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Abstract: We  investigated  the  impact  of  a  constant  external  magnetic  field  on  the  dressed  propagators  of  up-,
down-,  and  strange  quarks.  In  the  weak  field  limit,  we  derive  a  general  momentum-space  representation  for  the
propagator and numerically solve the corresponding gap equation.  Our analysis  reveals  that  the vector term of the
propagator can be decomposed into components parallel and perpendicular to the magnetic field, resulting in aniso-
tropic effective masses, with the transverse mass consistently exceeding the longitudinal mass. This mass disparity
exhibits a power law dependence on the magnetic field strength and is less pronounced for the strange quark com-
pared to up and down quarks. Additionally, the magnetic field induces axial-vector and tensor terms, highlighting the
Zeeman effect resulting from quark interactions with the magnetic field. These findings have important implications
for (inverse) magnetic catalysis, and phenomena such as vector meson and pion condensations.
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I.  INTRODUCTION

The physics  of  strong electromagnetic  fields  offers  a
wealth  of  phenomena  across  various  domains.  In
quantum  electrodynamics  (QED),  the  advent  of  high-in-
tensity laser  facilities,  particularly  following  the  inven-
tion of chirped pulse amplification, opens avenues for ex-
ploring  non-perturbative  effects  in  the  vacuum,  such  as
Schwinger electron-positron pair production and vacuum
birefringence  [1, 2]. These  investigations  aim  to  elucid-
ate the  fundamental  nature  of  vacuum  in  strong  electro-
magnetic fields. In quantum chromodynamics (QCD), the
study of strongly interacting matter in the presence of in-
tense  electromagnetic  fields  enhances  our  understanding
of the strong interaction and QCD matter behavior in ex-
treme environments. Recent interest has surged in study-
ing  matter  under  external  magnetic  fields,  as  evidenced
by various reviews, e.g. [3–6]. This focus is driven by the
recognition that  strong magnetic  fields  can  exist  in  vari-

eB ∼ m2
π 1018

eB ∼ 10m2
π 1019

ous astrophysical and experimental environments, such as
the early universe [7], compact stars (notably magnetars)
[8],  and  non-central  heavy-ion collisions  particularly  ul-
tra-peripheral  collisions  [9] at  facilities  such  as  the  Re-
lativistic Heavy Ion Collider (RHIC) and the Large Had-
ron  Collider  (LHC)  [10].  Despite  their  transient  nature,
the magnetic fields generated at these facilities can reach
extraordinary  strengths,  thousands  of  times  greater  than
those on magnetar surfaces. At RHIC, for instance, mag-
netic fields can reach approximately ,  about 
Gauss,  while  at  the  LHC,  they  can  intensify  to

,  approximately  Gauss  [10]. Such  ex-
treme conditions  are  anticipated  to  significantly  influ-
ence the behavior  of  quark matter,  potentially  leading to
novel  phenomena,  such  as  magnetic  catalysis  [11], in-
verse magnetic catalysis [12], chiral magnetic effect, etc.
[13, 14].

Building on these experimental advances, it  is essen-
tial  to  deepen  the  theoretical  understanding  of  strong
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magnetic fields, particularly constant ones, given the tran-
sient  nature  of  fields  generated  in  colliders.  Research  in
this  area  includes  the  Nambu-Jona-Lasinio  (NJL)  model
[15–22],  Holographic  QCD  [12, 23–28],  Lattice  QCD
[29–37],  Functional  Renormalization  Group  Method
[38–43],  and  Dyson-Schwinger  equations  in  both  QED
[44–49]  and QCD [50–52],  among others.  Theoretically,
unlike electric fields, constant magnetic fields do not per-
form work on charged particles,  enabling the analysis of
equilibrated systems in their  presence.  This unique char-
acteristic facilitates the study of matter dynamics and re-
lated phenomena within magnetic fields without the com-
plexities  of  energy  transferring  by  the  field  itself.  From
quantum  mechanics,  when  an  electron  interacts  with  an
external magnetic field, its energy levels in the plane per-
pendicular  to  the  field  become  quantized  into  discrete
Landau  levels.  However,  along  the  direction  parallel  to
the magnetic  field,  the  electron's  motion  remains  uncon-
strained,  mimicking  free-electron behavior.  This  dicho-
tomy introduces  a  fundamental  anisotropy  in  the  re-
sponse of the electron to the magnetic field [53, 54].

ΛQCD

Now considering QCD, quarks in an external magnet-
ic field are expected to exhibit effects similar to those of
electrons. However, in the infrared region, quarks are sig-
nificantly influenced by gluon dressing, leading to an ef-
fective mass that exceeds the bare current quark mass, ap-
proaching a scale comparable to . This  dressing ef-
fect causes quarks to behave as quasiparticles, character-
ized by an effective mass often referred to as the constitu-
ent  quark mass [55].  Thus,  when analyzing quarks in  an
external  magnetic  field,  it  is  crucial  to  consider  both  the
magnetic field's influence and the role of gluon dressing,
particularly  in  the  infrared  domain.  Extensive  research
has  either  overlooked  quark-gluon interactions  by  treat-
ing quarks as "free" particles [56] or replaced the current
quark  mass  with  a  momentum-independent  constituent
mass, a common approach in the NJL model [22, 57]. Al-
though  these  approaches  provide  a  foundation  for  more
complex analyses  involving  variables  such  as  temperat-
ure and chemical potential [58–60], it is essential to prior-
itize  accurate  momentum-dependent  gluon  dressing,  as
dictated by the strong interaction.

Several  methods,  including  Landau-level representa-
tion, the Schwinger proper-time formalism, and the Ritus
method,  have been developed to study the propagator  of
"free" quarks in an external magnetic field. These repres-
entations,  while  distinct,  are  inter-convertible,  providing
different perspectives on the quark propagator. The Ritus
method is  particularly  advantageous  because  of  the  sim-
plified  form of  the  "free"  quark  propagator  on  the  Ritus
basis. Additionally,  it  provides  a  straightforward  frame-
work for deriving both Landau-level and Schwinger prop-

er-time representations from it. Thus, we begin by apply-
ing  the  gluon  dressing  to  the  "free"  quark  propagator
within  the  Ritus  basis,  deriving  its  general  form  in  both
coordinate and momentum spaces. Following this, we nu-
merically solve the associated gap equation to obtain res-
ults for the dressed quark propagator. This method aligns
with established studies on the fermion propagator using
the Dyson-Schwinger equation in both QED [44–49] and
QCD [50–52].

The paper  is  organized  as  follows.  Section  II  dis-
cusses the energy dispersion relation of quarks in an ex-
ternal  magnetic  field.  Section  III  presents  the  general
form of the "free" quark propagator and its dressed form
in the weak-field approximation. Section IV addresses the
gap  equation  that  governs  the  propagator.  Section  V
provides the numerical results, and Section VI concludes
with a summary. 

II.  ENERGY DISPERSION RELATION

Aµ
ext = (0,0,Bx,0)

In  the  presence  of  a  constant  magnetic  field B ori-
ented along the z-axis, the electromagnetic vector poten-
tial  in  the  Landau  gauge  is  given  by .
The energy dispersion relation for a quark in this field is
expressed as: 

ϵ2
n − p2

z − (2n+1−2sz)|q f B| −m2 = 0 , (1)

q f sz = ±1/2
(sz = ∓1/2)

n = 0
sz = 1/2
ϵ2

0 = p2
z +m2

n > 0

where  is  the  electric  charge  of  the  quark, 
 corresponds to the spin parallel (anti-parallel)

to  the z-axis  for  positively  (negatively)  charged  quarks.
For positively charged quarks, when , the spin aligns
with the magnetic field ( ), and the energy disper-
sion  relation  simplifies  to ,  representing  the
unique  ground  state  or  the  lowest  Landau  level  (LLL).
For , energy levels exhibit two-fold spin degeneracy
due  to  the  Zeeman  effect.  A  schematic  representation  is
provided in Fig. 1.

pz

2n|q f B|

−2sz|q f B|

The dispersion  relation  reveals  the  distinct  behaviors
of  quark  motion  parallel  and  transverse  to  a  magnetic
field.  The  longitudinal  momentum  remains continu-
ous,  allowing  for  unimpeded  quark  propagation  parallel
to  the  field.  In  contrast,  the  term  represents  the
quantized  Landau  levels  that  govern  transverse  motion,
imposing constraints  that  restrict  quarks  to  discrete  en-
ergy  states.1) The  additional  term  introduces
spin-dependent  energy  splitting.  Spin-up  quarks,  aligned
with the  magnetic  field,  occupy  lower  energy  states,  in-
cluding  the  non-degenerate  LLL.  In  contrast,  spin-down
quarks, anti-aligned with the field, occupy higher energy
states, with higher Landau levels exhibiting two-fold de-
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1) Note that there are two degrees of freedom in the transverse plane: the Landau level index n, which characterizes energy quantization, and the guiding center of the
cyclotron orbits, linked to the conserved canonical momentum in the y-direction,  (not explicitly present in the dispersion relation).
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generacy due to possible occupation by both spin orienta-
tions.

The dispersion relation can be expressed equivalently
as: 

ϵ2
n − p2

z −2n|q f B| −m2 = 0 , (2)

n = 0,1,2 . . .
n = 1,2,3 . . .

where  corresponds to spin aligned with the z-
axis  and  corresponds  to  spin  anti-aligned
with the z-axis.

The two-fold spin degeneracy of the energy level sug-
gests  a  new  basis  that  incorporates  the  superposition  of
projection operators for the two spin states, known as the
Ritus  basis  [61, 62].  In  this  basis,  the  wave  function  of
the  Dirac  equation  is  factorized  into  longitudinal  and
transverse components, allowing the spinor to satisfy the
"free"  Dirac  equation.  The  quark  propagator,  without
quark-gluon  interactions,  is  similarly  simplified  in  the
Ritus basis space, resembling the "free" propagator: 

S −1
0 (pn) = /pn−m , (3)

pn ≡ (ϵn,0,
√

2n|q f B|, pz)
p∥ = (ϵn,0,0, pz)

where . Rewriting this in terms of
the longitudinal momentum  yields: 

S −1
0 (p∥,n) = /p∥−

√
2n|q f B|γ2−m . (4)

Taking the inverse of this expression allows us to derive
the  energy  dispersion  relation  from  the  denominator  of
the propagator: 

p2
∥ −2n|q f B| −m2 = 0 , (5)

which corresponds precisely to the dispersion relation in
Eq. (2).

When  quark-gluon  interactions  are  included,  the
quark  propagator  is  dressed  by  gluons,  complicating  the
dynamics of quark motion in a magnetic field. The Dirac
projection matrices 

Σ± =
1
2
(
⊮±Σ3

)
, Σ3 = iγ1γ2 , (6)

serve  as  spin  projection  operators  to  isolate  the  spin-up
and  spin-down  states.  Using  these  matrices,  the  general
expression  for  the  quark  propagator  in  a  magnetic  field,
within the Ritus basis, is formulated as follows [63]: 

S −1(p∥,n) = Σ+(A/p∥−B)+Σ−(C/p∥−D)

−
√

2n|q f B|γ2E , (7)

A E p∥

Σ±

Σ+

Σ−

A/p∥−B C/p∥−D

Σ−(C/p∥−D

E

with  to  are dressing functions dependent on  and
n. Since quarks propagate unimpeded along the magnetic
field,  the  projection  operators  are  used  to  separate
contributions from spin-up and spin-down states, with 
corresponding to  spin-down and  to  spin-up. The lon-
gitudinal propagation of the quark is dressed similarly to
the  vacuum  case.  Due  to  Zeeman  splitting,  spin-up  and
spin-down quarks have distinct effective energies, requir-
ing  different  dressing  functions  for  their  longitudinal
propagation:  for  spin-down  quarks  and 
for  spin-up  quarks.  Notably,  in  the  LLL,  only  spin-up
quarks  contribute,  simplifying  the  propagator  to

). The transverse propagation of quarks, which
involves  a  mixture  of  spin-up  and  spin-down  states,  is
constrained  to  quantized  Landau  levels.  When  quark-
gluon interactions are included,  this  transverse motion is
further modified by the dressing function .

Σ3
Alternatively, the inverse propagator in Eq. (7) can be

expressed in terms of  as follows: 

S −1(p∥,n) = −S+V∥/p∥−
√

2n|q f B|γ2V⊥
+ |q f B|AvΣ

3/p∥−2|q f B|TΣ3 , (8)

S V∥ V⊥ Av T
A E

with , , ,  and  are  re-combinations  of  the
dressing functions  to : 

S = B+D
2

, V∥ =
A+C

2
, V⊥ = E ,

|q f B|Av =
A−C

2
, 2|q f B|T = B−D

2
. (9)

V∥ V⊥

|q f B|AvΣ
3/p∥ 2|q f B|TΣ3

This dressed propagator illustrates that the dressing func-
tions  in  the  parallel  and  perpendicular  directions  to  the
magnetic  field,  and ,  are  fundamentally  different,
reflecting the anisotropy of the system under an external
magnetic field. In addition, two new terms arise: an axial-
vector term  and a tensor term . We

 

Fig.  1.    (color online) Illustration  of  quarks  in  a  magnetic
field:  Positively charged quarks are depicted as  blue spheres,
with  arrows  indicating  their  spin  directions.  Black  ellipses
represent discrete Landau energy levels.
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will further explore their physical implications and inter-
pretations.

Taking  the  inverse  of  the  inverse  propagator  in  Eq.
(7) yields a dressed version of the dispersion relation: 

p2
∥ =
Ω1+Ω2−Ω3±2|q f B|

(
AvS−2V∥T

) √
Ω4(

V2
∥ − |q f B|2A2

v

)2 , (10)

Ω1−4where  are  defined  in  appendix  A.  Apparently,  the
non-zero dressing functions associated with the magnetic-
field-induced  axial-vector and  tensor  terms  lead  to  en-
ergy splitting between spin states within the same Land-
au level,  directly corresponding to the Zeeman effect.  In
the specific limit where where 

V∥ =V⊥ = 1 , Av = 0 , S = M , (11)

as used in Ref. [48], we find: 

Ω1 = 0 ,

Ω2 = M2+4|q f B|2T 2+2n|q f B| ,

Ω3 = 0 ,

Ω4 = M2+2n|q f B| . (12)

This leads to: 

p2
∥ =

(»
M2+2n|q f B| ±2|q f B|T

)2
. (13)

Clearly,  the  magnetic-field-induced  tensor  term  disrupts
the  energy  degeneracy  between  spin  states  within  the
same Landau level. 

III.  QUARK PROPAGATOR

The  preceding  discussion  clearly  demonstrates  that
the system's anisotropy is intrinsically linked to the quark
propagator.  Therefore,  in  the  following  sections  we  will
systematically study the quark propagator under the influ-
ence of an external magnetic field. 

A.    Schwinger Phase
The  propagator  and  its  inverse  in  coordinate  space

can be factorized as follows: 

S (x,y) = eiΦ(x,y)S̄ (x− y) , (14a)

 

S −1(x,y) = eiΦ(x,y)S̃ (x− y) , (14b)

Φ(x,y) =
q f B

2
(x2− y2)(x1+ y1)where  is  the  Schwinger

S̄ (x− y)
S̃ (x− y)

phase. The  factorization  presented  in  Eq.  (14)  is  univer-
sal  under  certain  approximations  [44, 64],  and  here  we
will adopt this form. The Schwinger phase explicitly de-
pends on the gauge field  and breaks the translational  in-
variance  in  the  transverse  plane.  The  terms  and

 represent  the  translational  invariant  parts  of  the
propagator. Referring to Eq. (14), we note that 

S̃ (x− y) ,
1

S̄ (x− y)
. (15)

S̄ (p∥, p⊥) S̃ (p∥, p⊥)

The  factorization  allows  one  to  focus  on  the  Fourier
transformation  of  the  translation-invariant part,  convert-
ing  both  the  translation-invariant  parts  of  the  propagator
and  its  inverse  from  coordinate  space  to  momentum
space, yielding  and : 

S̄ (x− y) =
∫

d4 p
(2π)4

e−ip·(x−y)S̄ (p∥, p⊥) , (16a)

 

S̃ (x− y) =
∫

d4 p
(2π)4

e−ip·(x−y)S̃ (p∥, p⊥) . (16b)

Consequently, in momentum space, we find: 

S̃ (p∥, p⊥) ,
1

S̄ 1(p∥, p⊥)
. (17)

S̄ (p∥, p⊥) = S (p∥, p⊥)
S̃ (p∥, p⊥) = S −1(p∥, p⊥)
Typically,  we  denote  and

, leading to: 

S −1(p∥, p⊥) ,
1

S (p∥, p⊥)
. (18)

At  first  glance,  this  relation  may  seem  counterintuitive;
however, its apparent peculiarity arises from the factoriz-
ation of the Schwinger phase, which will show great sim-
plicity in solving the quark gap equation. 

B.    Free Propagator in a Magnetic Field

h ≡ q f B ≥ 0

The propagator of a free quark in an external magnet-
ic  field  can  be  represented  in  three  equivalent  forms:
Landau-level,  Schwinger  proper-time,  and  Ritus-basis
representations  [6].  In  the  Landau-level  representation
(restricted to ),  the propagator  and its  inverse
in momentum space are given by [4]: 

S −1
0 (p∥, p⊥) = e−p2

⊥/h
∞∑

n=0

2(−1)n

×
ß[
−Σ+L0

n−1 (α⊥)+Σ−L0
n (α⊥)

]
×
(
/p∥−m

)
+2L1

n−1 (α⊥)/p⊥

™
,
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S 0(p∥, p⊥) = e−p2
⊥/h

∞∑
n=0

2(−1)n

p2
∥ −2nh−m2+ i0+

×
ß[
−Σ+L0

n−1 (α⊥)+Σ−L0
n (α⊥)

]
×
(
/p∥+m

)
+2L1

n−1 (α⊥)/p⊥

™
. (19)

α⊥ =
2
h p2
⊥ Lαn

p⊥ = (0, px, py,0)
Σ+(/p∥±m) Σ−(/p∥±m)

/p⊥

Here, ,  and  are  the  Laguerre  polynomials
with  representing the  transverse  mo-
mentum.  The  terms  involving  and 
correspond  to  the  longitudinal  propagation  of  the  spin-
down and  spin-up  quarks,  respectively.  The  term  ac-
counts for  transverse  propagation,  incorporating  a  mix-
ing of both spin-up and spin-down states [6].

The summation over Landau levels can be performed
analytically, leading to the Schwinger proper-time repres-
entation: 

S −1
0 (p∥, p⊥) = /p−m ,

S 0(p∥, p⊥)

= −i
∫ ∞

0
dsexp

ï
is
(

p∥2 −m2+ i0+
)
− i

p2
⊥

h
tan(sh)

ò
×
[
/p+m+γ1γ2(/p∥+m) tan(sh)− /p⊥ tan2(sh)

]
. (20)

The inverse propagator remarkably resembles its form in
the absence of  a  magnetic  field,  with  the  only  modifica-
tion  being  the  introduction  of  the  Schwinger  phase.
However, deriving the  propagator  itself  requires  integra-
tion  in  Schwinger's  proper  time s.  As  indicated  in  Eq.
(20), the  relationship  between  the  propagator  and  its  in-
verse in momentum space is nontrivial: 

S −1
0 (p∥, p⊥) ,

1
S 0(p∥, p⊥)

, (21)

as noted in Eq. (18). This distinction is critical; in the ab-
sence  of  a  magnetic  field,  it  is  often  assumed  that  this
equality holds  without  question.  However,  this  assump-
tion does not apply when a magnetic field is present.  As
we  proceed  to  solve  the  gap  equation,  it  is  important  to
recognize  that  the  propagator  appears  on  the  right-hand
side  of  the  equation.  Given  the  form  of  the  inverse
propagator,  we  cannot  simply  take  its  inverse  to  obtain
the  propagator.  Instead,  we  must  derive  the  propagator
using the Ritus basis expansion, as outlined below.

p∥

The third representation employs the Ritus eigenfunc-
tion  method,  which  replaces  the  traditional  four-dimen-
sional  momentum  space  with  two  parallel  momentum
components  and  the  Landau  level  index n.  Using  the
Ritus  basis,  the  propagator  and  its  inverse  in  coordinate
space are expressed as [61, 62]: 

S κ
0(x,y) =

∞∑
n=0

∫
d3 p̃

(2π)3
E(x; p̃,n)S κ

0(pn)Ē(y; p̃,n) , (22)

p̃ = (p0,0, p2, p3) κ = −1,1 S −1
0 (pn)

S 0(pn)

where , .  represents  the
inverse propagator in the Ritus-basis  space as defined in
Eq.  (3).  represents  the  propagator  in  the  Ritus-
basis space. The Ritus basis provides a significant advant-
age: the  relationship  between  the  propagator  and  its  in-
verse in Ritus-basis space is straightforward, 

S −1
0 (pn) =

1
S 0(pn)

, (23)

allowing us to express the propagator as 

S 0(pn) =
/pn+m

p2
n−m2+ i0+

, (24)

p2
n = p2

∥ −2nh
Ē

e−ip·x eip·x

where .  This  method  employs  orthonormal
and complete Ritus matrices, E and , instead of the tra-
ditional Fourier exponential form and  to expand
the quark propagator: 

E(x; p̃,n) = h1/4e−ip̃·x [ψn−1(ε)Σ++ψn(ε)Σ−
]
,

Ē(y; p̃,n) = h1/4eip̃·y [ψn−1(τ)Σ++ψn(τ)Σ−
]
, (25)

ψn

ε =
√

hx1+
p2√

h
τ =
√

hy1+
p2√

h

n = 0

ψ0Σ
− ψ−1 = 0

where  denotes  the  Hermite  function  indexed  by n,
with  arguments  and .
Hermite functions are versatile and have recently shown a
significant  correspondence  between  free-field and  inter-
acting states [65]. In the LLL, where only  mode is
relevant, the characteristic Ritus matrix structures reduce
to ,  given  that . The  Ritus  matrices  are  or-
thonormal and complete: ∫

d4x Ē(x; p̃,n)E(x; q̃,m) = δnm(2π)3δ( p̃− q̃)⊮̃n,

∞∑
n=0

∫
d3 p̃

(2π)3
E(x; p̃,n)Ē(y; p̃,n) = δ(x− y), (26)

⊮̃nwhere  is defined as: 

⊮̃n =

{
Σ−, n = 0

⊮, n > 0
, (27)

Σ−and it is evident that only  contributes to the LLL.
All three  representations  are  equivalent  and  can  eas-

ily be derived from one another. However, it is beneficial
to choose  the  representation that  maintains  a  straightfor-
ward structure, facilitating the analysis of the propagator
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pn

after  incorporating  quark-gluon  interactions.  The  Ritus-
basis  representation  is  particularly  advantageous  in  this
regard, as both the inverse propagator and the propagator
in  Ritus-basis  space  exhibit  simple  forms  that  resemble
the free propagator,with four-momentum replaced by ,
as shown in Eqs. (3) and (24). Therefore, we will employ
the Ritus-basis representation to study the quark propag-
ator dressed by gluons in an external magnetic field. 

C.    Dressed Inverse Propagator in a Magnetic Field
When  quark-gluon interactions  are  included,  the  in-

verse propagator in the Ritus basis space is dressed, trans-
itioning from Eq. (3) to Eq. (7). Substituting Eq. (7) into
the  Ritus-basis representation  in  Eq.  (22)  yields  the  fac-
torized form  of  the  propagator  in  Eq.  (14),  with  the  in-
verse propagator in momentum space given by: 

S −1(p∥, p⊥) = e−p2
⊥/h

∞∑
n=0

2(−1)n

×
ï
−Σ+(A/p∥−B)L0

n−1 (α⊥)

+Σ−(C/p∥−D)L0
n (α⊥)

+2/p⊥EL1
n−1 (α⊥)

ò
. (28)

If we make the following identifications for the sum-
mations over  Landau levels  involving the  dressing func-
tions [63]: 

e−p2
⊥/h

∞∑
n=0

2(−1)n−1A(p∥,n)L0
n−1 (α⊥) = Â(p2

∥ , p
2
⊥) ,

e−p2
⊥/h

∞∑
n=0

2(−1)n−1B(p∥,n)L0
n−1 (α⊥) = B̂(p2

∥ , p
2
⊥) ,

e−p2
⊥/h

∞∑
n=0

2(−1)nC(p∥,n)L0
n (α⊥) = Ĉ(p2

∥ , p
2
⊥) ,

e−p2
⊥/h

∞∑
n=0

2(−1)nD(p∥,n)L0
n (α⊥) = D̂(p2

∥ , p
2
⊥) ,

e−p2
⊥/h

∞∑
n=0

4(−1)n−1E(p∥,n)L1
n−1 (α⊥) = Ê(p2

∥ , p
2
⊥) , (29)

the inverse propagator transforms into: 

S −1(p∥, p⊥) = Σ+(Â/p∥− B̂)+Σ−(Ĉ/p∥− D̂)− /p⊥Ê . (30)

Â Ê p2
∥ p2

⊥

Σ+(Â/p∥− B̂) Σ−(Ĉ/p∥− D̂)

The functions  to  depend on  and , encapsulat-
ing  the  implicit  dependence  on h.  The  terms  involving

 and  correspond to the longitudin-
al propagation of spin-down and spin-up quarks, respect-

/p⊥Ê

Σ3 Σ±

ively,  while  the  term  represents  the  transverse
propagation  of  quarks,  incorporating  a  mixing  of  both
spin states. Alternatively, using  instead of  gives us: 

S −1(p∥, p⊥) = −Ŝ+ V̂∥/p∥− V̂⊥/p⊥+hÂΣ3/p∥−2hT̂Σ3 , (31)

Ŝ V̂∥ V̂⊥ Â T̂ Â Êwhere , , ,  and  are re-combinations of  to :
 

Ŝ =
B̂+ D̂

2
, V̂∥ =

Â+ Ĉ
2

, V̂⊥ = Ê ,

hÂ =
Â− Ĉ

2
, 2hT̂ =

B̂− D̂
2

. (32)

V̂∥/p∥ V̂⊥/p⊥

Ŝ V̂∥/p∥

In appendix B, we demonstrate that this formulation com-
prehensively captures the Dirac structures relevant to the
quark propagator in an external magnetic field. In particu-
lar,  the  vector  term  is  decomposed  into  longitudinal
( )  and  transverse  ( )  components  relative  to  the
magnetic  field  direction.  Additionally,  as  shown  in  Eq.
(32), ,  and  correspond  to  the  effective  mass  and
longitudinal momentum for the averaged spin states.

hÂΣ3/p∥
2hT̂Σ3

Σ3

Ŝ

Furthermore,  the  axial-vector  term  ( )  and  the
tensor term ( ) emerge as novel contributions in the
presence of a magnetic field, vanishing when the magnet-
ic field is absent. Both terms are coupled with , reflect-
ing their  role  in  the description of  fine structures  arising
from  interactions  between  quark  spin  and  the  external
magnetic field, showing in more detail the subtle spin-de-
pendent behavior in the quark propagator. Specifically, as
shown  in  Eq.  (32),  the  axial-vector  term  captures  the
asymmetry  in  longitudinal  momentum  between  spin-up
and spin-down states,  while the tensor term accounts for
asymmetry in masses between these states, which can be
interpreted  as  a  non-perturbative Zeeman  effect.  Addi-
tionally, the  tensor  term  introduces  further  chiral  sym-
metry breaking, complementing that from the scalar term

.

M̂eff
∥ M̂eff

⊥

Interestingly,  two  distinct  effective  masses  can  be
defined for the quark in a magnetic field: the longitudinal
mass  and the transverse mass , given by:
 

M̂eff
∥ =

Ŝ

V̂∥
, and M̂eff

⊥ =
Ŝ

V̂⊥
. (33)

h = 0

These effective  masses  characterize  the  quark's  mass  re-
sponse to an external magnetic field. In the absence of a
magnetic field ( ), the dressing functions satisfy: 

Â = Ĉ = Ê , B̂ = D̂ , (34)

or equivalently, 
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V̂∥ = V̂⊥ . (35)

S −1(p) = Â/p− B̂
Under  these  conditions,  the  propagator  simplifies  to  the
standard  form  and  the  two  effective
masses become identical:
 

M̂eff
∥ = M̂

eff
⊥ . (36)

This indicates  isotropic  quark  propagation  in  all  direc-
tions.  We  will  further  explore  how  the  effective  masses
behave in different directions when an external magnetic
field is applied.
 

D.    Dressed Propagator in a Weak Magnetic Field
Starting from the definition of the propagator and its

inverse form  as  presented  in  Eq.  (14)  and  using  the  in-
verse propagator  defining  in  Eq.  (28),  we  derive  the  ex-
pression for  the  propagator  in  momentum  space  as  fol-
lows:
 

S (p∥, p⊥) = e−p2
⊥/h

∞∑
n=0

2(−1)n

×
ï
−Σ+(WA/p∥+WB)L0

n−1 (α⊥)

+Σ−(WC/p∥+WD)L0
n (α⊥)

+2/p⊥WEL1
n−1 (α⊥)

ò
. (37)

The scalar functions are defined as follows:
 

WA =
∆1C−∆2D
∆

, WB =
∆1D− p2

∥C∆2

∆
,

WC =
∆1A+∆2B
∆

, WD =
∆1B+ p2

∥A∆2

∆
,

WE =
∆1E
∆

. (38)

∆ = ∆2
1− p2

∥∆
2
2 ∆1

∆2

h→ 0 ∆2 WA WE

The denominator Δ is defined as , where 
and  are detailed in Eq. (A2). Due to the complex n-de-
pendence  in  the  denominator,  summing  over  Landau
levels is highly nontrivial. As suggested in Ref. [63], this
summation  can  be  performed  in  the  weak  field  limit  as

, where  in the expressions for  to  van-
ishes:
 

∆2
h→0−→ 0 . (39)

∆2Expanding the denominator Δ in terms of  gives:
 

1
∆
=

1
∆2

1
+O(∆2

2) . (40)

∆2

WA WE

Keeping only  the  first-order  term in , the  scalar  func-
tions:  to  become
 

WA =
C
∆1
− ∆2D
∆2

1
, WB =

D
∆1
−

p2
∥∆2C
∆2

1
,

WC =
A
∆1
+
∆2B
∆2

1
, WD =

B
∆1
+

p2
∥∆2A
∆2

1
,

WE =
E
∆1

. (41)

∆1

Notably, in the weak field limit, the propagator's denom-
inator in the Ritus basis transitions from Δ to .

tan(sh)

The summation over Landau levels can be performed,
resulting  in  an  expression  involving  an  integral  over  the
Schwinger  proper  time s,  which  includes  the  function

. Expanding to the first order in h, we have:
 

tan(sh) = sh+O(h3) . (42)

The propagator then becomes:
 

S (p∥, p⊥)

=
Σ+

(
/p∥Ĉ+ D̂

)
+Σ−

(
/p∥Â+ B̂

)
− /p⊥Ê

p2
∥ ÂĈ− p2

⊥Ê2− B̂D̂+ i0+

+
hÊ2

[
Σ+

(
/p∥Ĉ+ D̂

)
−Σ−

(
/p∥Â+ B̂

)]
(p2
∥ ÂĈ− p2

⊥Ê2− B̂D̂+ i0+)2

+
(ÂD̂− B̂Ĉ)

[
−Σ+

(
/p∥D̂+ p2

∥Ĉ
)
+Σ−

(
/p∥B̂+ p2

∥ Â
)]

(p2
∥ ÂĈ− p2

⊥Ê2− B̂D̂+ i0+)2
. (43)

Â Ê

A detailed derivation of Eq. (43) is provided in appendix
C. In particular, the propagator in momentum space is ex-
pressed  in  terms  of  the  scalar  functions  to  derived
from the inverse propagator.  Note that  the general  Dirac
structure of  the propagator aligns precisely with the pre-
viously  derived  form  albeit  with  modifications  in  the
scalar functions, which proves that it constitutes the com-
plete basis for the propagator.
 

IV.  THE GAP EQUATION

Â Ê

The preceding discussion on the structure of  the free
and dressed-quark propagator is general and applicable to
any analysis  involving a  constant  magnetic  field.  To ob-
tain the dressing functions from  to , we must resort to
the gap equation for the quark propagator, which in con-
figuration space is given by [55]:
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S −1(x,y) = S −1
0 (x,y)+g2CFγ

µS (x,y)γνDνµ(y, x) . (44)

CF = 4/3

S −1
0 (x,y)

Here, g denotes the QCD coupling constant and 
is  the  color  factor.  We  employ  the  rainbow  truncation.

 is the free inverse propagator in the presence of
a magnetic field, without gluon dressing.

Dνµ(y, x)
Dνµ(q)

The  gluon  propagator  can  be  written  as  the
Fourier transform of its momentum-space form : 

Dνµ(y, x) =
∫

d4q
(2π)4

e−iq(y−x)Dνµ(q) . (45)

We assume that the gluon propagator is unaffected by the
magnetic field, a hypothesis that can be refined in future
studies by considering the magnetic field's impact on the
gluon propagator. For this analysis, we used the vacuum-
gluon propagator. In vacuum, the dressed gluon propagat-
or in the Landau gauge, can be written as 

g2Dνµ(q) = D(0)
νµ (q)q2G(q2) , (46)

where the free propagator is 

D(0)
νµ (q) =

1
q2

tνµ , (47)

with the transverse projector 

tνµ = δνµ−
qνqµ
q2

. (48)

G(q2)Here,  is the gluon dressing function that  incorpor-
ates the  QCD  coupling.  This  function  typically  com-
prises two components: 

G(q2) = GIR(q2)+
4π
q2
αpQCD(q2) . (49)

The ultraviolet part is given by: 

αpQCD(q2) =
2πγm(1− e−q2/[4m2

t ])
ln[τ+ (1+q2/Λ2

QCD)2]
, (50)

γm = 12/(33−2N f ) N f = 5 ΛQCD = 0.36
τ = e2−1 mt = 0.5
where , ;  GeV;

,  GeV.  For  the  infrared  part,  we  use  a
model from Ref. [66]: 

GIR(q2) =
8π2

ω4
De−q2/ω2

. (51)

Empirical evidence  suggests  that  the  observable  proper-
ties of light pseudoscalar and vector mesons composed of

ω ∈ [0.4,0.6]
light quarks (u, d, s) remain largely stable by variations in
ω within  the  range  GeV,  provided  that  the
relation 

Dω = (0.80GeV)3 (52)

ω = 0.4 0.5 0.6
is maintained.  In  this  study,  we  explore  potential  vari-
ations using the values of , , and  GeV.

q = k− p

By  substituting  the  factorized  forms  of  the  quark
propagator  and  its  inverse  in  Eq.  (14),  along  with  their
Fourier  transformation  in  Eq.  (16)  into  the  gap  equation
in Eq. (44), we obtain ( ): 

S −1(p) = Z2(/p−Zmm)

+Z2
2g2CF

∫
d4k

(2π)4
γµS (k)γνDνµ(q) . (53)

ζ = 19

Here,  we  employ  a  mass-independent momentum  sub-
traction  renormalization  scheme,  which,  using  the  scalar
Ward-Takahashi identity,  determines the renormalization
constants in the chiral limit, with a renormalization scale
of  GeV. This equation arises from considering the
factorization of the Schwinger phase in the quark propag-
ator,  along  with  rainbow  truncation  and  the  assumption
that  the  gluon  propagator  is  unaffected  by  the  magnetic
field. 

V.  NUMERICAL RESULTS

p2
l = p2

0+ p2
z

p2
t = p2

x + p2
y

Given  the  structures  of  the  inverse  propagator  and
propagator in Eqs. (30) and (43), respectively, we can use
the  gap  equation  (Eq.  (53))  to  determine  the  propagator.
By projecting the gap equation onto different Dirac com-
ponents, we derive a set of scalar equations, Eq. (D1), as
detailed in appendix D. For numerical analysis, we trans-
form the system to Euclidean space via  a  Wick rotation,
where  the  dressing  functions  depend  on  the  longitudinal
momentum  and  the  transverse  momentum

.

ml := mu = md

Additionally,  we  aim  to  investigate  the  behavior  of
the  quark  propagator  for  different  quark  flavors  under
varying  magnetic  fields.  The  strange  quark  serves  as  an
excellent reference  when  compared  to  the  more  com-
monly  studied  up  and  down  quarks.  As  noted  in  Refs.
[67, 68],  the  strange  quark  exhibits  unique  properties
within hadrons. In this study, we examine the behavior of
up and down quarks  in  relation  to  the  strange  quark  un-
der the  influence  of  an  external  magnetic  field.  To  pro-
ceed with  numerical  computations,  it  is  essential  to  spe-
cify  the  current  quark  masses  for  each  flavor.  For  light
quarks - up  (u),  down  (d)  and  strange  (s) - assuming
isospin  symmetry  where ,  we  adopt  values
from Ref. [69]: 
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mζ=19GeV
l = 3.3MeV , mζ=19GeV

s = 74.6MeV . (54)

These values reproduce the empirical masses and lepton-
ic decay constants of pions and kaons.

Â Ê
Ŝ V̂∥ V̂⊥ Â T̂

With these  inputs  established,  we  are  ready  to  per-
form  numerical  computations  of  Eq.  (D1)  to  determine
the values of  to . Using relations from Eq. (32), these
results  can  be  transformed  into , , ,  and ,
thereby establishing a clearer connection to those known
in the absence of an external magnetic field. 

A.    Zero Magnetic Field
h = 0

Ŝ V̂
M̂eff

Ŝh=0(p2
l , p

2
t ) V̂h=0(p2

l , p
2
t ) M̂eff

h=0(p2
l , p

2
t )

In  the  absence of  a  magnetic  field  ( ), the  dress-
ing functions  satisfy  the  relations  in  Eqs.  (34),  and (35).
Consequently, the only non-trivial dressing functions are

 and , allowing us to define a unique quark mass func-
tion  as shown in Eq. (36). The numerical values for

 and  and  are obtained.
p2

l = p2
t = 0

V̂∥ = V̂⊥
M̂eff

h=0(0,0)

At zero momentum ( ),  the  values  of  these
dressing functions are summarized in Table 1. In particu-
lar, it is confirmed that  when no magnetic field is
present. Furthermore,  corresponds to the quark
mass function at zero momentum, with the computed val-
ues for different quark flavors aligning with other estim-
ates.

p2
l , 0 p2

t , 0
ω = 0.5

M̂eff
h=0(p2)

p2 = p2
l + p2

t

At  nonzero  momentum  ( ,  and ),  we
present  the  results  for  GeV as  an illustrative  ex-
ample.  The  numerical  results  for ,  where

,  are shown in Fig.  2.  The figure reveals that
the mass  function  exhibits  characteristic  behavior:  it  at-
tains  non-zero values  in  the  infrared  region  and  ap-
proaches  the  current  quark  mass  in  the  ultraviolet  limit,
indicating  that  the  quark  propagator  resembles  that  of  a
free quark in the ultraviolet region. Additionally, the fig-
ure highlights distinctions between the mass functions of
various  quark  flavors.  Up  and  down  quarks  experience
significant gluon dressing in the infrared region, which is
central to dynamical chiral symmetry breaking, and plays
a  crucial  role  in  the  emergent  mass  of  hadrons  (see,  for
example, Ref. [70]). In contrast, the strange quark under-
goes less  extensive  dressing,  with  explicit  chiral  sym-
metry breaking driven by the current quark mass, playing
a comparative role. 

B.    Weak Magnetic Field
h , 0

Ŝ V̂∥ V̂⊥ Â T̂

In  the  presence  of  a  non-zero  magnetic  field  ( ),
Eqs.  (34),  (35)  no  longer  apply,  resulting  in  all  dressing
functions - , , ,  and  - becoming nonzero.. 

Ŝ V̂∥ V̂⊥1.    ,  and 

Ŝ V̂∥
V̂⊥

We begin by analyzing the dressing functions associ-
ated  with  the  scalar  and  vector  Dirac  structures: , ,
and .  These  functions  are  intrinsically  linked  to  the

characteristics of the quark propagator in vacuum and en-
capsulate  the  average-spin  properties  of  the  quark,
providing insights into mass and momentum dynamics in
both longitudinal and transverse directions relative to the
magnetic field.

Ŝ

V̂∥ , V̂⊥
/p∥

/p⊥

V̂∥
V̂⊥

At zero momentum, the discrete data points in Table
1 transform  into  magnetic  field-dependent  curves,  as
shown in Fig. 3. The figure indicates that the overall be-
havior  is  similar  for  both  up/down  and  strange  quarks;
specifically,  as the magnetic field increases,  the dressing
functions consistently increase or decrease across the en-
tire  range.  The  scalar  dressing  function  increases not-
ably  with  the  magnetic  field,  consistent  with  magnetic
catalysis. In contrast, the vector dressing functions exhib-
it notable differences, with , indicating anisotrop-
ic gluon dressing of longitudinal momentum  and trans-
verse momentum  in the presence of a magnetic field.
This anisotropy reflects how the magnetic field differen-
tially influences the gluon dressing in parallel versus per-
pendicular directions. As the magnetic field increases, the
dressing function parallel to the field, , increases, while
the  dressing  function  perpendicular  to  the  field, , de-
creases.  Furthermore,  variations  in  the  interaction  width
of  the  input  gluon  propagator  parameter ω do  not  alter
these qualitative conclusions.

To  evaluate  the  change  in  these  dressing  functions,

 

Ŝ V̂ M̂eff

p2
l = p2

t = 0

Ŝ M̂eff V̂

Table 1.    Dressing functions of quark propagator for differ-
ent flavors - ,  - and the effective mass function , eval-
uated  at  in  the  absence  of  a  magnetic  field.  The
units for  and  are in GeV, and  is dimensionless.

Ŝu,d V̂u,d
∥,⊥ M̂u,d

∥,⊥ Ŝs V̂s
∥,⊥ M̂s

∥,⊥

ω = 0.4 1.26 2.01 0.63 1.46 1.81 0.81

ω = 0.5 0.88 1.65 0.54 1.16 1.60 0.72

ω = 0.6 0.59 1.35 0.44 0.91 1.41 0.65

 

M̂eff p2 = p2
l + p2

t

Fig.  2.    (color online) The  mass  function  of  the  quark
propagator,  denoted  as ,  evaluated  at  in  the
absence of a magnetic field.
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we compute the rate of change defined by:
 

r f
F̂

:=
F̂ f

h=1.0GeV2 (0,0)− F̂ f
h=0(0,0)

F̂ f
h=0(0,0)

, (55)

F̂ = Ŝ, V̂∥, V̂⊥ f = u,d, s

Ŝ

h = 0 h = 1
V̂∥

V̂⊥

where  and . The  results  are  sum-
marized in Fig. 4.  The figure indicates that the magnetic
field  induces  a  more  pronounced  change  in  the  dressing
functions  of  the  up/down  quark  compared  to  that  of  the
strange  quark,  reflecting  a  stronger  response  of  the
up/down  quark  to  the  magnetic  field.  Specifically,  the
percentage increases in the scalar dressing function  are
less  than 60% for  the  up/down quark and approximately
15%  for  the  strange  quark  when  comparing  cases  with

 and  GeV2. As the magnetic field strength in-
creases,  increases  by  about  30%  for  the  up/down
quark and 20% for the strange quark, while  decreases
by approximately 10% and 6%, respectively.

V̂∥ , V̂⊥

M̂eff
∥ , M̂

eff
⊥

Since  in the presence of a non-zero magnetic
field, we define two distinct mass functions according to
Eq.  (33),  resulting  in . In  their  concluding  re-
marks,  Watson  et  al.  [63]  note  the  separation  of  mass
functions  as  the  magnetic  field  strength  increases.  This
study builds  upon  their  findings,  offering  a  detailed  ex-
ploration of these effects across various quark flavors.

Ŝ

V̂⊥

M̂eff
⊥

M̂eff
∥

V̂∥

ω = 0.5
M̂eff
∥

V̂∥ > V̂⊥
M̂eff
⊥ > M̂eff

∥

The numerical  results  for  the two mass functions are
illustrated in Fig. 5. As the scalar dressing function  in-
creases  and  the  transverse  vector  dressing  function 
decreases  with  increasing  magnetic  field,  it  follows  that
the transverse effective mass function  also increases.
In  contrast,  the  behavior  of  the  longitudinal  effective
mass  function  is more  complex  due  to  the  concur-
rent  increase  in ,  which  is  influenced  by  the  quark
gluon interaction width ω.  Notably, using the commonly
adopted interaction width of  GeV, the variation in

 is relatively  modest.  Nevertheless,  in  all  quark  fla-
vors  considered,  the  inequality  holds consist-
ently, resulting in the effective mass .

To quantify the difference between the transverse and

 

Ŝ V̂∥ V̂⊥ p2
l = p2

t = 0

ω = 0.4 ω = 0.5
ω = 0.6

Fig.  3.    (color online) Magnetic  field  dependence  of  the
dressing functions for the inverse up/down and strange quark
propagators - , , and  - evaluated at . Curves:
Dotted  for  GeV,  Solid  for  GeV,  and  Dashed
for  GeV.

 

Ŝ V̂∥ V̂⊥

p2
l = p2

t = 0 h = 0 h = 1

Fig.  4.    (color online) Percentage  variation  in  the  dressing
functions of the quark propagator - , , and  - evaluated
at ,  comparing cases with  and  GeV2,  as
defined in Eq. (55).
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∆M = M̂
eff
⊥ − M̂eff

∥

∆M

h = 0 h = 1

longitudinal  effective  masses,  we  define 
and  examine  its  variation  with  respect  to  the  magnetic
field, as shown in Fig. 5. The figure clearly demonstrates
that  the  mass  splitting  increases  with  the  magnetic
field  strength  across  all  quark  flavors,  with  the  strange
quark exhibiting smaller mass splittings than the up/down
quark. Specifically, comparing cases with  and 

∆u,d
M = 0.20(2)

∆s
M = 0.14(3)

∆M(h)
∆M

ω = 0.5
log∆M logh

GeV2,  yields a mass difference of  GeV for
the up/down quark and  GeV for the strange
quark (error estimates come from different ω). Moreover,
Fig. 5 suggests a scaling behavior for .  To explore
this further, we present a logarithmic graph of  in Fig.
6 (with  GeV), which reveals a linear relationship
between  and .  This observation suggests that
the numerical results can be approximately described by a
power law: 

∆u,d
M (h) = 0.22h1.49 , ∆s

M(h) = 0.15h1.79. (56)

2
The scaling exponent of the mass splitting induced by the
magnetic  field  appears  to  gradually  approach  as  one
transitions from light to heavy quarks.

p2
l p2

t

p2
l p2

t

At  nonzero  momentum,  the  effective  mass  functions
we derive depend primarily on the squares of the longit-
udinal and transverse momenta, ,  and .  Notably, we
observe  an  almost  symmetric  dependence  between  these
two  momenta,  despite  the  absence  of  explicit  symmetry
constraints.  This  near-symmetry  may  arise  from the  fact
that  while  the  quark  propagator  explicitly  differentiates
between longitudinal and transverse directions through its
Dirac  structures,  the  gluon  propagator  employed  in  our
analysis  does  not.  Consequently,  although  the  magnetic
field induces  different  gluon  dressing  effects  in  the  lon-
gitudinal and transverse directions, the dependence of the
dressing functions - and thus the effective mass functions
- on , and  remains nearly symmetric. Future studies
could  refine  this  analysis  by  incorporating  a  gluon
propagator with explicit longitudinal and transverse com-
ponents.

p2
l

Given  this  observed  near-symmetry,  we  focus  solely
on the dependence of the effective mass functions on the
longitudinal momentum square, . To illustrate the vari-
ation  in  momentum  dependence  of  the  effective  mass

 

M̂eff
∥ M̂eff

⊥ ∆M = M̂
eff
⊥ − M̂eff

∥
p2

l = p2
t = 0 ω = 0.4 ω = 0.5

ω = 0.6

Fig.  5.    (color online) Magnetic field  dependence  of  the  ef-
fective  mass  functions  for  the  up/down  and  strange  quarks -

,  and  their  difference  - evaluated  at
. Curves: Dotted for  GeV, Solid for 

GeV, and Dashed for  GeV.

 

M̂eff
⊥ (0,0)− M̂eff

∥ (0,0)
Fig.  6.    (color online) Logarithmic  plot  illustrating

.
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h = 0
h = 1.0GeV2

ω = 0.5GeV

function  under  different  magnetic  field  strengths,  we
compare  the  mass  functions  at  zero  magnetic  field
( ), as shown in Fig. 2, with those at a non-zero mag-
netic  field,  specifically ,  depicted  in Fig.  7.
For this analysis,  we use  as a representative
example.  The figure demonstrates  that,  while  the overall
qualitative behavior of the mass function remains largely
unchanged,  variations  in  the  infrared  region  are  noted.
Consequently, we have numerically determined the mass
functions defined  in  Eq.  (33)  across  the  entire  mo-
mentum range for up/down and strange quarks. This com-
plete  momentum-dependent  mass  function  is  crucial  for
studying  physical  observables  influenced  by  magnetic
fields,  as  these  quantities  inherently  involve  integrals  of
the  momentum-dependent  mass  function  over  the  full
momentum range. 

Â T̂2.     and 

Â , 0 T̂ , 0 hÂ
2hT̂

The  axial-vector  and  tensor  structures  are  new Dirac
structures that appear in the quark propagator only in the
presence  of  a  magnetic  field,  where  they  become  non-
zero  (i.e.,  and ).  We  present  results  for 
and ,  as  these  combinations  are  the  actual  dressing
functions that appear in the quark propagator, as shown in
Eq. (31).  As  previously  discussed,  these  two  terms  cap-
ture the intricate interplay between quark spin and the ex-
ternal magnetic  field,  highlighting  the  resulting  asym-
metry  between  spin-up  and  spin-down  states.  At  each
Landau level,  both terms contribute to the Zeeman split-
ting  of  the  energy  levels  associated  with  different  spin
states.

hÂ(0,0)
2hT̂(0,0)

h = 0
hÂ

At  zero  momentum,  the  dependence  of  and
 on  the  magnetic  field  is  illustrated  in Fig.  8.

Both  quantities  are  zero  when . The  dressing  func-
tion associated with the axial-vector structure,  (upper

panel  of Fig.  8),  shows  a  noticeable  increase  with  the
magnetic field for both up/down and strange quarks.  Al-
though  this  increase  is  substantial,  its  rate  decreases  for
heavier quarks, although their contribution remains signi-
ficant  (on  the  order  of  1).  The  width  of  the  quark-gluon
interaction ω has only a minor influence on this increase,
showing no evident dependence.

2hT̂(0,0)

σµν

2hT̂

2hT̂
0.01

The  dressing  function  associated  with  the  tensor
structure,  (lower  panel  of Fig.  8), does  not  al-
ways  increase  monotonically.  In  the  low h region, it  ex-
hibits a linear pattern, consistent with Schwinger's predic-
tion  that  the  leading  contribution  proportional  to  is
linear  in  the  field.  In  the  high h region, its  behavior  de-
pends on the width of  the quark-gluon interaction ω, re-
flecting that tensor structures are particularly sensitive to
interaction details. When ω is small,  shows a down-
ward trend in strong magnetic fields. Nevertheless, heav-
ier  quarks  continue  to  show  smaller  variations  in .
Furthermore, its magnitude is approximately , which
is  smaller  than  all  other  dressing  functions.  The  tensor
terms  encapsulate  the  mass  asymmetry  between  spin-up

 

M̂u,d,s
∥,⊥ (p2

l ,0) h = 1.0

h = 0

Fig.  7.    (color online) Comparison of  the  quark  mass  func-
tions  at  GeV2 versus  their  values  at  zero
magnetic field ( ).

 

hÂ 2hT̂

p2
l = p2

t = 0 ω = 0.4 ω = 0.5

ω = 0.6

Fig.  8.    (color online) Magnetic  field  dependence  of  the
dressing  functions,  represented  as ,  and ,  evaluated  at

. Curves: Dotted for  GeV, Solid for 
GeV, and Dashed for  GeV.
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and  spin-down  states:  the  spin-up quark  exhibits  a  re-
duced effective mass due to lower energy, while the spin-
down quark experiences an increased effective mass due
to  higher  energy.  The  mass  differences  between  these
states grow with increasing magnetic field. However, this
effect  is  minor  compared  to  the  variations  in  effective
masses in parallel and perpendicular directions relative to
the magnetic field.

ω = 0.5
h = 1.0

hÂ(p2
l , p

2
t )

p2
l p2

t

p2
l

p2
t

hÂ(p2
l , p

2
t )

At nonzero momentum, we use  GeV as a rep-
resentative  case.  The  dressing  functions  at  GeV2

are illustrated in Fig. 9. The behavior of  is con-
sistent with previous results, showing symmetry between
the  longitudinal  and  transverse  momenta  (  and ).
Therefore,  we  present  only  its  dependence  on ,  which
mirrors  its  dependence  on .  As  noted  previously,

 remains  finite  in  the  infrared  and  approaches
zero in the ultraviolet.

2hT̂(p2
l , p

2
t )

p2
l p2

t

2hT̂(p2
l , p

2
t )

p2
l ≈ p2

t ≈ 0.1
p2

l 2hT̂(p2
l , p

2
t )

p2
t

2hT̂(p2
l , p

2
t )

In contrast, the behavior of  deviates signi-
ficantly.  Its  dependence  on  and  differs unexpec-
tedly, despite the fact that the gluon propagator lacks ex-
plicit longitudinal and transverse Dirac structures. Never-
theless,  we  observe  that  the  variation  of  is
minimal  in  the  infrared.  At  approximately 
GeV2,  in  the  direction,  first increases  be-
fore  decreasing;  while  in  the  direction, it  first  de-
creases to  negative  values  before  increasing  again.  Des-
pite  these  fluctuations,  ultimately tends  to-
ward zero in the ultraviolet.

2hT̂(p2
l , p

2
t )

As  discussed  previously,  the  axial-vector  and  tensor
terms  encapsulate  the  spin-momentum interaction  asym-
metry between the spin-up and spin-down states. The in-
crease in these two terms with the magnetic field (exclud-
ing the  behavior  of  for  a  small ω, which de-
creases  in  the  high h region) can  be  understood  as  fol-
lows: In the absence of a magnetic field, there is no pref-
erential spin direction, leading to random spin alignment

among quarks. The application of a magnetic field aligns
more  spins  with  the  field  direction,  enhancing  the  spin-
momentum interaction for spin-up quarks relative to spin-
down  quarks.  This  phenomenon  increases  the  system's
magnetic moment and reflects the magnetic field's ability
to polarize spins, thereby leading to net magnetization - a
behavior characteristic of Pauli paramagnetism.

We have numerically obtained and analyzed the fully
dressed quark propagators of up/down quarks and strange
quarks in the presence of a constant magnetic field. This
includes  their  characteristics  at  zero  momentum,  which
effectively  represents  the  constituent  quark  mass,  and  at
across the entire momentum domain. These results serve
as fundamental inputs for further investigations into had-
ron properties, such as quark condensate [71, 72], poten-
tial  tensor  condensate  [73, 74], quark  local  magnetic  di-
pole  moment  [75],  meson  and  baryon  properties,  etc.,
when magnetic field is present. 

VI.  SUMMARY

This paper investigates the impact of an external mag-
netic field on dressed quark propagators for up/down and
strange quarks,  focusing  on  the  resulting  anisotropic  dy-
namics.

A key finding is the decomposition of the vector part
of the propagator into components parallel and perpendic-
ular  to  the  magnetic  field,  allowing  for  distinct  mass
definitions  in  these  directions.  Numerical  results  show
that the  mass  perpendicular  to  the  magnetic  field  is  al-
ways  greater  than  that  parallel  to  it,  indicating  quark
propagation  anisotropy  induced  by  the  magnetic  field.
The mass difference increases with the magnetic field and
follows a power-law behavior, with exponents approxim-
ately  1.5  for  up/down  quarks  and  1.8  for  the  strange
quark;  this  difference  decreases  with  increasing  quark
mass.  Additionally,  the  magnetic  field  introduces  two
new terms in  the  propagator:  the  axial-vector  and  tensor
terms,  which describe  interactions  between the  magnetic
field  and the spin of  quark.  Both terms contribute  to  the
Zeeman effect, splitting the energy for spin up and down
quarks. The axial-vector term is sizable in the presence of
a magnetic field, and its increase suggests quark spin po-
larization. The  tensor  term,  although  smaller  in  mag-
nitude,  shows  different  momentum  dependencies  that
warrant further investigation.

The  effective  masses  of  quarks  exhibit  anisotropy  in
directions parallel and perpendicular to the external mag-
netic  field,  consistent  with  theoretical  expectations.  This
anisotropy  arises  because  quarks  experience  different
constraints in these directions: they are less influenced by
the magnetic field along the parallel direction, while their
energy levels are quantized into discrete Landau levels in
the perpendicular  direction,  leading  to  stronger  con-
straints.  This  behavior  results  from  the  magnetic  field's

 

hÂ(p2
l , p

2
t ) 2hT̂(p2

l , p
2
t ) h = 1.0

Fig. 9.    (color online) Dressing functions of quark propagat-
or: , and , evaluated at  GeV2.
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impact on quark momentum and spin interactions, produ-
cing distinct propagation dynamics. Additionally, this an-
isotropy  varies  across  quark  flavors,  with  the  strange
quark  showing  less  pronounced  variations  compared  to
the up and down quarks.

h→ 0
∆2→ 0 1/∆ ≈ 1/∆2

1 tan(sh) ≈ sh

h ∼ 1 GeV2

As noted,  our  derivation  of  the  quark  propagator  as-
sumes  the  weak-field  limit ,  using  approximations
such  as , ,  and ,  which
make the momentum-space expression tractable. The ex-
act validity range of the weak-field expansion is difficult
to determine, as it depends on dressing functions at indi-
vidual Landau levels, while only their summed forms are
numerically  accessible.  Nevertheless,  our  results  remain
smooth  up  to ,  with  no  signs  of  breakdown.
The main finding is the separation of the vector term into
longitudinal and  transverse  components,  yielding  aniso-
tropic effective masses where the transverse mass consist-
ently exceeds the longitudinal one, along with axial-vec-
tor  and  tensor  terms  associated  with  the  Zeeman  effect.
These features arise for any nonzero weak magnetic field,
while  a  more  precise  determination  of  the  expansion’s
validity remains a subject for future study.

Quark propagators in external magnetic fields are cru-
cial for studying a range of QCD phenomena. The invest-
igations here  can  shed  light  on  the  phenomena  that  ap-
pear  in  quark  matter  under  extreme  conditions,  such  as
magnetic catalysis/inverse magnetic catalysis, spin polar-
ization and the chiral magnetic effect. As quark propagat-
ors  represent  a  one-body  problem,  they  provide  the
foundational framework  for  understanding  hadron  beha-
vior,  such  as  mesons  (two-body  problems)  and  baryons
(three-body problems). Consequently, the approaches and
results discussed here can be extended to explore hadron
properties  in  magnetic  fields,  offering  valuable  insights
into  potential  phenomena  like ρ meson  condensation
[76–78] and neutral pion condensation [79]. 
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APPENDIX A: DRESSED VERSION OF THE
DISPERSION RELATION

h = q f B

Taking  the  inverse  of  the  inverse  propagator  in  Eq.
(7)  yields  a  dressed  version  of  the  dispersion  relation
( ): 

∆ = 0 , (A1)

where 

∆ = ∆2
1− p2

∥∆
2
2 ,

∆1 = p2
∥AC−BD−2nhE2 ,

∆2 =AD−BC . (A2)

This relation leads to: 

p2
∥ =

1
2A2C2

î
B2C2+A2D2+4nhACE2

± (AD−BC)
√

(BC+AD)2+8nhACE2
ó
. (A3)

AD , BC

AD = BC

Evidently,  the  condition  induced by  the  mag-
netic  field,  disrupts  the  energy degeneracy of  spin  states
within the same Landau level. In contrast, in the absence
of  a  magnetic  field,  where , the  Zeeman  split-
ting vanishes.

S V∥ V⊥ Av T
The  dispersion  relation  can  also  be  reformulated  in

terms of , , ,  and  as follows: 

∆ = −4p2
∥ (hSAv−2hV∥T )2

+
(
S2−4h2T 2+h2 p2

∥A2
v − p2

∥V2
∥ +2nhV2

⊥
)2
= 0 . (A4)

This leads to: 

p2
∥ =
Ω1+Ω2−Ω3±2h

(
AvS−2V∥T

) √
Ω4(

V2
∥ −h2A2

v

)2 , (A5)

where: 

Ω1 = h2A2
v

(
S2+4h2T 2−2nhV2

⊥
)
,

Ω2 =V2
∥
(
S2+4h2T 2+2nhV2

⊥
)
,

Ω3 = 8h2SV∥AvT ,

Ω4 = (SV∥−2h2AvT )2+2nhV2
⊥(V2

∥ −h2A2
v) . (A6)

 

APPENDIX B: DIRAC STRUCTURES OF THE
QUARK PROPAGATOR IN A MAGNETIC FIELD

The quark  propagator  in  a  magnetic  field  can  be  ex-
pressed as a sum of Lorentz contractions involving tensor
structures  derived from the fundamental  scalars,  vectors,
and  tensors  of  the  theory,  along  with  the  16  Dirac
matrices.

pµ
Fµν

In the presence of a magnetic field, the theory incor-
porates  both  the  momentum  and  the  electromagnetic
field tensor . From these, four linearly independent in-
variants  can  be  constructed.  Among  them,  the  purely
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F
G

field-independent  invariants  are  Lorentz  scalar  and
pseudoscalar  [80]: 

F = 1
4

FµνFµν , G = 1
4

F̃αβFαβ , (B1)

F̃µνwhere  is the dual field strength tensor defined as: 

F̃µν =
1
2
ϵµναβFαβ , (B2)

ϵαβµνwith  being the four-dimensional Levi-Civita symbol.
The remaining two scalar invariants are: 

zp = (pαFακ)(pβFβ
κ) , p2 = pµpµ . (B3)

pµ
Fµν

Additionally,  four  linearly  independent  vector  and
axial-vector  combinations  can  be  formed  from  and

: 

pµ , Fµαpα , FµαFαβpβ , F̃µαpα . (B4)

FµνHigher  powers  of  can be  decomposed  using  funda-
mental algebraic relationships: 

FµαFν
α− F̃µαF̃ν

α = 2F gµν ,

FµαF̃ν
α = F̃µαFν

α = Ggµν . (B5)

Fµν

Fµν

From  these  vectors  and  axial-vectors, one  can  con-
struct second-rank tensors, resulting in ten distinct terms.
Among these, three terms with more than two  can be
expressed as  functions  of  quadratic  terms.  Thus,  we  fo-
cus on seven terms involving fewer than two : 

pµpν , Fµαpαpν , F̃µαpαpν , FµαFνρpαpρ ,

F̃µαFνρpαpρ , FµαFαβpβpν , F̃µαF̃νρpαpρ . (B6)

The last  term is  not  linearly  independent  and can be  ex-
pressed in terms of others: 

F̃µαF̃νρpαpρ =
1
4
ϵµακγFκγϵ

νρλδFλδpαpρ , (B7)

ϵusing properties of the product of two  tensors: 

ϵµακγϵνρλδ = det

à
gµν gµρ gµλ gµδ

gαν gαρ gαλ gαδ

gκν gκρ gκλ gκδ

gγν gγρ gγλ gγδ

í
. (B8)

σµν

Fµν

σµν

FµρFν
ρ

gµνFρσFρσ

Thus, we  identify  six  linearly  independent  terms.  Addi-
tionally,  since  the  tensor  is  coupled  to , an  antisym-
metric second-rank tensor with six independent compon-
ents, we  can  construct  six  linearly  independent  antisym-
metric  second-rank tensors.  In  addition  to  those  men-
tioned  above,  is  also  an  antisymmetric  tensor  that
couples  directly  with .  Furthermore,  terms  related  to
the  energy-momentum  tensor,  such  as  and

, can also be constructed.
Fµν q fNote that for each , a factor of electric charge  is in-

cluded.
 

F zp p2● Three scalars: , , and .
 

G● One pseudoscalar: .
 

pµ q f Fµαpα q2
f F

µαFαβpβ● Three vectors: , , and .
 

q f F̃µαpα● One axial-vector: .
 

● Nine tensors: 

q f Fµν , q2
f F

µρFν
ρ , q2

f g
µνFρσFρσ ,

(gµαgνρ−gναgµρ)pαpρ ,

q f (Fµαgνρ−Fναgµρ)pαpρ ,

q f (F̃µαgνρ− F̃ναgµρ)pαpρ ,

q2
f (F

µαFνρ−FναFµρ)pαpρ ,

q2
f (F̃

µαFνρ− F̃ναFµρ)pαpρ ,

q2
f (F

µσFσαgνρ−FνσFσαgµρ)pαpρ . (B9)

Fµν q fNote that for each , a factor of electric charge  is in-
cluded.

The possible contractions in theory must be invariant
under  charge  conjugation  (C),  parity  (P),  and  time-re-
versal (T)  transformations.  Focusing  on  charge  conjuga-
tion, we  have  the  following  properties  (particle  to  anti-
particle): 

Cq f C−1 = −q f , CpµC−1 = −pµ ,

CAµC−1 = −Aµ , CFµνC−1 = −Fµν ,

CF̃µνC−1 = −F̃µν , (B10)

and for the 16 Dirac matrices: 

C⊮C−1 = ⊮ , Cγ5C−1 = γ5 ,

CγµC−1 = −γT
µ , Cγ5γµC−1 = (γ5γµ)T ,

CσµνC−1 = −σT
µν . (B11)
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Terms that do not comply with the following condition: 

CXC−1 = XT , (B12)

must be excluded from consideration, where X represents
the term under evaluation. Thus, the allowed terms are as
follows:
 

F zp p2● Three scalars: , , and .
 

G● One pseudoscalar: .
 

pµ q2
f F

µαFαβpβ● Two vectors:  and .
 

q f F̃µαpα● One axial-vector: .
 

q f Fµν q f (Fµαgνρ−Fναgµρ)pαpρ
q f (F̃µαgνρ− F̃ναgµρ)pαpρ

●  Three  tensors: , ,  and
.

 
F̃µαgνρpαpρσµνNotably,  the  last  tensor  term, ,  is  CP-

odd and thus vanishes.
We can now outline the following invariants: 

S = S ,

P = PG ,

Vµ =V1 pµ+V2q2
f F

µαFαβpβ ,

Aµ =Aq f F̃µαpα ,

Tµν = T1q f Fµν+T2q f (Fµαpν−Fναpµ)pα , (B13)

S,P,A,V1,V2,T1,T2

16

where  are scalar functions depend-
ent on momentum and electromagnetic fields. The coup-
ling of these invariants with the  Dirac matrices yields
the general structure of the inverse quark propagator: 

S −1(p) = S+Pγ5+V
µγµ+A

µγ5γµ+T
µνσµν . (B14)

Fµν F12 = −F21 = −B
F̃03 = −F̃30 = −B

For  a  constant  magnetic  field  along  the z-axis,  the
nonzero  components  of  are  and

. Thus, we have: 

G = 0 ,

q2
f F

µαFαβpβγµ = −h2/p⊥ ,

q f F̃µαpαγ5γµ = hΣ3/p∥ ,

q f Fµνσµν = 2hΣ3 ,

q f (Fµαpν−Fναpµ)pασµν = −2hp2
⊥Σ

3 . (B15)

Consequently, the  inverse  quark  propagator  can  be  ex-
pressed as: 

S −1(p) = S+V∥/p∥+V⊥/p⊥+AhΣ3/p∥+2hTΣ3 , (B16)

where the following definitions apply: 

γ5γ0 = Σ
3γ3 , γ5γ3 = Σ

3γ0

V∥ =V1 , V⊥ =V1−V2h2 ,

T = T1−T2 p2
⊥ . (B17)

S,V∥,V⊥,A,T
Note  that  there  are  five  unspecified  scalar  functions:

.  This  general  form  aligns  precisely  with
the results found in Refs. [61, 81]. 

APPENDIX C: DERIVATION OF EQ. (43)

WA WEBy substituting  -  from Eq. (41) into the mo-
mentum–space quark propagator in Eq. (37), we obtain 

S (p∥, p⊥) = S 1(p∥, p⊥)+S 2(p∥, p⊥) , (C1)

with 

S 1(p∥, p⊥) = e−p2
⊥/h

∞∑
n=0

2(−1)n

∆1

×
[
−Σ+

(
/p∥C+D

)
L0

n−1 (α⊥)

+Σ−
(
/p∥A+B

)
L0

n (α⊥)+2/p⊥EL1
n−1 (α⊥)

]
,

(C2)

and 

S 2(p∥, p⊥) = e−p2
⊥/h

∞∑
n=0

2(−1)n∆2

∆2
1

×
[
Σ+

(
/p∥D+ p2

∥C
)

L0
n−1 (α⊥)

+Σ−
(
/p∥B+ p2

∥A
)

L0
n (α⊥)

]
. (C3)

S 1 S 2

S 1 1/∆1 S 2 1/∆2
1

The distinction between  and  lies in their denomin-
ators:  scales with , while  involves . This
difference  leads  to  different  Landau–level  summations,
which motivates treating their contributions separately.

A(p∥,n) Â(p2
∥ , p

2
⊥)

B E
Using Eq. (29), if one replaces  with 

(and  similarly  for – ),  the  identities  remain  valid.  We
assume that  this  substitution  applies  not  only  to  the  in-
verse propagator but also to the propagator, allowing the
quark propagator to be constructed through known Land-
au–level summation results.

S 1The summation in  reduces to 
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e−
α⊥
2

∞∑
n=0

2(−1)n

[ρ+2n]
Ln(α⊥)

= i
∫ ∞

0
dωexp

{
−i

(
ρω+

α⊥
2

tanω
)}

[1+ i tanω] ,

e−
α⊥
2

∞∑
n=0

2(−1)n−1

[ρ+2n]
Ln−1(α⊥)

= i
∫ ∞

0
dωexp

{
−i

(
ρω+

α⊥
2

tanω
)}

[1− i tanω] ,

e−
α⊥
2

∞∑
n=0

4(−1)n−1

[ρ+2n]
L1

n−1(α⊥)

= i
∫ ∞

0
dωexp

{
−i

(
ρω+

α⊥
2

tanω
)}

[1+ tan2ω] , (C4)

with substitutions 

∆1 = −hE2[ρ+2n] ,

ρ = −
p2
∥AC−BD+ i0+

hE2
,

ω = sh . (C5)

Applying  these  relations  and  the  identifications  in  Eq.
(29), we arrive at 

S 1(p∥, p⊥) = − i
∫ ∞

0
ds

× exp

®
i

ñ
s

p2
∥ ÂĈ− B̂D̂+ i0+

Ê2
− p2

⊥
h

tan(sh)

ô´
× 1

Ê2

¶
[1− i tan(sh)]Σ+

[
/p∥Ĉ+ D̂

]
+ [1+ i tan(sh)]Σ−

[
/p∥Â+ B̂

]
− [1+ tan2(sh)]/p⊥Ê

©
.

(C6)

S 2

1/∆2
1

To  derive ,  which  carries  double  denominator
factors ( ), we differentiate Eq. (C4) with respect to ρ.
This leads to the following relations: 

e−
α⊥
2

∞∑
n=0

2(−1)n

[ρ+2n]2
Ln(α⊥)

=−ω
∫ ∞

0
dωexp

{
−i

(
ρω+

α⊥
2

tanω
)}

[1+ i tanω] ,

e−
α⊥
2

∞∑
n=0

2(−1)n−1

[ρ+2n]2
Ln−1(α⊥)

=−ω
∫ ∞

0
dωexp

{
−i

(
ρω+

α⊥
2

tanω
)}

[1− i tanω] . (C7)

S 2With these relations, the expression for  becomes 

S 2(p∥, p⊥) = −i
∫ ∞

0
ds

× exp

®
i

ñ
s

p2
∥ ÂĈ− B̂D̂+ i0+

Ê2
− p2

⊥
h

tan(sh)

ô´
× (−is)

(ÂD̂− B̂Ĉ)
Ê4

¶
−[1− i tan(sh)]Σ+

[
/p∥D̂+ p2

∥Ĉ
]

+ [1+ i tan(sh)]Σ−
[
/p∥B̂+ p2

∥ Â
]©

. (C8)

S 1 S 2Adding  and , the full quark propagator reads 

S (p∥, p⊥) = −i
∫ ∞

0
ds

× exp

®
i

ñ
s

p2
∥ ÂĈ− B̂D̂+ i0+

Ê2
− p2

⊥
h

tan(sh)

ô´ß
1

Ê2

î
(1− i tan(sh))Σ+

(
/p∥Ĉ+ D̂

)
+ (1+ i tan(sh))Σ−

(
/p∥Â+ B̂

)
− (1+ tan2(sh))/p⊥Ê

ó
+

(−is)(ÂD̂− B̂Ĉ)
Ê4

î
−(1− i tan(sh))Σ+

(
/p∥D̂+ p2

∥Ĉ
)

+ (1+ i tan(sh))Σ−
(
/p∥B̂+ p2

∥ Â
)ó™

. (C9)

tan(sh)Expanding  to first order in h, 

tan(sh) = sh+O(h3) , (C10)

O(s)and  retaining  terms  of  order , the  parametric  integ-
rals can  be  evaluated  explicitly.  The  propagator  then  re-
duces to 

S (p∥, p⊥) =
Σ+

(
/p∥Ĉ+ D̂

)
+Σ−

(
/p∥Â+ B̂

)
− /p⊥Ê

p2
∥ ÂĈ− p2

⊥Ê2− B̂D̂+ i0+

+
hÊ2

[
Σ+

(
/p∥Ĉ+ D̂

)
−Σ−

(
/p∥Â+ B̂

)]
(p2
∥ ÂĈ− p2

⊥Ê2− B̂D̂+ i0+)2

+
(ÂD̂− B̂Ĉ)

[
−Σ+

(
/p∥D̂+ p2

∥Ĉ
)
+Σ−

(
/p∥B̂+ p2

∥ Â
)]

(p2
∥ ÂĈ− p2

⊥Ê2− B̂D̂+ i0+)2
. (C11)

 

APPENDIX D: EXPLICIT FORM OF THE GAP
EQUATION IN EUCLIDEAN SPACE

The structures  of  the  inverse  propagator  are  given in
Eq.  (30),  and  those  of  the  propagator  are  given  in  Eq.
(43). By substituting these into the gap equation, Eq. (53),
and projecting onto various Dirac components, we derive
a set of scalar equations. To facilitate numerical computa-
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p2
l = p2

0+ p2
z

p2
t = p2

x + p2
y

q = k− p

tion,  we  perform  a  Wick  rotation  to  Euclidean  space,
where the dressing functions depend on longitudinal mo-
mentum  and  transverse  momentum

. The  resulting  equations  are  explicitly  ex-
pressed as follows (with ):
 

Â = Z2−Z2
2g2CF

∫
d4k

(2π)4

G(q2)
q2

KA

∆E
,

B̂ = Z2Zm−Z2
2g2CF

∫
d4k

(2π)4

G(q2)
q2

KB

∆E
,

Ĉ = Z2−Z2g2CF

∫
d4k

(2π)4

G(q2)
q2

KC

∆E
,

D̂ = Z2Zm−Z2
2g2CF

∫
d4k

(2π)4

G(q2)
q2

KD

∆E
,

Ê = Z2−Z2
2g2CF

∫
d4k

(2π)4

G(q2)
q2

KE

∆E
. (D1)

The kernels are defined as:
 

KA =NAKAA+NC KAC −NE KAE ,

KB =NBKBB+NDKBD ,

KC =NAKCA+NC KCC −NE KCE ,

KD =NBKDB+NDKDD ,

KE =NAKEA+NC KEC −NE KEE . (D2)

The denominator is defined as:
 

∆E = k2
l ÂĈ+ k2

t Ê2+ B̂D̂ . (D3)

NA NEThe terms  to  are given by:
 

NA =Ĉ− hÊ2Ĉ
∆E
+

D̂(ÂD̂− B̂Ĉ)
∆E

,

NB =D̂− hÊ2D̂
∆E
− k2

l Ĉ(ÂD̂− B̂Ĉ)
∆E

,

NC =Â+
hÊ2Â
∆E
− B̂(ÂD̂− B̂Ĉ)

∆E
,

ND =B̂+
hÊ2B̂
∆E
+

k2
l Â(ÂD̂− B̂Ĉ)
∆E

,

NE =Ê . (D4)

The K matrices are defined as: 

KAA =
1

q2 p2
l

[
q2

l (pl · kl)−2(pl ·ql)(kl ·ql)
]
,

KAC =
1

q2 p2
l

[
−q2(pl · kl)−q2

l (pl · kl)
]
,

KAE =
1

q2 p2
l
[2(pl ·ql)(kt ·qt)] ,

KBB =
q2

l

q2
−2 , KBD = −1− q2

l

q2
,

KCA =KAC , KCC = KAA , KCE = KAE ,

KDB =KBD , KDD = KBB ,

KEA =−
1

q2 p2
t

[
(kl ·ql)(pt ·qt)

]
,

KEC =KEA ,

KEE =
(pt · kt)

p2
t
+2

(pt ·qt)(kt ·qt)
q2 p2

t
. (D5)

Â− Ê
p2

l p2
t

Solving  Eq.  (D1)  yields  solutions  for  (now func-
tions  of  and ),  allowing  us  to  determine  the  quark
propagator.
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