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Abstract: Electroweak (EW) amplitudes in the gauge-Goldstone 5-component formalism have a distinctive prop-
erty: gauge symmetry is imprinted in the amplitudes, manifested as the massive Ward identity (MWI) ™ My, = 0.

In this paper, we use the HELAS package to numerically study gauge symmetry in EW amplitudes. First, we dir-

ectly test gauge symmetry by examining the MWI of amplitudes. Second, we modify the couplings within a vertex
and of vertices to check if and how the MWI changes. Third, we test gauge symmetry by considering the couplings

modified by operators from the standard model effective field theory (SMEFT): Similar to the standard model, there

are relations between different couplings that are protected by gauge symmetry. We find that if we modify the coup-

lings to deviate from the relations, the MWTI is violated. On the other hand, the MWI is restored when the relations

between couplings reduce to those in the SMEFT.
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I. INTRODUCTION

The gauge cancellation of electroweak (EW) scatter-
ing amplitudes in the standard model (SM) [1-3] has
been both a theoretical problem hindering physical ana-
lysis and a practical problem in numerical calculations. In
recent years, a new framework of computing EW amp-
litudes based on Goldstone equivalence was proposed and
implemented in the software package HELAS [4]. The
main ingredients of this framework are: 1) taking Gold-
stone equivalence [5—7], so that the polarization vector of
a massive vector boson has no k* term, instead is com-
posed of its Goldstone component and a remnant gauge
term; 2) combining the gauge components and their
Goldstone component of fields or polarization vectors in-
to single 5-component objects at the level of polarization
vectors, propagators, and vertices; 3) imposing a special
light-cone gauge defined by the gauge direction
nt = (1,—1?/|l?|), dubbed the Feynman diagram gauge [4]
or Goldstone equivalence gauge [8]. It has been demon-
strated in Ref. [4] with many examples that EW amp-
litudes in this new scheme do not have gauge cancella-
tion, thereby solving a long-standing problem. Further
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studies on this topic can be found in Refs. [9—15]. Earlier
but incomplete treatment of the 5-component formalism
can be found in [16—18].

The new framework in Ref. [4] is essentially a reor-
ganization and combination of "pieces" from existing
Feynman rules. Although ideal to be combined with the
Feynman diagram gauge, it can also be applied to other
gauges, such as the Feynman gauge and others. There-
fore, it is necessary to distinguish the S5-component
framework from any specific choice of gauge. Addition-
ally, since the framework relies on the Goldstone equival-
ence theorem [5—7] in an essential way, it is appropriate
to refer to it as the Goldstone equivalence (GE) represent-
ation of Feynman rules, as we will do from now on. Cor-
respondingly, the standard Feynman rules will be called
the gauge representation, as they exclusively treat the
physical content of massive vector bosons as quanta of
gauge fields.

Although the absence of gauge cancellation is crucial
for practical applications, it is not the only important
property of the GE representation of EW Feynman rules.
Another intriguing property is that the GE representation
directly imprints gauge symmetry at the level of amp-
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litudes, as expressed by the massive Ward identity
(MWTI), which is named in analogue to its massless coun-
terpart. Specifically, for a scattering amplitude & (k)M,
involving an external vector boson V' with mass my and
4-momentum k*, the MWI reads [5—7, 19]

M, = FimyM(g), )

where the — (+) sign corresponds to the case that the vec-
tor boson is in the initial (final) state, and M(y) repres-
ents the amplitude obtained by replacing the vector bo-
son with the corresponding Goldstone boson ¢. The MWI
(1) is a fundamental identity for a spontaneously broken
gauge theory, e.g., the EW gauge theory. The main goal
of this work is to study gauge symmetry of EW amp-
litudes using the numerical tool HELAS [4, 20, 21].

Similar to the Ward identity in gauge theories with
massless gauge bosons, the MWI guarantees precise rela-
tions among different diagrams of an amplitude, which
further imply exact relations among different vertices, or
equivalently, different couplings within the same theory.
Taking the example of W*W~ — W*W~ with the helicity
combination of TTTT, where T represents a transverse
polarization, the amplitude includes three vertices WWZ,
WWA, and WWWW with couplings gwwz, gwwa, and
gwwww. The Ward identity requires

2

_ 2 2
Ewwww = wwz t 8wwa-

Conversely, any deviation from this relation would result
in violations of the gauge symmetry and the Ward iden-
tity. When the helicity combination involves longitudinal
components, the precise relations the MWI brings about
not only involve couplings of gauge bosons, but also
those of Goldstone bosons and the Higgs boson. Thus,
the structure of gauge symmetry is much richer in
massive amplitudes, on which we will devote much space
to study. Moreover, the gauge symmetry and the MWI
are not limited to the SM but can also be applied to other
theories. One theory of particular interests is the standard
model effective field theory (SMEFT) [22—27], which is
a direct extension of the SM.

The remaining of the paper is organized in the follow-
ing way. In Section II, we provide a brief introduction to
the GE representation of EW interactions, emphasizing
on the relations among different couplings and paramet-
ers. In Section III, we directly test the EW gauge sym-
metry with the MWI (1) across multiple processes and
helicity combinations. In Section VI, we examine the EW
gauge symmetry through anomalous couplings, including
both within individual vertices and among multiple ver-
tices. Finally in Section V, we study the connection
between anomalous couplings (Higgs self-couplings and

Yukawa couplings) and certain SMEFT operators using
the MWI. We will demonstrate that when the anomalous
couplings are adjusted according to the SMEFT operat-
ors, the MWI is satisfied, ensuring gauge invariance and
self-consistency of the theory.

II. GE REPRESENTATION OF EW
INTERACTIONS

In this section, we describe key ingredients of the GE
representation, including polarization vectors, gauge
choice, propagator, vertices, and Feynman rules.

A. Polarization Vectors in the 5S-component Formalism

The central identity for our program is the massive
Ward identity (1), which essentially states the equival-
ence between the k* terms in gauge fields and the corres-
ponding Goldstone fields. Moreover, the longitudinal po-
larization vector of a massive vector boson V' with 4-mo-
mentum k* can be decomposed into

1"
:k mvﬂ

n~kn

e' (k) 3)

my

with n* = (1,—/?/ |l?|) and the subscript L representing a
longitudinal polarization. We can eliminate the k* term in
€' (k) by using the MWI, resulting in the amplitude with a
longitudinal vector boson to become

MVp) = (M, = —}’% M —iM), (4

where the MWI (1) is used in the second step.

The generalization to multiple vector bosons is
straightforward, but it leads to an excessive number of
terms, making calculations cumbersome. To address this
issue, we define S-component longitudinal polarization
vectors in the GE representation by combining the gauge
boson wave function and the Goldstone boson "wave
function" as

"
€"(k) = (_":lvfllc , i) for initial state,
U
M (k) = (—% —i) for final state, (5)

with ©=0,1,2,3 and M =0,1,2,3,4. In addition, the 5-
component transverse polarization vectors are defined as
(k) = (€éi(k), 0). Then, the MWI (1) can be rewritten as

k™ My =0 for outgoing,
(6)

k™ My, = 0 for incoming,
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with MM = (M, M(¢)) and the 5-component "mo-
mentum" k¥ = (k*,—imy). The 5-dimensional "metric" for
index contraction is gy = diag(+1,—-1,-1,-1,-1). The
spin sum of the polarization vectors becomes

kM nN + nM k*N

Y@ we k= g+ ()

s=+,L

with g™ = diag(+1,-1,-1,-1,-1) and n" = (»*,0). Writ-
ing the gauge and Goldstone components separately, Eq.
(7) becomes

v

W Kn'+n'k” myn
g ;
S e k) = ORI DO
;) s mvnu
s=+,L —i 1
n-k

The mixing between gauge and Goldstone degrees of
freedom is manifest here. When my — 0, they decouple
from each other.

Because of the MWI (6), we can go further to state
that the longitudinal polarization vector can be equival-
ently defined by an arbitrary shift:

M

+A—
my

myn*

n-k ’l)

gives the same amplitudes for any value of A. Choosing
A=1 yields "(k,1) = (¢'(k),0), which corresponds to the
conventional case using Eq. (3). We will refer to the case
of 1=1 asthe gauge form of the longitudinal polariza-
tion. The case of A =0 corresponds to Eq. (5), which we
will call the GE form.

€' (k,A) = ( ©)

B. Gauge choice and Propagator

The 5-component formalism can also be naturally de-
rived from the Lagrangian, which includes a term
myV,0*¢ that mixes the gauge field with the Goldstone
field after gauge symmetry breaking [4]. Therefore, it is
natural to combine gauge and Goldstone components in-
to one S-component object.

The GE representation, implemented through the 5-
component formalism, is compatible with any gauge ex-
cept the unitary gauge, which eliminates Goldstone bo-
sons from the Feynman rules. In the R, gauges, the
gauge-fixing Lagrangian term —(0"V, —myg)*/(2€) is in-
troduced to cancel the gauge-Goldstone mixing term.
This results in the propagator for a massive vector boson

(

W=,z

M~ N H

Fig. 1.

__.’__

-3

in the 5-component formalism taking the form of

k0
0 m:)

(10)

_l'gMN

-mi +ie

i(1-¢)
(K —mi)) (k2 — Emy)

MN _
D"™(k) = 5

Setting £ = 1 yields the Feynman gauge.

To completely eliminate the k# terms, we can choose
the gauge condition n#(x)V,(x) =0, where n*(x) is the
Fourier transformation of n#(k) = (1, —k/ |l€|), by adding the
Lagrangian term —[#*(x)V,(x)]*/(2a). Its specific form is
irrelevant here. Applying to a massive gauge theory, the
5-dimensional vector, boson propagator becomes

_l' (
8
kz—m%,

The numerator of the gauge independent part is pre-
cisely ithe spin sum of polarization vectors in Eq. (7) for
an on-shell momentum. Taking @ — 0, we obtain the po-
larization vector in Eq. (9) with 4 =0. This is known as
the Goldstone equivalence gauge or the Feynman dia-
gram gauge [4].

uy KRN+ Mgy

MN 1\ =
D"V (k) = Tk

) kM N an

+a/(n.k)2.

C. Vertices and Feynman Rules

With the polarization vectors and the propagator ex-
pressed in the 5-component formalism, it is natural to ex-
tend this framework to vertices involving massive vector
bosons. To reflect this property, we introduce a double-
line notation by overlapping a wavy line with a dashed
line to represent the massive vector boson in Feynman
rules: the wavy line represents the gauge components,
while the dashed line represents the Goldstone compon-
ent. As examples of this double-line notation, we illus-
trate the decomposition of the vector boson propagator in
Fig. 1 and that of the WWh vertex in Fig. 2.

The new form of vertices brings additional subtleties.
As an example, we denote the WWh vertex to be Vi,
where the subscript indicates the vertex and the super-
script represents indices. In the GE representation, a ver-
tex involving massive vector bosons has multiple para-
meters. For instance, VMY not only includes the pure
gauge components Vi, with coupling gwws,, but also in-
volves the gauge-Goldstone components Vﬁ;‘w;, = Vngph
with coupling gw,, = g,ws and the pure Goldstone com-
ponent Vi, = Vi, with coupling A,,,. We can further
express the vertex as Vi, (Swwn, 8ewhs Aggni My, my). These
couplings, however, are not independent in the SM. They

12

v

5-component vector boson propagator in the double-line notation.
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Fig. 2.
of the "metric" gy .

are all determined by the gauge coupling g, excluding the
mass parameters. These relations come from the spontan-
eous symmetry breaking of the EW theory, reflecting of
the underlying gauge symmetry. Similar relations also ex-
ist for other vertices such as ff'W, WWZ, etc. Further
details will be discussed in Sec. [V.

Finally, let us examine the free parameters in the SM.
The EW gauge and Higgs sectors of the SM contain only
four free parameters, which we choose to be my, g, 6w,
and my,, representing the /¥ boson mass, the SU(2),. gauge
coupling, the weak mixing angle, and the Higgs boson
mass, respectively. All other parameters in these sectors
are derived from them. For example, the Z boson mass is
given by my = my/cosfy, and the Higgs self-coupling is
A =2my, /v* = g%my,/(2m3,). In the fermion sector, each
Yukawa coupling is defined as d; = gm;/(V2my), intro-
ducing an additional parameter, the corresponding fermi-
on mass m;. If we assume that the particle masses have
been precisely measured and are treated as inputs, then
the free parameters in the EW sectors of the SM reduce to
just two: g and 6y, .

III. DIRECT TEST OF GAUGE SYMMETRY

In this section, we directly test the gauge symmetry in
EW scattering amplitudes using the MWI (6). We take
the EW processes W*W~- —f and WW~ — W*W~ as
two examples, replacing the polarization vectors of W bo-
sons in the amplitudes with the S5-component momenta
kM and computing k¥ M,, utilizing HELAS in the GE
representation.

In Fig. 3, we show k¥ M,, for W*W~ — 17 as function
of cosd, where 6 is the scattering angle in the center-of-
mass (CM) system. The CM energy and the azimuthal
angle are fixed as /s =1TeV and ¢ = 0. In Figs. 3(a) and
3(b), the polarization vector of W* is replaced by kM,
with the helicities of # fixed as +— and the helicity of W~
set to be 0 (longitudinal polarization) and +, respectively.
In Figs. 3(c) and 3(d), the setup is similar, expect the heli-

5-component vertex of WWh in the double-line notation. The minus sign in front of ¢Wh comes from the gss = —1 component

cities of #7 are fixed as ++. The blue solid lines represent
the resultsincluding all tree-level diagrams, exactly
demonstrating the MWI k" M,; = 0. The red dotted and
green dashed lines correspond to the results excluding the
t-channel diagram and those solely involving the #-chan-
nel diagram, respectively. These contributions are pre-
cisely opposite to each other, indicating a large and exact
cancellation between different diagrams as expected.

In Fig. 4, we present the results for W*W~ —» W*W~,
where one, two, and four polarization vectors of W bo-
sons are replaced by one, two, and four 5-component mo-
menta, respectively. The helicities of the remaining W bo-
sons are uniformly set to +. The blue lines represent the
sums of all tree-level diagrams, while the red dotted,
green dashed, and black dot-dashed lines correspond to
the results for the contact, s-channel, and 7-channel dia-
grams, respectively. Once again, we observe that the
MWI is satisfied when all tree-level diagrams are in-
cluded, confirming the gauge symmetry.

IV. TESTING GAUGE SYMMETRY THROUGH
ANOMALOUS COUPLINGS

In the previous section, we confirmed that the gauge
symmetry represented by the MWI ensures precise can-
cellation among various diagrams when one or multiple
polarization vectors €"(k) are replaced by 5-component
momenta k™. In this section, we take a different ap-
proach by modifying certain couplings to examine how
the MWI is affected. Such a test of gauge symmetry
through anomalous couplings can provide deeper in-
sights into how different couplings and parameters are in-
terrelated through gauge symmetry.

In the GE representation, any vertex involving
massive vector bosons contains multiple couplings. This
allows us not only to modify the couplings of individual
vertices as a whole but also to adjust specific parameters
within those couplings. The latter will be studied in Sub-
section IV A with 3-point vertices, while the former will
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be discussed in Subsection [V B with 4-point vertices.

A. 3-point Vertices

In this subsection, we examine gauge symmetry
through the analysis of 3-point vertices, specifically fo-
cusing on the VVh, ff'V, and VVV vertices within the
GE representation.

VVh vertex

The first type of vertices we study is the VVh ver-
tices, which include the WWh and ZZh vertices. As dis-
cussed in Sec. II, a VVh vertex in the GE representation
involves four sub-vertices: VVh, Vph, Vph, and ¢ph,
with corresponding couplings guvv, gven, &evi, and Agg,.
For the WWh vertex in the SM, the couplings are related
to each other by the following relations:

2

Ewwh 8my,
[/‘/ u/h . = 2 = 2 = —, /l = . 12
8 EWeh 8oWh w oph 2 w ( )

We intend to test the MWI by modifying these coup-
lings by

8
gwwn = gmw(1 +5%;VWh), EWyh = 5(1 +5%4/wh),

2
gmy,

2y (1 +Shw)-

8oWh = g(l +6€vw},), /l<p<ph = (13)

WHW= = hh, Vs=10TeV
100 ————————

Unitary gauge
Goldstone equivalence rep

80
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o (pb)

40

20

K=

.
1.0

S
(a)
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LN R s S S S s S S N ™

0.684
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o (pb)

0.679

0.678

0.677

T T T T T T T LA T

0676 v v v
—100 =50 0 50

100

The SM corresponds to  Shywy = Sown = Osywn =
O%wn = 0. For the ZZh vertex, we only need to replace my
with m; in Egs. (12) and (13). To facilitate a clearer com-
parison with the gauge representation, we leave gy, un-
changed, ensuring 6}, = 0 at all times. Additionally, we
enforce 6%y, = Osywn = Osw, When modifying the coup-
lings, as the two sub-vertices Vph and ¢Vh belong to the
same type.

The processes we choose to test gauge symmetry with
the WWh vertex are W*W~ — 1f and W*W~ — hh. We
first compare the cross sections vs. iy, in both the unit-
ary gauge and the GE representation, the results are
shown in Fig. 5. Just as expected, when 6%, and &}y,
are nonzero, the cross sections in the GE representation
deviate from those in the unitary gauge, which remain un-
changed and retain the SM values. The larger 6%, and
O%ywn are, the larger are the deviations. Compared to
WW — hh, WW — 1 exhibits significantly lower sensitiv-
ity to &y, and Syy,. We have to plot 63y, and Sy,
over the range [-100,100] for WW — 7, but only [-1,1]
for WW — hh. It is not surprising, given that the WWh
vertex contributes to three channels of WW — hh, but
only one in WW — 7. Another notable observation is that
the sensitivity of cross section is much higher to 6%,
than &}y, for WW — hh, but the sensitivities are approx-
imately the same for WW — 17.

WTW ™ —hh, Vs=10TeV
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Fig. 5. (color online) Cross sections of WW — i (upper panels) and WW — 7 (lower panels) at +/s = 10 TeV with varying 633, and
&%, in the unitary gauge (blue solid lines) and the GE representation (red dotted lines).

WWh
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Next, we compute kyMM or kyykoyMMY for these
processes as a way of testing gauge symmetry by repla-
cing polarization vectors of one or two W bosons with 5-
component momenta. The results are shown in Fig. 6 for
WW — hh and Fig. 7 for WW — 7, respectively. For
WW — tf, we analyze various helicity combinations. In
certain helicity configurations, the results consistently
vanish due to the violation of angular momentum conser-
vation. Apart from these cases, the anomalous couplings
lead to violations of the MWI. For WW — 7, the devi-
ations for 63, are larger than those for &}y,

ff'V vertex

The ff'V vertex has two sub-vertices: ff'V and
ffe. The ff'V coupling can be parameterized as
—iy"(gLPL+grPr), Wwhile the ff'¢ coupling is
yLPL+yrPr. Just like the VVh case, gauge couplings and
Yukawa couplings are not independent, as the latter can
be expressed in terms of the former.

For a charged current vertex such as udW, we have

§ 8Md 8y

gr=0, gL=—F%, »= s YR=- - (14
V2 Vamy Vomy, (9
For a neutral current vertex such as uiiZ, we have
_ Qfgs%)v _ _ o 8my 15
grR=—"", &QL=8rt 7, YL="IR= s ( )
cw 2cw 2my

5 W (k)W — h hi Vs =10TeV, ¢=0,cos0=0.5

Tt AR T

S ]
< B
S i
% 3
S ]
_405‘ M P R R B E
-1.0 -0.5 0.0 0.5 1.0

it
(a)

W (k)W ™ (ky)— b h, V5 =10TeV, ¢=0,cos6=0.5
2071
1of

; —10f
s 7
£ -20f
£ f
—-30
_40:””\””\””\””’
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(c)
Fig. 6. (color online) ky M and kiprkoy MMV as functions of 623,

replaced by 5-component momenta.

kyMM (GeV)

with sy =sinfy and cw =cosfy. To sum up, the ff'¢
couplings are essentially Yukawa couplings y;, which are
related to the fermion masses m; by ¢ =gmy/( \/imw),
This relation is protected by gauge symmetry, and there-
fore the breaking of gauge symmetry will be reflected on
violation of this relation.

Similar to VVh, we test gauge symmetry by modify-
ing the ff'V couplings as following:

81 (1+6)).

‘/zmw

V5= (16)

The process'we choose to examine gauge symmetry
for the ff'V. vertex is WW — ¢7. This process is ideal be-
cause its z-channel diagram includes the thW vertex,
while its's-channel diagram includes the 7Z vertex, al-
lowing us to examine both charged and neutral currents.

InFig. 8, we demonstrate how the WW — 7 cross
sections are changed when the couplings y'* and y//}, are
modified in both the unitary gauge and the GE represent-
ation. Similarly, we show how kyMM or kjykoy M"Y
change with the anomalous bW couplings in Fig. 9, and
with the anomalous #Z coupling in Fig. 10, respectively.
As the figures show, gauge symmetry is broken when one
of the components of thW/ttZ couplings are modified,
both in terms of cross sections and the MWI. For #Z, the
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and 63,y for WW — hh with one or two W polarization vectors are
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Fig. 7. (color online) ky MM and kiykoyMMN as functions of 6%, and &}, for WW — i with one or two W polarization vectors are
replaced by 5-component momenta. Results for various helicity combinations are shown.
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sensitivity of kyMM and kyykoyMMN to 6%, is much
higher than 6%,. This is expected, since the SM #Z ver-
tex is dominated by the left-handed interaction. For bW,
the sensitivity to 6%, is much higher than &% ,,. The reas-
on is also not hard to see: the top Yukawa coupling is
much larger than the bottom Yukawa coupling.

VVV vertex

In the SM, there two VVV vertices, W*W*Z and
W*W-A, either of which has 3 types of sub-vertices:
VVV, VoV, and ¢¢V. There is no ppe-type vertex.

For the WWZ vertex, the couplings are related to each
other by

— _ 8Cw _8 _
8wwz = 8CW>  8ppz = 2w Bewe =5 8wee = 5>
eswm eswm
gwwe =0, 8wz = 7W’ 8wz = — W, (17)
Cw Cw

with c,w =cos26yw and e = gsyw. Following the analysis
for the VVh and ff’'V vertices, we modify the couplings
to test gauge symmetry as following:

8Cow 8

8oz = 2w (1 +6€V33VZ)’ oW = 8Wpp = 5(1 +6€V33VZ >
esSwhny

8wpz = Ccw a +6€V6‘ZVZ = —8ewz-

(13)
We examine gauge symmetry of the WWZ vertex
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Fig. 11.

$=0,cos0=0.5

with both the W*W* — W*W~ and WW — 7 processes. In
Figs. 11 and 12, we test the MWI by modifying 6%, and
oy for WHW+ — W*W- and WW — 17, respectively. In
both cases, the sensitivity of the violation of the MWI to
oy, is higher than 6%,,, sometimes significantly so.
This is somewhat surprising, since the VVp-type vertex
that 632, modifies is suppressed by e = gsw. However,
they are typically proportional to my, providing an en-
hancement that effectively counterbalances the suppress-
ive influence of the weak mixing angle 6y, .

B. 4-point Vertices

Gauge symmetry is not only reflected in the coup-
lings within a single vertex, but also in the relations
among different vertices. For example, in the WW — WW
process, where vertices such as WWWW, WWZ, WWy,
and WWh are involved, the MWI requires precise rela-
tions among their couplings. Any deviation from the SM
values breaks gauge symmetry, similar to how it violate
unitarity in the gauge representation. We will modify the
overall couplings of the vertices to test the MWI. The
processes we choose are W*W~ - W*W~, W*W~ — hh,
and W*W~ — 1.

For W*W~ —» W*W~, we separately vary the overall
couplings of the WWh, WWZ, and WWWW vertices and
compute kyMM. In Fig. 13, we show the results, listing
different helicity combinations in the process. As expec-
ted, we can see the violation of the MWI when the anom-
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(color online) Testing the MWT by computing kiykoy MMY (upper panels), and kiykon ks, ki p MMNOP (lower panels) with an-

omalous WWZ couplings for the process W*W+ — W*W~. In the upper panels, various helicity combinations are shown.
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couplings for the the process WW — 7. Various helicity combinations are shown.

(color online) Testing the MWI by computing ky M (upper panels) and kjpykoy MY (lower panels) with anomalous WWZ
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Various helicity combinations are shown.

(color online) ky MM for W*W~ — W*W~ as functions of anomalous overall couplings swws (a), Swwz (b), and swwww (c).
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alous couplings are nonzero. This violation is most sensit-
ive to Swwz and Swwww .

One interesting observation is that, in most helicity
combinations, k, MY remains zero or close to zero. This
reminds us to be careful in selecting helicities when test-
ing gauge symmetry of massive amplitudes. The exact
vanishing of ky MY in the presence of an anomalous
Swwn appears to be due to angular momentum conserva-
tion: the amplitude vanishes when angular momentum
conservation is violated, so only helicity combinations
that conserve angular momentum can yield nonzero val-
ues.

For WW — hh, we separately modify the couplings of
the hhh, WWh, and WWhh vertices, and compute ky MM,
The results are shown in Fig. 14.

For WW — t7, we separately modify the couplings of
the bW, 1tZ, and rth vertices. The results are shown in
Fig. 15.

The overall pattern is similar for all three processes.
Angular conservation forbids some helicity combinations,
giving ky MM = 0 automatically, no matter how the coup-
lings of individual vertices are modified. This, however,
does not mean that the MWI is valid regardless of the
couplings. Because there are always some helicity com-
binations, in which a modification of one coupling res-
ults in the violation of the MWI.

W+ (k)W~ = hhy Vs=1TeV, ¢=0,cos0=0.5
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V. ANOMALOUS COUPLINGS AND SMEFT

So far the anomalous couplings we considered are
only instruments to demonstrate the gauge symmetry of
related amplitudes. They do not have intrinsic, gauge-in-
variant, physical meanings. However, there is a scenario
that anomalous couplings can be physical. That is when
those couplings are part of a set of anomalous SM coup-
lings from new physics that respects gauge symmetry. An
example that we will explore in this section is SMEFT,
which is an effective field theory respecting the SM
gauge symmetry. In particular, we will discuss two dim-6
SMEFT  operators [27-30]: O¢=Cs(®'®)* and
0,0 = Cip(D' D) (O 1y D) + H.c., where @ is the SM Higgs
doublet and. ® =ig?®*. We will study how the gauge
symmetry is restored in the presence of these operators
when the 3-point Higgs self-coupling A,,, and the top
Yukawa coupling y,;, are modified in the WW — hh and
WW — tf processes, respectively.

WW — hh

Adding an SMEFT operator Os = Co(®'®)* into the
SM Lagrangian, the hhh and hhg*¢~ couplings are modi-
fied to

3m?
—h + 6C6V3,
Vv

(19)

m2
_ h 2
A Aphgt o = 2 +6Csv°.
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helicity configurations are shown.
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(color online) ky MM for WW — hh as functions of anomalous overall couplings u, (a), Swwn (b), and Sww, (c). Various
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combinations are shown.

Since the two couplings are modified by the same op-
erator, their deviations from the SM values are related.
This relation is further protected by gauge symmetry.
Conversely, if we modify one of the couplings alone, say
Apn = BN+ 5y, the gauge symmetry will be broken. In
order to restore gauge symmetry, the other coupling
Ao has to be modified by adding

O (20)

6/1/1‘,04r o =

Any deviation from the above relation will break
gauge symmetry for a process involving both hhh and
hhVV couplings, which can be tested with the MWI.

In order to test the relation (20), we introduce a devi-
ation parameter J by

Onih = Oy~ v(1 +0). (21)

Thus, § =0 corresponds to the relation (20) that re-
spects gauge symmetry. We take 6, to be 0.2, 0.4, 0.8,
and 1. For every o, value, we compute kyMM as a
function of ¢ for the WW — hh process with one W polar-
ization vector replaced by the 5-component momentum.
The results are summarized in Fig. 16. As can be seen in

()

Pl bev b bevaa b
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!
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(color online) ky MM for WW — 17 as functions of anomalous overall couplings 6w (a), 64z (b), and 6,4 (c). Various helicity
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Fig. 16. (color online) ky MM for WW — hh as functions of J
with different values of 6,;, serving as a test for gauge sym-
metry in the presence of the SMEFT operator Og.

the figure, ky MM =0 only appears when 6 = 0, i.e., when
the relation (20) holds. This confirms our argument that,
with an anomalous coupling of A;,,,, gauge symmetry can
be restored by adding an proper anomalous coupling of

MG s

We then focus on gauge symmetry of the WW — ¢
process with the incorporation of the SMEFT operator
O = Cip(®'®)(QLtz®) + H.c.. The couplings of tth and
ttop are defined as



Wang-Fa Li, Junmou Chen, Qian-Jiu Wang ef al.

Chin. Phys. C 50, (2026)

Lo = =1(un + iy, Y )ih, (22)
Litgy = ~10ugy + VsV NP @7 (23)

In the SM, the values of these couplings are
Yun = Vi = Vs = Vi = 0. (24)

After the addition of O,4, the couplings are modified
into

m V2 V2
Yin = 71 - ﬁ Re(Cip), ytsth = _$ Im(C,0),
(25)
2 2
Vigo = ——=Re(Cip), ¥, =——=Im(Cr0).  (26)
("2'4 \/5 o \/z

Following the above equations, we can obtain the re-
lations between the modifications to these couplings are

OVun = 6ytt¢<pv5 ‘5)’?1/1 = 6yt5t<,a4pv' (27)

If expressing in left-handed and right-handed coup-
lings, the Lagrangian terms for the 7h and ttpe coup-
lings become

Ly = —HyLPL + yr Pr)th,

Ligp = —1(gLPL +grPR)IQO ¢ (28)

The modifications to y, yr, gL, and gr are related to
C as

o W ()W, —tt, Vs=1TeV, ¢=0,cos0=0.5
L B L B
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It is easy to see that they are related to each other by

OYL/R = OZL/RV. (30)

Our method of testing the gauge symmetry is similar
to WW — hh with the Oq operator. Two deviation para-
meters 6. and Jx are introduced by

OyL/R = 0grrV(1 + 01 R). (1)

Therefore, 6, = 6rx =0 corresponds to the modifica-
tions contributed by the O,y operator that preserve gauge
symmetry. In Figs. 17(a) and 17(b), we show ky MY for
WW — tf as functions of 6;, and 6z assuming various val-
ues of Re(d,,) and Im(S,,), where 6., 1s defined as
8un = Cov?/ V2. As expected, gauge symmetry is re-
stored when the condition (30) is satisfied. This demon-
strates that an anomalous Yukawa coupling can be coun-
terbalanced by a corresponding ffee contact vertex, en-
suring that the WW — 17 amplitude remains gauge invari-
ant.

VI. SUMMARY AND CONCLUSIONS

In this paper, we demonstrated that the GE represent-
ation of EW interactions, which we had an brief introduc-
tion first, has gauge symmetry imprinted in the structure
of amplitudes, manifesting in the MWI (1). This ap-
proach to gauge symmetry is rarely studied before, be-
cause it involves vertices of both gauge bosons and Gold-
stone bosons simultaneously. We numerically studied this
important property of EW interactions in the GE repres-

W ()W, —tt, Vs=1TeV, ¢=0,cos0=0.5
0
—— T T

F === Re(dun)=Tm(du) =0.2
E ==~ Re(dun) =TIm(dun) =04
10f ~- Re(d) = Im(d,,) = 0.6
E === Re(du)=TIm(ds) =08
F Re(dyun,) =Tm(dyn) =1

L
1.0

(b)
(color online) ky MM for WW — 17 as functions of ¢, (a) and ér (b) with different values of Re(d,,) and Im(6,y,), serving as a
test for gauge symmetry in the presence of the SMEFT operator O .
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entation in many different aspects, including directly test-
ing the MWI, modifying couplings within vertices, and
modifying overall couplings of vertices. Generally, we
found that there are precise relations both within and
without overall vertices, which guarantee the MWI. Any
violation of these relations results in the violation of the
MWI and gauge symmetry.

By directly testing gauge symmetry on 4-point amp-
litudes such as WW — ¢f and W*W~ — W*W~ with differ-
ent helicity combinations, we found that the full amp-
litudes always satisfy the MWI after summing over all
tree-level diagrams. This result typically involves large
cancellations between individual diagrams, similar to
unitarity cancellation in the gauge representation.

For testing gauge symmetry on 3-point vertices with
anomalous couplings, we studied the VVh, ff’V, and
VVV vertices. We found that there are precise relations
governing the couplings of Goldstone and gauge compon-
ents for these vertices. We then numerically test if the
MWTI still holds when some of the couplings are modi-
fied so that those relations are violated. What we found is
that any deviation from those relations by anomalous
couplings would violate the MWI.

For testing gauge symmetry on 4-point amplitudes
with anomalous couplings, we studied W*W*— W*W*,
WW — hh, and WW — ri. We focused on how modifying
the overall couplings of individual vertices affects gauge
symmetry. Our results are similar to 3-point vertices:
gauge symmetry is manifested as precise relations
between couplings, and modifying couplings to violate
those relations also results in violating the MWI.

After studying gauge symmetry of the SM, we then
proceed to study effective operators in the SMEFT, spe-
cifically the Og operator that modifies the Higgs self-
couplings and the O, operator that modifies the top

Yukawa coupling. We found that the operators modify
both the couplings mentioned and the related Goldstone
couplings, giving relations between the couplings in-
volving Cs and C,q, respectively. Numerically testing the
MWI indicates that gauge symmetry is preserved as long
as all related couplings are modified in accordance with
those relations. On the other hand, if those relations are
violated, gauge symmetry would be broken. Similar to
the SM, our results for these SMEFT operators demon-
strate that not only the gauge components but also the
Goldstone components are crucial for maintaining gauge
invariance of the theory. This is also the reason why
gauge cancellation in the unitary gauge, in which there is
no Goldstone mode, seems ad hoc without obvious phys-
ical mechanism.

We believe that this paper contributes to a deeper un-
derstanding of EW interactions and massive gauge the-
ory in general. In addition, it also gives a convenient way
of checking self-consistency of EW interactions in the
GE representation.

So far the 5-component formalism has been only sys-
tematically implemented in HELAS for the tree-level
Feynman rules of the SM. Besides, for the purpose of this
work, we also included the dim-6 operators Og and O, in
HELAS. However, the majority of the SMEFT operators
remain to be incorporated. This obviously limits the util-
ity of our method and calls for more progress in this as-
pect. In Ref. [12], a general method for automatically im-
plementing the 5-component framework was proposed re-
cently, giving hope to apply our method to more general
theories.
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