal space between the inner and outer SLSs, represen-
ted in Fig. 1 by the white region. The normal space ri-
gidly corotates with the spinning mass at an angular velo-
city @ and directly connects with the usual space sur-
rounding us. For instance, it can be linked to a corotating
NS magnetosphere, as presented below.

It is crucial to understand the physical origin of the
ergosphere. We can describe this origin in terms of phys-
ical degrees of freedom. To be more specific, the rota-
tional transformation given by Eq. (4) contains a new dy-
namical quantity, i.e., w = w(f), and it carries additional
physical degrees of freedom. However, these physical de-
grees of freedom are absorbed by the gravitational sys-
tem during the transformation process. It appears that the
gravitational system has 'eaten' these physical degrees of
freedom through the non-inertial transformation (Eq. (4)),
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event horizon

inner SLS

outer SLS

p(ren)

Fig. 1. (color online) Horizon structure around the rotation-
al metric solution with a singularity at the origin (side view).
Here, the structure is presented for any given ¢. The red curve
marks the event horizon, whereas the light blue region repres-
ents the ergosphere. The inner and outer stationary limit sur-
faces (SLSs) are colored blue and black, respectively. The
white region between the two SLSs corresponds to a rigidly-
rotating normal space. For an NS, it is associated with the
magnetospheric region.

leading to the formation of an additional ergosphere in-
side the system. This is somewhat analogous to the Higgs
mechanism observed in particle physics [28]. This not-
able phenomenon can also be described using a simple
symmetry argument: the Schwarzschild metric processes
more mutually independent Killing vectors than the rota-
tional metric obtained through the non-inertial transform-
ation given by Eq. (4); in other words, the former exhib-
its greater symmetry than the latter, as detailed in Ap-
pendix A. Note that Killing vectors are defined in a co-
ordinate- or frame-dependent manner, although the asso-
ciated conserved quantities are coordinate-independent
[3-5]. It is evident that the symmetry has been reduced or
partially broken by the non-inertial transformation (Eq.
(4)). Thus, this non-inertial transformation plays a role of
"symmetry breaking". Hence, the rotational metric can be
a compelling example that demonstrates the role of non-
inertial transformations in introducing new structures in-
to a gravitational system.

IV. GRAVITATIONAL EFFECTS

For a steadily rotating system, such as the magneto-
sphere of an NS, the angular-momentum parameter @ can
be considered constant [8], at least for a short time peri-
od spanning a few months or years, which is the case we
focus on in this section. In the case of NSs, @ represents

the rate of rotation. Next, we come back to the standard
form of the rotational metric ds?. In general, the repres-
entation of any stationary metric is form-invariant under
the following coordinate transformation [4]:

t— t’:K[t+n(x1,x2,x3)], (21)

where « is a constant parameter and n=n(x',x*,x%) is a
continuous function of the space-like coordinates {x',i =
1, 2, 3}. Here, time ¢ is changed while other coordinates
such as » and p remain the same. Under the coordinate
transformation given by Eq. (21), k;;remains invariant [4]
while w and v; transform as

Yy =y —Ink, vir—>v;=K(v[+6n/(')xi). (22)

These are the gauge coordinate transformations presen-
ted in [4]. According to Eq. (5), one has

prw

0,0,— , (23)

U= (v1,v2,U3) = 7
M

1-2— —p2w?
r

which can be transformed away. Indeed, there always ex-
ists an # such that v; = —dn/dx’, which is known as the
Rindler gauge [4]. From this point on, our analysis is car-
ried out within the framework of the Rindler gauge.

In current experiments, the range of interest is set by
—goo =€ >0, indicating that r, <r <r}. For small val-
ues of @ and M, one has r; ~rgy and rj ~ric. In this
range, according to Eq. (5), we obtain

1 M
¢=§ln(1—27—p2w2), (24)

which is the relativistic scalar potential. Under the weak
field approximation, we have that

M 1
= - 5,020)2, (25)

where the outward "centrifugal" force can be generated
by the w-term. Note that, in GR, the centrifugal force is
an effect of inertia-gravity (or gravity of inertia) [4]. In
the Rindler gauge, the reference system is coordinate time
synchronizable. Physically, coordinate time ¢ and proper
time 7 are connected by

M
dr=e’dr=dr\/1-2— —p2w?, (26)
r

where 7 can be measured by local observers. This has a
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clear physical meaning. In fact, the formula represents
gravitational time dilation, providing an exact solution to
Einstein’s clock-rate problem in curved spacetime. Spe-
cifically, the time dilation reduces to the familiar gravita-
tional redshift observed in the (static) Schwarzschild sys-
tem as the angular-momentum parameter @ approaches
zero. Likewise, as the mass parameter M approaches zero,
it can replicate the time dilation effect observed in Ein-
stein's uniformly rotating disk [4], which is sometimes re-
ferred to as the transverse Doppler effect in astronomy
and astrophysics. According to Eq. (26), the gravitational
redshift, when measured from a static observer, diverges
as the observer approaches either SLS. Therefore, in our
case, both SLSs are infinite redshift surfaces, similar to
existing solutions [4].

As shown by A. Einstein in his article on special re-
lativity, time passes more slowly at the Earth's equator
than at the poles [1]. The problem can be extended to
curved spacetime. In fact, within GR, the rotational met-
ric provides a more comprehensive solution to the clock-
rate problem in curved spacetime. Here, we denote dr, as
a proper separation at the equator and dr, as that at the
poles. According to Eq. (26), one has

dr, 1-2M/R — w?R?
= — <1, 27
dr, 1-2M/R @7)

where R denotes the radius of an astrophysical object. In
the weak-field limit of M/R < 1 and ’R®> < 1,

|
dr,—dr, = ) w*R*d1,,

which further confirms Einstein's result. In view of this,
the rotating metric can be applied universally in every-
day life. For instance, when comparing the passage of
time between two locations on Earth, we must take into
account not only the gravitational effects induced by
Earth's mass but also factors such as latitude and rotation.
Hence, the rotational metric is particularly relevant for
technologies that require precise time measurement, such
as the BeiDou Navigation Satellite System and Global
Positioning System.

V. MAGNETOSPHERIC APPLICATIONS

Next, let us explore some potential applications of the
rotational metric ds? for describing certain astrophysical
phenomena. For instance, consider an NS whose radius
Rys ~ 10 km is approximately of the same order of mag-
nitude as its Schwarzschild radius, rgy, but for which the
gravitational system is free of any singularities and hori-
zons. Generally, the magnetospheric plasma is "frozen"
into the magnetic field of the NS and therefore com-

pelled to corotate steadily with the NS’s spin [8]. Thus,
the rotational metric may be applied to describe the rota-
tionally-induced gravitational effects experienced by the
plasma within the corotating magnetosphere. The corotat-
ing magnetospheric region extends from the NS surface
at r = Rys to the light cylinder at r ~ ric. As an example,
the Galactic magnetar SGR J1935+2154-a highly mag-
netized NS—has been measured to have a spin period of
P~ 3.245 s [29]. If we assume a typical mass value for
the magnetar, such as M = 1.4 M, we can estimate that
ren ~ 4 km and ric ~ 1.6 x10° km, where M, is the mass
of the Sun. In this realistic scenario, rgy/ric ~2.7x107.
Then, we can approximate the lower boundary of the re-
gion in the normal space as r; =~ rgy and the upper bound-
ary as rj ~ ric. In the physics of NSs, the magnetosphere
is defined outwardly by the light cylinder. Hence, the ro-
tational metric ds?, can describe the rotationally-induced
gravitational effects (see Section IV) experienced by the
magnetospheric plasma, especially when p < ric. Beyond
the light cylinder, i.e., when p > ¢, the plasma is unable
to corotate with the NS, as doing so would result in its
corotational velocity exceeding the speed of light. Thus,
the rotational metric is not applicable in the faraway re-
gion. However, the Schwarzschild metric can describe the
region far outside the light cylinder. According to the
Einstein field equation, an alternative metric, the mag-
netospheric metric, is always available to describe the re-
gion around p =~ r;c, which continuously connects with
the rotational metric inwards and reduces to the Schwarz-
schild metric in the distant region (Appendix A). There-
fore, the rotational and Schwarzschild metrics need to be
simultaneously used to describe different regions in one
gravitational system, which implies the necessity for the
rotational metric to exist independently of the original
Schwarzschild metric.

For comparison, we also examine the Kerr metric
alongside the rotational metric. Let us denote a, 7, and j as
the angular momentum per unit mass, moment of inertia,
and dimensionless spin parameter of the magnetar SGR
J1935+2154, respectively. Here, j=a/M. For a typical

NS, I~ gMR]%IS. Then, we can estimate the dimension-

less parameter j as

. a _ wl IVEH (RNs)z
=M 5 e\ M)

which is a basic parameter in the Kerr metric. This is an
approximation, but it is sufficient for an order-of-mag-
nitude estimate. Thus, one obtains j < 2.6 x 10~*, which is
3 -4 orders of magnitude smaller than unity, leading to
the disappearance of the ergosphere in the Kerr solution.
Consequently, the Kerr metric reduces to the Schwarz-
schild metric. In the case of the rotational metric,
A/rgg ~ 107, causing the ergosphere to vanish in this
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scenario as well. However, unlike the Kerr metric, our ro-
tational metric features an axisymmetric normal space
that rigidly rotates about a spin axis. It is important to
note that this space is spatially infinite in the direction of
the spin axis, making it an infinitely large space. In this
normal space, the effects from the w-terms in the rota-
tional metric remain substantial, given that the angular-
momentum parameter @ does not change with the radius
7. This contrasts with the Kerr case, where the angular ve-
locity decreases significantly with the radius » and can be
approximated as Q « = in the weak-field approximation
[22]. As a result, the rotational metric can describe the ro-
tationally-induced gravitational effects experienced by
the magnetospheric plasma, whereas the Kerr metric can-
not.

VI. CONCLUSIONS

In this study, using rotational transformations, we ob-
tained a time-dependent metric solution to the Einstein
field equations, namely, the rotational metric, for a ri-
gidly-rotating volume of space. In particular, it reduces to
Einstein’s metric for a uniformly rotating disk in the zero-
mass limit. We examined the effects of inertia-gravity
arising from rotational transformations and demonstrated
their influence on the metric structure, as well as the
gravitational effects associated with rotation. Interest-
ingly, the rotational metric can be interpreted as a BH
solution, featuring a curvature singularity, an event hori-
zon, and an ergosphere. Notably, this solution can be de-
rived from the Schwarzschild metric via a rotational
transformation. The presence of the ergosphere can be at-
tributed to the "non-inertial" nature of the transformation
used. We further explored the origin of the ergosphere by
analyzing the physical degrees of freedom carried by the
rotational transformation and showed that this transform-
ation partially breaks the symmetry associated with the
original Schwarzschild solution prior to the rotational
transformation. In addition, we found that the rotational
metric provides an exact solution to Einstein’s clock-rate
problem in curved spacetime and accounts for various
gravitational effects. For example, a more general form of
time-dilation emerges naturally from the solution, which
reduces to the standard gravitational redshift and the
transverse Doppler effect in the zero-rotation and zero-
mass limits, respectively. Finally, we observed that the
metric possesses a rotating normal space between its two
SLSs, which can be directly associated with the corotat-
ing magnetospheres of NSs, normal stars, or other exotic

astrophysical objects.
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APPENDIX A: METRICS AND COORDINATE
TRANSFORMATIONS

1. Magnetospheric metric

The rotational metric needs to exist independently of
the Schwarzschild metric. These two metrics can inde-
pendently coexist to describe the regions within and bey-
ond the NS magnetosphere, respectively. In the physics
of NSs, the magnetospheric plasma corotates steadily
with the NS's spin [7, 8]. Generally, the corotational velo-
city of the plasma increases linearly with the cylindrical
radius p within the light cylinder. When p reaches or sur-
passes the light cylinder, the velocity can potentially ex-
ceed the speed of light. Nevertheless, surpassing the
speed of light is impossible for the plasma. To avoid this
problem, the plasma can no longer be frozen into the
magnetic field of the NS magnetosphere. In reality, it
may be no longer forced to corotate with the NS at a
smaller radius than the light cylinder radius, i.e., at p =
rco = (1 —&)rc, where ¢ is an extremely small positive
parameter. Hereafter, rco is referred to as the corotation-
al radius, within which the plasma corotates with the
spinning NS [7, 8]. In general, rco ~ ric is expected in
physics of NSs. Consequently, in the region with r < ¢,
the rotationally-induced gravitational effects experienced
by the plasma can be expressed using the rotational met-
ric ds?. Simultaneously, when the plasma is far outside
the light cylinder, it does not corotate with the NS. There-
fore, the gravitational effects experienced by this plasma
cannot be described using the rotational metric. Instead,
these effects can be described using the Schwarzschild
metric. In principle, an additional metric can be construc-
ted to describe the region with p > rco from the rotation-
al metric ds? by replacing w with w® (p,z). The compon-
ents of this metric can be exactly expressed in cylindrical
coordinates (t,p,z,¢) as
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r r
- (O)p? 0 0 o]

where the function ® = ®(p,z) is fully determined by the
local environment, tends to decrease from 1 at p = rco,
and approaches zero as r increases. The exact form of the
O function can be obtained by solving the Einstein field
equations in the vicinity of p ~ ric. Therefore, there al-
ways exists a metric that continuously connects the rota-
tional metric ds? inwards and the Schwarzschild metric
outwards. The newly constructed metric (Al) is desig-
nated as the magnetospheric metric. Indeed, it reduces to
the Schwarzschild metric in the region far outside the
light cylinder. As a result, these metrics are capable of
describing different regions, enabling accurate character-
ization of the gravitational effects experienced by the
plasma within and outside the light cylinder, respectively.
In particular, the rotational metric ds? can effectively de-
scribe the region within the light cylinder, whereas the
Schwarzschild metric is suitable for describing the re-
gion located far outside the light cylinder. Another point
of interest is that the rotational metric is not asymptotic-
ally flat in any direction other than the rotation axis.
Luckily, this occurs in the faraway region with p > rco. In
this faraway region, the asymptotic non-flatness of the ro-
tational metric may give rise to a series of difficulties in
interpreting the metric physically, despite successful ana-
lyses conducted on the asymptotic non-flat region [26,
27]. However, the asymptotic non-flatness of the outer re-
gion with p > rco has no influence on the applications of
the rotational metric to the magnetospheric region with
p <rco ~ ric. In short, to properly describe the different
regions in an NS system, it is crucial to simultaneously
use the rotational and Schwarzschild metrics. Hence, both
metrics should coexist independently in order to provide
a comprehensive understanding of the NS system.

2. Symmetries and physical degrees of freedom

Compared to the original Schwarzschild metric, the
rotational metric has additional physical degrees of free-
dom. Clearly, the rotational metric features an additional
dynamical parameter, namely the angular velocity .
Analysis can be conducted based on the symmetries of
metrics in terms of their Killing vectors. In the general
case of w # 0, the rotational metric has at least two fewer

[
mutually independent Killing vectors than the Schwarz-
schild metric. In GR, a metric determines a gravitational
system. Each Killing vector generates a symmetry that
corresponds to a coordinate-independent conserved phys-
ical quantity, such as energy or angular momentum. This
imposes a physical constraint on the corresponding grav-
itational system. As a result, the smaller the number of
Killing vectors a spacetime possesses, the more the phys-
ical degrees of freedom it contains. Therefore, the gravit-
ational system described by the rotational metric has
more physical degrees of freedom than the Schwarz-
schild system. Consequently, the two metrics cannot be
considered physically equivalent when describing specif-
ic gravitational systems; this distinction arises from the
presence of inertia-gravity. Mathematically, the rotation-
al metric can be obtained from the Schwarzschild metric
through coordinate transformations. However, these
transformations are non-inertial and involve changes in
the physical degrees of freedom. As such, the specific
gravitational physics is altered during the non-inertial
transformations. In fact, there are several other pairs of
metrics that exhibit similar relationships [30-33]. For in-
stance, the McVittie metric is given by [24]

M 2
F_‘“;&m}df%a(a? {1+
1+

4a(h)p
X [d7? +77 (d6” +sin’ 6de?) ],

4
2 = —
ds™= 4a(t)f’}

(A2)

where 7, 7, 6, and ¢ are spacetime coordinates. Here,
a=a(f) is the expansion factor. We consider a special
scenario where the universe is driven by the cosmologic-
al constant A. In this case, the expansion factor is ex-

A
pressed as a(?) =EXP<\/ 3l) . Let us introduce a co-

2
m} a(®)?. With this

transformation, the metric can be reexpressed as follows:

ordinate transformation, r = {1 +
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M A dr?
dS2=—<1————2>dfz -
r 3 ) T T oMy Vic My

+1r7 (d6” +sin’ 0dg?) .
(A3)

Next, we replace 7 with ¢ = 7+ F(r), where F(r) is determ-
ined by the relation

— = : (A4)

From this substitution, we obtain the Schwarzschild-de
Sitter (SdS) metric,

M A 1
ds?= - (1———5;»2) d#+ —————dr?

p
+r7 (d6” +sin’0dy?) . (A5)

It is worth noting that the expansion factor of the uni-
verse is not limited to the specific form adopted above. In
fact, the choice of expansion factor significantly influ-
ences the physical interpretation of a metric. From this
perspective, one could argue that the McVittie metric, de-
rived using an arbitrary expansion factor, encapsulates
richer physics than the Schwarzschild—de Sitter (SdS)
metric, which is based on a specific expansion factor.
This analysis can also be approached by considering the
physical degrees of freedom involved. Notably, the
McVittie metric possesses one less Killing vector than the
SdS metric, meaning it has more physical degrees of free-
dom. As a result, the McVittie metric is not physically
equivalent to the SdS metric when describing relevant
gravitational systems. Therefore, even if two metrics can
be transformed into each other through coordinate trans-
formations, this does not necessarily imply physical equi-

valence in representing specific gravitational systems or
states, unless they share the same physical degrees of
freedom and there is no change in the "gravity of inertia"
or "gravity of gravity" [4]. In general, after applying non-
inertial transformations along with the standard trans-
formations given by Egs. (21) and (22), stationary met-
rics can be rewritten in the form

dS? = —dT? +dX* +dY* +dz?, (A6)

where 7, X, Y, and Z are the time and space coordinates in
a locally inertial frame, respectively. It is evident that
these metrics are not physically equivalent to the
Minkowski metric, although they can be transformed in-
to the latter under coordinate transformations.

APPENDIX B: CALCULATIONS

In this study, the rotational metric ds? of the form
given by Eq. (5) has a Lorentzian signature diag(—,+,
+,+). It is also continuous and nondegenerate. Generally,
the Christoffel symbols are defined by

1
F/luv ) g¥ (3/4 8ov 0y &y _apguv) ) (B1)

with 0, = 0/dx*. In the cylindrical coordinates, we have
X =(t,0,2,0).

From the metric ds? and its inverse with w = w(r), we
obtain the nonzero Christoffel symbols:

Ooop = GMp
tp — pt — ’
(0* +22) (c2 e +z2—2GM)
GMz
Iﬁltz = Ft

2t = (p2+Z2)<C2\/PZTZ2—2GM>’

. - P GM(c2+2p2a)2) , 5, 2G*M?
T e+ T o)

b}

) , _ PW 2GMp?

F/up:r/‘a’[: ? (Cz—w)s

o GMp (c* (=p* +22* +72%) +2°GM (0 — 422) +/p? + 2 +8G*M*2?)
pp @2 +272 (/PP + 2 -2:GM)’

v, = ZPZ_GMpZZ (364 (PZ+Z2)+2GM(4GM_562 W)),

(pz +Z2)5/2 <c3 /pz +22 —20GM>2
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- GMp (c4 (2p4 -z +p2z2) +2c*GM (z2 - 4p2) PP+ 8G2M2p2)
" (P> +22)°"? <c3 \/,92+z2—2cGM>2

’

_ 2GMp?
v = 2 (p? +Z2)3/2 -

GMz (\/p?+2 (¢ +20°?) —2GM)

0

)

an = C4 (p2+Z2)2 5
, , 2GMp*wz
r tp — r ot = _W’
. GMz (c“ (—p*+22* +p%2%) +26°GM (p* —422) \/p? +22 + 8G2M2z2>
" (2 +22)" (c3 N 2cGM)2 ’
I GMpz* (3¢* (p? +2%) +2GM (4GM -5¢* \/p* +22) )
e (0> +Zz)5/2 (6‘3 /[p? + 22 —20GM>2 '
—_ GMz (c4 (2,04 -z +p2z2) +2c*GM (z2 - 4p2) PP+ 8G2M2p2)
v (p2+zz)5/2 (c3 \/p2+zz—2cGM)2 ’
I 2GMp’z
ep = W,
1 dw
r‘ptt = _?E’
e, =TI¥ @ (GM (3*+22%) - (p +Zz)3/2)
v cp(p2+z2)(c2\/p2+z2—2GM>
¥ - - GMwz
” “ c(p*+7%) (czw/p2+z2—2GM)’
I =1%pp = é

Recall that the Riemann tensor is defined in general as

ort W or AW
oo ov

yl A v
R Yo =— +I",,. I, -1,

uvt no-e

(B2)

Substituting the Christoffel symbols into this formula, we obtain the nonvanishing components of the Riemann

tensor:
GMp*w
Rtlt&p = _Rl[gol = 3.0 2\3/2°
A (r+722)
R R GM (64 (2p4 -zt +p2z2) +4PGMp* \/p? + 72 + 4G2M222>
ptp = ~Rppt = >

e (p*+ Z2)5/2 (c* (p* +22) —4G2M?)
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GMpz (304 (p*+22) +4GM (c2 Vpr+i— GM))

R, =-R, = 572 ’
(P2 +22) (¢ (P2 +22) - 4G M)

N GMpz (3c4 (p*+2%) +4GM (c2 p2+z2—GM))

2tp zpt (02 + 222 (4 (p? + ) — 4G2M?) ’

4(_ 4 44 2.2 2 2 2.2 2M20?
thtz=—RtZz[=GM(C ( p +2Z +pZ)+4C GMZ \/pTZ+4GMp>
o2+ 27 (¢ (07 +2) 4G M) ’
GMp?

t — t —
Riypr = —Rigp = W’
Re =g =M (¢ (20 =2 +072) +2GM (22 =2p%) \/P? + 2+ 0 (p° = 202" = p*2?) )

ttp ot = * (p? +22)"? ’

202\ (20 2002 SR
Rp[tz = —Rptzt = 3GMp <Z (P e ) (c o ) 2GMz \/m> s
¢ (p? +Z2)7/2

) ) GMp*w (p* —22%)

Ry = =Ry = 3002 1 2Y2
A2 +722)
3GMp?

Rpmp =-Rl, = G P

)
2G*Mpz (2 \/p? + 2 +2GM)
2 (pz +Z2)5/2 (c* (pz +22)—4G2M?) ’

GM (64 (p2 +zz)2 +22GMZ \/p*+ 22 —4G2M2p2)
e (0% + Z2)5/2 (c* (0* +22) —4G>M?)

P __RP  —
RPppr =—R0ppp =

bl

P - P =
Rzpz__R zzp —

GMpw (p* —22%)
A+ Z2)5/2

P __RP . —_
RPpp = —RPpp =

3GMp’wz
Rpt,atz = _Rpgpzl == p 5/2°
C3 (pZ + ZZ)
2 2 2
R - _R :_GMp (p —21)
epe ep (0% + Z2)5/2
3
RO, = —RC,y, = 3GMp’z

ppz = T 2 (p2 n Z2)5/2 ’

3GMp (z (p*+2%) (P +p*w?) —2GMz\/p* + zz)

Rl = —Royp = * (0 +22)7 )
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GMp*w

R t =75
pe C3 (pz +Z2)3/2
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ety

The final step is to calculate the Ricci tensor accord-

ing to its definition, namely R,, = R®,,. From those com-
ponents of the Riemann tensor, we find R, =0. This
demonstrates that the rotational metric ds? is indeed an
exact vacuum solution of the Einstein field equations.
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