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Abstract: The low-lying excitation energies of the 27,47,27,07,37,03 states in even-even nuclei are studied with
two modern machine learning algorithms: the Light Gradient Boosting Machine (LightGBM) and Sparse Variation-
al Gaussian Process (SVGP). The obtained results demonstrate that both LightGBM and SVGP perform well within
the training and validation datasets when informed by a physics-based feature space. A detailed comparison with the
results obtained for 2] and 23 states using the Hartree-Fock-Bogoliubov theory extended by the generator coordin-
ate method and mapped onto a five-dimensional collective quadrupole Hamiltonian, shows that both ML algorithms
outperform this model in accuracy. The extrapolation capabilities of these algorithms were further validated using
newly measured 12 data points of 21 and 23 states, which were not included in the training set. In addition, the par-
tial dependence plot method and the shapley additive explanations method are used as interpretability tools for ana-
lyzing the relationship between input features and model predictions. These tools provide in-depth insights into how
the input features influence the prediction of low-lying excitation energies and help identify the most important fea-

tures that drive the prediction, being valuable for understanding the low-lying excitation energies.

DOI: 10.1088/1674-1137/adfe54

I. INTRODUCTION

The investigation of the properties of nuclear excited
states is crucial for elucidating the complex interactions
of protons and neutrons in atomic nuclei. While substan-
tial progress has been made in characterizing low-lying
yrast and yrare states of nuclei near the stability line, ex-
perimental measurements remain particularly scarce for
nuclides that are close to or beyond the drip lines [1—-13].
The measurement of excited states unveils the wide di-
versity of nuclear phenomena, e.g., shell evolution, pair-
ing correlation, shape coexistence, octupole deformation,
clustering, continuum effects [14—18]. Currently, a vast
number of exotic nuclei have yet to be measured due to
the challenges posed by various experimental techniques
and the considerable investment of beam time required,
primarily because of their low production cross section.
Among the excited states, the 27 state garners significant
attention because of its fundamental importance, carry-
ing crucial benchmark information for investigating the
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evolution of shell structure and collectivity. As the pro-
ton and neutron numbers approach the magic numbers,
the energy of the 2} state, E(27), increases sharply, reach-
ing a maximum in double magic nuclei. As one moves
away from the magic numbers along isotope chains, the
presence of low 27 excitation energies reflect deformed
ground state stem from the polarizing effect of added
nucleons, which induces deformation. The non-yrast 27
states are regarded as indicators of collectivity, showing
simpler characteristics compared to their 2] counterparts.
The physical properties of 25 excited states are always of
interest due to their potential role as initial levels of col-
lective bands, which are traditionally referred to as y-vi-
brational bands or quasi-y bands.

Various theoretical methods have been developed to
reproduce and predict the energies of low-lying excited
states, as well as further to explore their underlying phys-
ical mechanisms over the Segré chart, e.g., shell model
[19, 20], nuclear energy density functional theory
[21-24]. However, these models often demand a large
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amount of computational resources, and notable discrep-
ancies between the model calculations and experimental
data have been observed for nuclei located far from the
stability line [25—27]. This may be attributed to the com-
plexity of the mapping function, which is non-trivial and,
in some cases, cannot be properly defined. In recent
years, machine learning (ML) algorithms have been used
to simulate known data and predict unmeasured ones
[28—31]. It has been shown that ML achieves signific-
antly shorter computation times than traditional methods
while maintaining comparable accuracy. Promising res-
ults have been obtained using ML to address critical is-
sues and predict unknown properties of nuclei [28—30], e.
g., p-decay half-lives and energy [32—36], a-decay
[37-41], mass and charge radius of atomic nuclei
[42—45], nuclear density distribution [46—49], heavy ion
collisions [50—53]. Recently, the energies of the 27 states
were studied using the Bayesian neural network (BNN)
approach, artificial neural networks method, and ma-
chine leaning approach for even-even nuclei across the
nuclide chart, showing superior performance compared to
the shell model and the five-dimensional collective
Hamiltonian model [54—57].

In this study, two types of algorithms are employed to
investigate the excitation energies of 21 and 23 states: the
Light Gradient Boosting Machine, which is'based on de-
cision trees, and Sparse Variational Gaussian Process,
which is a Bayesian method. Both algorithms are super-
vised tasks that require ML algorithms along with a set of
labeled data consisting of input and output variables for
regression predictions. Our goal is to assess the perform-
ance of the two ML algorithms in predicting the E(2})
and E(23), and to also examine their interpretability. In
addition, the present study aims to extrapolate these ob-
servables to unseen data, rather than merely optimizing
the fit to known data by minimizing the root-mean-square
(rms) error. A comparison with the calculated results us-
ing the Hartree-Fock-Bogoliubov theory extended by the
generator coordinate method and mapped onto a five-di-
mensional collective quadrupole Hamiltonian
(HFB+5DCH) is also presented [25]. It is noteworthy that
although E(2}) has been studied using other machine
learning approaches, it is intriguing to explore whether
new algorithms can refine the predictions, thereby facilit-
ating more reliable explorations of unmeasured nuclei. In
addition, the present work is the first attempt for the ex-
ploration of E(27) within the framework of machine lean-
ing. Finally, the performance of these ML models in pre-
dicting E(27) and E(23) was also examined using 12
newly measured data points that were not included in the
training set.

The article is organized as follows: Section II de-
scribes the LightGBM and SVGP algorithms, training
and testing datasets, as well as the input features. The ob-
tained results from the two algorithms and discussions are

presented in Section III. In Section IV, we summarize our
findings and conclusions from the present work.

II. METHODOLOGY

In this section we introduce the two algorithms em-
ployed in our study: Light Gradient Boosting Machine
and Sparse Variational Gaussian Process. We also out-
line the parameter sets, training and validation datasets
used in these models.

A. Machine Learning Algorithms

LightGBM as-an efficient gradient boosting frame-
work developed by Microsoft that has been widely used
for various machine learning tasks [58]. It employs a his-
togram-based learning algorithm that significantly accel-
erates training and reduces memory usage compared to
traditional boosting methods. LightGBM handles sparse
data and categorical features effectively, supports paral-
lel and distributed computing, and performs well in tasks
suchas classification, regression, and ranking. A key ad-
vantage of LightGBM lies in its optimized leaf-wise tree
growth strategy, which improves accuracy by reducing
loss more aggressively than level-wise methods. Com-
bined with its strong scalability and low computational
cost, LightGBM has become a popular choice in both ma-
chine learning competitions and real-world applications.

SVGP is a scalable probabilistic modeling approach
that integrates variational inference with sparse approx-
imations [59, 60]. By introducing a small set of inducing
points, SVGP reduces the computational complexity of
standard Gaussian Processes (GP) from O(N?) to O(M?),
where M < N, while preserving core GP properties such
as uncertainty quantification. Its main strengths include:
(1) Efficiency, through sparse matrix operations and evid-
ence lower bound (ELBO) optimization; (2) Flexibility,
supporting non-Gaussian likelihoods, high-dimensional
features, and customizable kernels; and (3) Interpretabil-
ity, as the variational distribution g(u) directly conveys
the model’s confidence in predictions. Compared to tradi-
tional GPs and deep neural networks, SVGP offers a bal-
anced trade-off between expressiveness, uncertainty es-
timation, and computational feasibility, serving as a
bridge between Bayesian inference and large-scale ma-
chine learning.

To ensure fair and effective model evaluation, key hy-
perparameters for both models were systematically con-
figured, with an emphasis on balancing predictive accur-
acy and computational efficiency. For LightGBM, the
main hyperparameters are set as follows: the maximum
number of leaves per tree is 10, the maximum depth is set
to -1 (indicating no depth limit), and the number of boost-
ing iterations is fixed at 50,000. All other parameters re-
main at their default values to maintain standard model
behavior. For SVGP, the number of inducing points (n_z)
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is set to 100 to enable sparse variational approximation.
During training, 20 particles (n_particles = 20) are used
for Monte Carlo estimation of the ELBO, and 100
particles (n_particles_test = 100) are used during testing
to improve stability. The model is trained using a batch
size of 300 (batch size 300) over 8000 epochs
(n_epoch = 8000), with a learning rate of 0.01 (Ir = 0.01).

B. Data and Input Features

The dataset used in this study comprises a total of 660
and 437 experimental data points corresponding to the
excitation energies of the 2} and 2} states, respectively,
in even-even nuclei with proton numbers ranging from
Z =10 to Z = 100. The data are obtained from the Nation-
al Nuclear Data Center [61]. To train the machine learn-
ing models, the dataset is randomly divided into training
and test sets with various ratios. In our previous work, we
initially investigated the effect of the ratio between the
training and validation sets on the prediction perform-
ance of the LightGBM model [56]. The results showed
that the rms deviation decreases as the proportion of
training data increases. However, an excessivelylarge
training set reduces the number of data points in the test
set, thereby increasing the uncertainty of performance
evaluation. Therefore, following the set in earlier studies,
we adopt a split ratio of 80% for training and 20% for
validation in this work. This 4:1 division, along with oth-
er commonly used ratios such as 7:3 or 3:1, is a standard
strategy widely applied in machine learning model
design. Totally, we randomly divide the data points into
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Fig. 1.

training and validation data sets 500 times. In order to
study E(27) and E(2;), we incorporate 16 relevant fea-
tures of nuclei into our algorithm, referred to as M16.
M16 consists of 16 inputs: one-proton separation energy
(S,), one-neutron separation energy (S,), two-proton
separation energy (S,,), two-neutron separation energy
(S2.), and the separation energy of *He (Sy,); deforma-
tion parameters derived from FRDM calculations [62]
(B1) and from WS4 [63] (B,); proton number (Z), neut-
ron number (N), mass number (A), experimental binding
energy (B), binding energy predicted from the liquid drop
model (B;py ), the difference between experimental B and
the liquid drop model (B — B.py ), Casten factor (P) [64],
the valence number of neutrons as measured from the
nearest closed shell (v,), the valence number of protons
as measured from the nearest closed shell (v,). These fea-
tures are recognized as fundamental characteristics of
nuclei and impact the performance of ML models. The
performance of ML algorithms on both training and test
datasets were quantified using the standard rms deviation
between the machine learning predictions and the experi-
mental data, defined as follows:

N
1
rms = N Z(logloEE”’ —loggEML)?,

i=1

where log,oEM" represents ML predictions, logoEE*” de-
notes the experimental value, and N is the total number of
nuclei.
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(Color online) The learning curves of the LightGBM and SVGP models for the prediction of the excitation energies of 2] and

23 states illustrate the evolution of the loss function with training iterations (i.e., the number of decision trees or training epochs).
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1. RESULTS AND DISCUSSION

Performance of LightGBM and SVGP in the study of
E(27). In this work, to ensure the quality the models, we
initially examined the learning curves of LightGBM and
SVGP for excitation energies of the 21 and 23 states un-
der the 4:1 train-validation split, as shown in Fig. 1. The
learning curves show how the loss function evolves with
the number of training iterations (or trees). As training
proceeds, the loss gradually decreases and converges, in-
dicating that the model is approaching an optimal state.
The difference between training and validation losses re-
flects model's fitting behavior: the two curves should be
close under proper training, while a large difference
between them suggests overfitting or underfitting. One
can infer from Fig. 1 that the loss values for validation
and training decrease with the increase in the number of
trees (or epoches) and saturate at around 20000 for Light-
GBM and approximately 500 for SVGP in the study of
E(27). For E(23), the saturation occurs at around 25000
for LightGBM and at around 500 for the SVGP, respect-
ively. In addition, one can observe in Fig. 1, the loss
functions for both models decrease steadily on both train-
ing and validation curves lying on top of each other, in-
dicating no fitting issues. These results demonstrate that
the selected hyperparameter configurations effectively
ensure training stability, good generalization, and compu-
tational efficiency for both models.

The excitation energies of the 2; states were previ-
ously explored in our work using the LightGBM al-
gorithm [56]. The rms deviation of LightGBM approach
with respect to the experimental log,,E was determined
to be 0.030(1) for E(27). In addition, the E(2]) was also
analyzed using LightGBM in Ref. [57], albeit with only
five physical features. Nevertheless, it still revealed that
the average difference between the LightGBM predic-
tions and the experimental data was 18 times smaller than
that obtained by the shell model and only 70% of the
BNN prediction results [57]. In this study, we incorpor-
ated deformation parameters derived from FRDM calcu-
lations [62] (B;) as an additional feature to account for
the collectivity of nuclei. Finally, the rms values of
0.032(3) and 0.049(5) of the training and validation sets
were obtained, respectively. By utilizing the same 16 in-
put (M16) features within the framework of SVGP, we
also investigated the E(2}) of even-even nuclei. This im-
plementation yielded rms values of 0.066(2) and 0.070(6)
of the training and validation sets, respectively, which are
a factor of two inferior to those obtained using Light-
GBM, suggesting that the LightGBM more effectively
captures the excitation energies of 2} states.

Performance of SVGP and LightGBM in the study of
E(23). Prior to this work, the excitation energies of 2}
states remained unexplored using machine learning meth-
odologies. In the current study, we employed LightGBM

and SVGP to analyze E(23}) using the M16 feature space.
Fig. 2 illustrates the density distribution of the rms value
for the validation dataset of the excitation energies of the
2% states using LightGBM and SVGP, respectively. The
rms for the validation data points predicted by Light-
GBM and SVGP were 0.058(5), and 0.077(6), respect-
ively. This means that LightGBM and SVGP reproduce
the experimental data within a factor of 10°%® = 1.14 and
100977 = 1.19, respectively. These results are better than
that most of the traditional theoretical models. Similar to
the study of E(27), the decision tree-based LightGBM
outperforms SVGP/in predicting E(2;). For the reader's
convenience, we-have summarized the current results in
Table 1. It is worth noting that although the predictions
from LightGBM are deterministic under fixed training
data and parameters, the reported validation rms error
(e.g., 0.058 +0.005) results from repeated random parti-
tioning of the training data. Specifically, we performed
500 independent training runs, each using a randomly se-
lected) 80% of the data for training and the remaining
20% for validation. The reported mean value of rms and
standard deviation are calculated across these runs to as-
sess the model’s stability and generalization under differ-
ent data splits.

Fig 3 displays the calculated excitation energies of the
27 states derived from LightGBM, SVGP, and
HFB+5DCH calculations, as a function of their experi-
mental values. This comparison facilitates a comprehens-
ive evaluation of the predictive power of each methodo-
logy across an extensive energy scale, spanning over an
order of magnitude from approximately 0.3 MeV to 10
MeV. The analysis reveals that, on average, the
HFB+5DCH model tends to overestimate the excitation
energies E(23), with predicted values approximately 25%
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Fig. 2. (Color online) Density distribution of the rms value
of the validation dataset from LightGBM and SVGP for the
E(23) using M16 feature space, respectively. The results from
500 runs are displayed. Dashed lines denote a Gaussian fit to
the distribution. In each run, the data points were randomly
split into training and validation sets at a ratio of 4:1.
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Table 1. The average rms values on the training and valida-
tion sets.
Algorithms Training Validation
EQ2) LightGBM 0.032(4) 0.049(5)
EQ27) SVGP 0.066(2) 0.070(6)
E@23) LightGBM 0.040(3) 0.058(5)
E@2}) SVGP 0.067(7) 0.077(6)
10F E(2%) i
=
2
2
o
5}
=
H
If ]
[ HFB+5DCH ]
0.5f LightGBM 1
SVGP
0.5 1 10
Experimental
Fig. 3. (Color online) Theoretical results for E(2}), obtained

using HFB+5DCH, LightGBM, and SVGP, compared with
the corresponding experimental data.

higher than the experimentally observed ones [25]. In
contrast, both SVGP and LightGBM exhibit reduced vari-
ance in their predictions, indicating greater consistency.
Notably, the LightGBM predictions demonstrate a high
degree of concordance with the experimental data, under-
scoring its superior accuracy compared to the
HFB+5DCH and SVGP approaches.

To more clearly illustrate the discrepancies between
the calculations and experimental results, the differences
between the machine learning predictions and experi-
mental data for E(2}) on the nuclear chart are quantified
in Fig. 4.1t is evident that both machine learning al-
gorithms predictions exhibit excellent agreement with the
experimental data for nearly all nuclei, including triaxial,
transitional and magic nuclei. However, deviations are
mainly observed in light nuclei with complex structures,
presenting halos and clusters, as well as in these nuclei
that exhibit dominant single-particle characteristics. Ad-
ditionally, significant deviations are also noticeable in the
neutron-rich nuclei of the medium-heavy mass regions,
likely due to the relative scarcity of training data in these
areas.

Physically interpretablity. The implementation of ma-
chine learning algorithms is often constrained by their
“black box” nature, which obscures the reasoning behind
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Fig. 4.  (Color online) Panels (a) and (b) show the differ-
ences between the experimental data and machine learning
predictions using LightGBM and SVGP for the excitation en-
ergies of 2§ states, respectively.

their predictions. Recently, explainable Al techniques
have gained significant attention as critical tools for ad-
dressing the interpretability gap. Among various meth-
ods, SHapley Additive exPlanations (SHAP) has become
widespread recognized for its effectiveness in providing
clear, comprehensible insights into model behavior, while
also quantifying feature importance through cooperative
game theory frameworks [65—68]. In this work, we apply
the SHAP technique to gain a deeper understanding of the
results obtained from LighGBM. Fig. 5 presents the rank-
ing of features obtained from the M16 feature space for
predicting E(23) using LightGBM. In these plots, fea-
tures are ordered along the y-axis according to their im-
pact, with the most impactful feature at the top and the
least influential at the bottom. The x-axis represents the
relative importance of each feature, as determined by its
SHAP value. Features with larger absolute SHAP values
have a greater impact on the model’s predictions, while
those with smaller values have a smaller effect. The ana-
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Fig. 5. (Color online) The ranking of feature importance

measured by SHAP value for the excitation energies of 2
states. The color of each bar indicates the direction of the fea-
ture’s influence on the prediction: blue for a decrease with
lower feature values and red for an increase with higher fea-
ture values, with the intensity of the color denoting the mag-
nitude of the feature’s value.

lysis reveals that the feature P is the most critical, as it re-
flects nuclear collectivity, which was high sensitivity to
E(23). A similar behavior of P was also observed for the
study of E(27) [56, 57]. The difference in binding energy
between experimental data and the liquid drop model (de-
noted as B— Bypy) occupies a secondary position in the
ranking, reflecting shell and pairing effects, as well as
nuclear deformation [56]. Following this, the top six fea-
tures include Z, N, S,, Sy.. Beyond these, all other fea-
tures have relatively smaller contribution, but it has indis-
pensable contributions to the prediction of EJ. This sug-
gests that using all 16 basic features appears a reasonable
manner for making accurate predictions.

To identify feature redundancy, we constructed a sim-
plified feature set consisting of the top six SHAP-ranked
features (denoted as M6) and used it as input to train both
LightGBM and SVGP models. On the E(2}) validation
set, the resulting rms errors were 0.070 and 0.090, re-
spectively—higher than the 0.058 (LightGBM) and 0.077
(SVGP) achieved with the complete M16 feature set.
Compared to the M16 model, the rms values of the M6
models increased by approximately 20% and 16%, re-
spectively, suggesting that non-linear interactions may
exist among input features, and removing certain features
could weaken the model's ability to leverage other in-
formation, ultimately impairing predictive
performance.Therefore, although WS4’s 8, ranked lower
than FRDM’s B; in the SHAP analysis, we retained

FRDM’s B; in the initial feature set to preserve any po-
tential synergistic effects. Additionally, both LightGBM
and SVGP have strong feature selection capabilities and
employ regularization (LightGBM) and variational infer-
ence (SVGP) during training, making them robust to re-
dundant features. This robustness underscores the reliab-
ility of our methodology and modeling choices.

Partial Dependence Plot (PDP) analysis is an another
effective method for interrogating the functional relation-
ship between input features and model predictions in the
LightGBM algorithm [69, 70]. Within this framework, if
the curve for a particular feature is nearly constant or
shows random fluctuations, it suggests that the feature
may be insignificant or uninformative. Conversely, a
steep PDP curve or one that exhibits significant changes
indicates that the feature has a substantial contribution to
the model's predictions. Fig. 6 quantifies the impact of
the six most salient input features on the prediction of
E(23). Although PDP and SHAP utilize different tech-
niques to characterize the importance, the identified six
most important features are the same. Among the input
features, proton number (Z) has the most pronounced in-
fluence on the prediction of E(2}). It has a negative im-
pact, an increase from 20 to 80 resulted in a decrease in
the PDP value from 3.34 to 3.10, representing a reduc-
tion of approximately 7.1%. The Casten factor P also ex-
hibits a negative impact, an increase from 0 to 4 resulted
in a decrease in the PDP value from 3.29 to 3.08, repres-
enting a reduction of approximately 6.2%. Similar beha-
viors were observed for the features of N and Sy..
However, as shown in Fig. 6, the predicted E(2}) in-
creases with increasing values of B—B;py and S,. The
effect becomes particularly significant when the differ-
ence in the binding energy (B — Bypy ) increase from -3 to
3 MeV. As shown in Fig. 7, the PDP curve for B;py is
nearly flat, with a variation of only about 0.16%, indicat-
ing a negligible average impact on the model’s output.
This finding is consistent with its low importance re-
vealed by the SHAP analysis..

Performance of SVGP and LightGBM on the newly
reported data. In addition to best reproduce the known
E(21) and E(2;) data across the nuclear landscape, one of
important objective of this work is to apply the al-
gorithms in the extrapolated region where experimental
measurements are absent or currently inaccessible. In
present work, we initially evaluate the extrapolation abil-
ities of the LightGBM and SVGP algorithms by ventur-
ing beyond the training area using new data points. Fig. 8
compares a total of 12 newly reported data from 2020 to
the present with the predictions from LightGBM and
SVGP [71-81]. These newly measured data points were
not included in the training process. It is evident that
LightGBM and SVGP demonstrate reasonable predictive
capabilities outside the training region for these nuclei,
showing good agreement within the uncertainty. This fa-
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Fig. 6. (Color online) PDP analysis of the effect of input features on the excitation energies of 23 states. The blue lines represent the

partial dependence value, while the gray columns represent the data point distribution for each input feature at a certain value. The red

dashed lines indicate the positions of neutron or proton magic numbers.
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Fig. 7. (Color online) Similar to Fig. 6, but for Bypy .

vorable outcome could be attributed to the newly meas-
ured nuclei, which differ by up to 2 nucleons from their
nearest neighbors in the (Z, N) space of the training set,
with a maximum difference of 4 for the 2} states. Addi-
tionally, although present results indicate that the em-
ployed machine learning models maintain strong general-
ization capability and stable predictive performance for
the nuclei not so close drip lines and where neighbors ex-
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Fig. 8. (Color online) Comparing the new experimental data
for E(2}) and E(2}) in MeV with the results from LightGBM
and SVGP, the blues symbol represent the results from SVGP,
while the red symbols denote the results from LightGBM. The
EQ2}) and E(2}) are shown in circles and squares, respect-
ively.

present. This difficulty arises due to the weakly bound or

ist, it is challenging to draw conclusions regarding the ro- unbound nature of these nuclei, which may lead to abnor-
bustness of drip-line nuclei, where no close neighbors are ~ mal behavior. Such strong performance in these extrapol-
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ation tests instills confidence in the model's predictions
for nearby nuclei that have not yet been experimentally
investigated. However, as also indicated in Fig. 8, there
are slightly discrepancies between the ML predictions
and the experimental data for the '"9Zr. This differences
may arise from the tentative assignment of spin and par-
ity from the experimental side, or the enhanced triaxial
deformation that the ML may not have adequately cap-
tured [75]. A attempt to include the triaxial deformation
(y) information from the sophisticated nuclear models in
the feature space may enhance the prediction capability.
It should be mentioned that all target values used for
training were sourced from the National Nuclear Data
Center [61] in this study. However, since experimental
data on E(2}) and E(2}) are intrinsically limited (cover-
ing only a few hundred nuclei), we did not apply special
filtering for cases with uncertain assignments during data-
set construction. We will explore how to effectively in-
corporate experimental uncertainty or systematic bias in-
to machine learning models, for example by introducing
confidence-based weighting or using Bayesian frame-
works, in order to enhance model robustness against la-
bel noise.

Data-driven approaches should not only aim for pre-
dictive accuracy but also strive to uncover underlying
physical patterns. In Fig. 6, the PDP curves for Z and N
show pronounced slope changes near known magic num-
bers, indicating the model’s sensitivity to shell effects.
Fig. 9(a, c) presents the variation of E(27) with Z and N,
with red markers denoting cases where Z or N corres-
ponds to a magic number. These results show that closed-
shell nuclei generally have higher excitation energies.
Fig. 9(b, d) shows how SHAP values vary with Z and N,
reproducing the shell effects in many regions, though dis-
crepancies remain in deformation-dominated
areas —likely due to the complex nature of nuclear
shapes. This_indicates that the model's predictive accur-
acy in such regions is still lower than that in spherical
nuclei. Nonetheless, these results demonstrate that the
machine learning model captures not only statistical
trends but also key physical features of nuclear structure.

As demonstrated that the performance of machine
learning models tends to deteriorate in regions that exper-
imental data is scare, as these algorithms are unable to
learn any points in such areas. At present, we extrapolate
to unmeasured nuclei for each isotope chain by consider-
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Fig. 9. (Color online) Panels (a) and (b) show the variation of E(2}) energies and SHAP values with proton number Z, where red dots

correspond to nuclei with neutron magic numbers, and blue dots to non-magic N. Panels (c) and (d) depict the variation of E(2}) ener-

gies and SHAP values with neutron number N where red dots correspond to nuclei with proton magic numbers and blue dots represent

non-magic Z.
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ing two additional even-even nuclei. Given that ML al-
gorithms generally exhibit reliable extrapolation abilities
for nuclei that are relatively proximate to the training re-
gion and possess fast simulation speeds, it will be
straightforward and easy to extend the predictions to un-
known data once new experimental data are measured. In
this study, despite the fact that the results from the Light-
GBM and SVGP can only be tested with limited new data
points due to the challenges associated with measuring
these far from stability line nuclei, redictions for over 300
nuclei have already been made and are included in the
supplementary material [83]. Further experimental data
from rare-isotope facilities like HIAF, GANIL, FAIR,
FRIB, and RIKEN will be crucial for validating these ex-
trapolated results. Additionally, this new data may
provide a reference for the future experimental measure-
ment.

Finally, to have a comprehensive study on the excita-
tion energies of low-lying excited sates, we also trained
both models to study the excitation energies of
27,23,47,03,05 states, the results are listed in the Table 2.
One can see that the typical rms values obtained on.the
validation set are about 0.02 to 0.07 for all the states in
this work, which means the differences between the ex-
perimental and theoretical results range from 1.05 to 1.17
times. This performance is significantly better than the
results provided by the theoretical nuclear models. Com-
paring the findings with those in Refl [57], it can be seen
that the incorporating more features. that contain physical

information leads to smaller rms values. This is because
only 5 features were used in Ref. [57], whereas our work
employed more than 16 features. In addition, the rms for
validation provided by SVGP is very close to that of the
training set, while the rms for validation from LightGBM
is larger than that of the training set. This is because
LightGBM has a very deep structure, allowing it to
achieve high accuracy on the training set. Overall, one
can observe that we adopt state-of-the-art ML algorithms
and consider a wide range of physically meaningful input
features, achieving the best accuracy across multiple pre-
diction tasks. A key strength of our approach lies in the
high dimensionality of the input features, which essen-
tially encode our current comprehensive understanding of
nuclear excitations energies. The combination of high-di-
mensional inputs, measured experimental data, and ad-
vanced ML algorithms allows us to generate predictive
results'that can be compared with future experimental ob-
servations. Although the SVGP model performs slightly
worse than LightGBM in terms of accuracy on certain
tasks, as discussed in the manuscript, these two al-
gorithms are fundamentally different in their design.
SVGP, similar to BNN, estimates parameter distributions
during training and thus provides predictive uncertainties.
In contrast, LightGBM estimates uncertainty by re-
peatedly training on different randomly selected subsets
of the data and computing the statistical distribution of
predictions. Exploring low-lying excitation energies us-
ing both types of models offers complementary insights

Table 2. The average rms values for the excitation energies of 27,4},27,05 ,37,0% states.

Energy Number of Nuclei Feature Number Training Ratio Algorithm Training Set rms Validation Set rms Reference
622 5 0.9 LightGBM 0.130 Ref. [57]
629 3 0.9 BNN 0.048 Ref. [55]
EQ2D) 660 16 0.9 LightGBM 0.0079(4) 0.030(9) Ref. [56]
660 16 0.8 LightGBM 0.032(4) 0.049(5) This work
660 16 0.8 SVGP 0.066(2) 0.070(6) This work
594 3 0.9 BNN 0.035 Ref. [55]
E@4]) 608 16 0.9 LightGBM 0.0071(1) 0.020(3) Ref. [56]
608 16 0.8 SVGP 0.050(2) 0.046(2) This work
LightGBM 0.040(3) 0.058(5) This work

EQ23) 437 16 0.8
SVGP 0.067(7) 0.070(6) This work
338 3 0.9 BNN 0.063 Ref. [55]
E03) 323 16 0.8 LightGBM 0.046(3) 0.064(4) Ref. [82]
323 16 0.8 SVGP 0.075(4) 0.072(3) This work
LightGBM 0.035(1) 0.047(3) Ref. [82]

E3]) 316 16 0.8
SVGP 0.050(3) 0.055(3) This work
LightGBM 0.050(2) 0.064(3) Ref. [82]

E(0}) 225 16 0.8
’ SVGP 0.062(3) 0.067(4) This work
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and adds valuable robustness to our investigation of the
systematic behavior of excitation energies. In addition,
we place great importance on the verifiability of our re-
search and have organized and uploaded the code and
datasets used in this study to a public GitHub repository:
https://github.com/1z1888-afk/Study-the-yrast-and-yrare-
2-states-using-machine-learning-approaches.

IV. SUMMARY

In this study, the excitation energies of the 2] and 23
states for even-even nuclei were evaluated using two ma-
chine learning algorithms: LightGBM (a decision tree-
based method) and SVGP (a Bayesian approach) al-
gorithms. This is the first attempt to apply machine learn-
ing algorithms to predict E(23), marking the inaugural
use of data-driven approaches for this observable. Em-
ploying the M16 feature space, the rms deviations of
LightGBM and SVGP with respect to the experimental
logoE values are 0.049 + 0.005 (1.12 times) and 0.070 =
0.006 (1.18 times) for 27, respectively. For E(23), the rms
deviations of LightGBM and SVGP with respect to the
experimental logcE values are 0.058 + 0.005 (1.14

times) and 0.077 + 0.006 (1.19 times), respectively. Both
methodologies substantially outperform the results from
the HFB+5DCH model [25], effectively capturing the be-
haviors of excitation energies of the 2} and 2} states over
nuclear landscape. A comparative analysis between
LightGBM and SVGP reveals that LightGBM consist-
ently delivers superior performance compared to SVGP
across both training and validation datasets. However,
they exhibit very similar behavior on the limited new
dataset. These findings underscore the potential of ma-
chine learning as a formidable alternative to traditional
theoretical models/ for predicting excitation energies,
showcasing clear-and substantial success. In conclusion,
our results, derived from two machine learning frame-
works, not only corroborate previous studies but also es-
tablish LightGBM and SVGP as useful and effective
tools for machine learning applications in nuclear phys-
ics.
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