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Abstract: This study made a statistical analysis on the correlation and uncertainty of parameters in the classical li-

quid drop mass formula (namely BW3 type) via the regression way, along with the theoretical impact of error

propagation. Within the improved BW3 formula, the total deviation between evaluation and experiment can be re-
duced to 1.66 MeV, involving the reduction from 2.89 (2.42) MeV to 1.92 (1.89) MeV in the proton(neutron)-drip-
line region. The ridge regression validation verified this total deviation as the optimal point in the present mass mod-

el. Through trend coefficients and Pearson linear-correlation analysis, obvious collinearity was identified between

volume, surface, Coulomb and curvature terms, with notable correlation among high-order symmetry energy and

surface symmetry terms. The theoretical derivation of the distribution in the binding energy error was then achieved

through error propagation analysis. Across the nuclide chart, the error uncertainty of mass predictions varies from

1.996 keV to 124.469 keV, demonstrating a convex trend of the initial decrease of evaluation error following by the

increasing versus the neutron number.
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I. INTRODUCTION

The precise calculation of nuclear mass is of pro-
found significance in the fields of nuclear physics and as-
trophysics [1, 2]. Measuring the mass of singular nuclei
[3] and improving their accuracy [4, 5] is a long-term
process. However, the present experimental facilities
aimed at the nuclear mass are still not accessible to these
short-lived nuclei in the r-process path[6]. As a result, the
theoretical mass evaluations are urgently required espe-
cially towards the high-precision extrapolation. Several
nuclear mass models have been developed to achieve
root-mean-square deviations (RMSDs) ranging from sev-
eral hundred keV to a few MeV for all known nuclear
masses.

The study of nuclear mass models traces back to the
early 20th century when Gamow proposed the liquid drop
model for nuclear binding energy based on nuclear force
saturation [7], upon which the Weizsidcker formula was
established as a macroscopic semi-empirical formulation
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[8, 9]. Mdller [10—12] and Haustein [13] incorporated mi-
croscopic effects into the liquid drop framework, devel-
oping the Finite-Range Droplet Model (FRDM). Classi-
fied as macro-micro models, analogous approaches in-
clude the extended Bethe-Weizsécker (BW2) mass for-
mula [14, 15], Weizsdcker-Skyrme (WS) mass formula
[16—20], and Duflo-Zuker (DZ) mass formula [21]. Mi-
croscopic theoretical models derive nuclear binding ener-
gies through approximate solutions of many-body equa-
tions from effective nucleon-nucleon interactions, exem-
plified by the Hartree-Fock-Bogoliubov (HFB) model
and relativistic mean-field mass model [22, 23].

For conceptual clarity, scholars categorize these the-
oretical frameworks into three classes: global mass mod-
els encompassing comprehensive theories, local models
deriving target nuclear masses from adjacent known nuc-
lei, and regional models describing nuclear quantity rela-
tionships within specific domains [24]. Typical regional
models comprise the Isobaric Multiplet Mass Equation
(IMME) [25, 26] and mirror nucleus mass formulae [27,
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28]. Prominent local models include the Garvey-Kelson
(GK) relations [29, 30] and proton-neutron interaction
mass relations(6V;,-;,)[31, 32].

Conventional mass models relying on empirical para-
meters exhibit notable discrepancies in mass predictions
for nuclei far from the f stability line, necessitating en-
hanced extrapolation capabilities in nuclear mass model-
ing. Recent advances in machine learning have enabled
data-driven approaches for nuclear mass predictions,
opening new avenues through neural network-optimized
models [33—35], fission yield distributions [36], and de-
cay energy studies [37]. Additionally,the physics-in-
formed neural network (PINN) method has recently at-
tracted significant attention in nuclear mass research [38].
Furthermore, radial basis functions (RBF) [19, 20] and
uncertainty quantification methodologies [39, 40] have
significantly improved the precision of theoretical mod-
els in characterizing and predicting nuclear ground-state
properties.

Uncertainty analysis in scientific modeling has gained
paramount importance, particularly in physics and engin-
eering disciplines. Conventional phenomenological ap-
proaches like least squares methods predominantly focus
on experimental data fitting while neglecting intrinsic
model errors and parameter correlations, thereby failing
to fully capture model veracity. Systematic analysis of
nuclear mass model parameter uncertainties and their cor-
relations can substantially enhance theoretical prediction
accuracy, error estimation reliability, and extrapolation
robustness.

Current theoretical modeling practices predominantly
focus on parameter uncertainty analysis through least
squares fitting, while systematic investigation of model
errors remains underdeveloped. This study conducts com-
prehensive nuclear mass investigations under uncertainty
theory framework, accounting for both statistical errors in
experimental binding energies and model deficiencies,
while simultaneously analyzing parameter uncertainties
[41—44]. Parameter errors were quantified via Monte
Carlo sampling techniques, with inter-parameter correla-
tions analyzed [41, 44—48] to evaluate their impacts on
binding energy calculation accuracy.

The remainder of this paper is organized as follows.
Section II presents the selected mass formula. Section 111
provides a concise overview of the quantitative evalu-
ation framework for parameter uncertainty. Building
upon [47], Section IV conducts in-depth explorations of
parameter correlations and optimization comparisons,
with Section V concluding the study.

II. MASS FORMULA

The mass formula BW3 is based on the classical li-
quid-drop model and incorporates additional physical
terms for a more comprehensive analysis.

The model used in this study is obtained from Ref.
[49]:
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curvature term azA3, shell effect term a,,P +B,P%, and
fourth-order term of symmetry energy @ 2" have been
added. It should be noted that the shell effect term con-
tains two parameters.

In equation
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it takes the value +1 for even—even nuclei, —1 for
odd—odd nuclei, and 0 for odd nuclei.
For P in equation (1),

VaVp

)

= b
Vot

where v, and v, are the numbers of valence nucleons (the
difference between the actual nucleon numbers N and Z
respectively, and the nearest magic numbers). To calcu-
late P, the magic numbers were the canonical 2, §, 20, 28,
50, 82,126, and 184 for both neutrons and protons.

The latest and most comprehensive database of nucle-
ar masses is the Atomic Mass Evaluation Database, com-
monly known as AME2020 [50]. This tabulation served
as the experimental data for the present study. The pertin-
ent input comprises a list of measured binding energies of
the nuclei acquired by multiplying the tabulated binding
energy per nucleon by the mass number (A).

Eq.(1) can be expressed in the form of a matrix

BTh = Fp, (4)
where B and p are column vectors, representing the cal-
culated value of the binding energy and the coefficient
corresponding to the formula respectively.

The matrix F is defined as
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aBTh,Nn aBTh,Nn aBTh,NI’L
ap; op, opn,

The row and column dimensions of matrix F correspond
to the number of nuclides and the total number of para-
meters, respectively.

The criteria for evaluating the quality of a semi-em-
pirical mass formula hinge on its capacity to embody
clear physical principles, minimize the dependency on
extraction parameters, obtain superior calculation results,
and clarify nuclear properties relevant to the nuclear
mass. The goodness of fit was assessed using the RMSD
of the extraction from the measured binding energies, as

follows:
(M- —E)?
RMS = 1> (M, El)’
n

where M; is the theoretical value, E; is the experimental
value, and # is the total number of data points.

(6)

III. REGRESSION ANALYSIS

A. The ordinary least-squares method
In the literature related to liquid drop model, the least-
squares method is, more often than not, the favored meth-
od to determine the parameters. This method consists in
minimizing the sum of the squared errors,

Ny
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where N, is the total number of selected nuclides, E; is
the experimental binding energy of the nuclide, and B; is
the theoretical binding energy of the nuclide.

The previous expression can be written in matrix
form,

X’() = |[Fp-Bey | ®)

and its minimization with respect to the parameters yields
the following solution:

P= (FTF)_IFTBEXP- (9)

B. Monte Carlo Bootstrap Method

The Monte Carlo Bootstrap Method is a statistical
resampling technique widely applied in parameter estima-
tion, uncertainty analysis, and model validation. Its fun-
damental principle involves resampling from an original
dataset with a specified estimator to construct new data-
set series, forming a bootstrap sample set. Empirical para-
meter distributions can be derived through analysis of in-
dividual bootstrap samples.

Nuclear mass formulae typically contain multiple em-
pirical parameters that are determined by fitting experi-
mental data. Parameter values inherently contain uncer-
tainties that propagate from these experimental errors.
This study investigates parameter distributions by per-
forming random sampling through the Monte Carlo boot-
strap method, generating numerous pseudo-datasets that
incorporate statistical errors in experimental binding en-
ergies to estimate parameter uncertainties. The specific
implementation procedure comprises the following steps:

1. The difference between the experimental value and
the calculated value of the binding energy is taken as the
initial set and denoted as &£(A). In total, there are M =
3250 nuclides (excluding nuclides with N and Z less than
7). By using the method of resampling, M samples can be
extracted from the initial set £(A) to obtain a sample set
&*(A), thereby obtaining a new set of experimental val-
ues:

B, ,)(N,Z) = B,y (N, Z) + £ (N, 2). (10)

2. Using By, (N,Z) as the new input for least squares,

a set of parameters is obtained.

3. Repeating the self-sampling for 7 =5000 times,
one can obtain the empirical distribution of the paramet-
ers.

4. Using the obtained parameter set, uncertainty eval-
uation and correlation analysis among each parameter
item are carried out.

C. Ridge Regression

The BW3 mass formula was constructed through mul-
tivariate regression analysis with 12 independent vari-
ables, whose statistical properties are susceptible to mul-
ticollinearity effects. High linear interdependencies
among variables in regression analysis may induce para-
meter estimation bias or model failure, for which the con-
dition number serves as a diagnostic metric. Statistical
benchmarks define condition numbers below 100 as in-
dicating satisfactory variable independence, values
between 100 to 1000 reflecting moderate collinearity, and
those exceeding 1000 signifying severe multicollinearity.
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Numerical analysis demonstrated the model's condition
number reaching 83900, substantially exceeding critical
thresholds and confirming pronounced multicollinearity
among independent variables.

In linear regression, multicollinearity among feature
variables may lead to unstable coefficient estimates with
inflated variance in Ordinary Least Squares (OLS), po-
tentially causing matrix inversion failure. Ridge regres-
sion addresses this issue by incorporating an L2 regular-
ization term (penalty term), whose fundamental principle
lies in constraining coefficients to reduce model complex-
ity and thereby enhance generalization capability.

Ridge regression extends the OLS loss function by in-
corporating an L2 regularization term, formally ex-
pressed as:

L(p) = [|Fp~ B, |5+ AIIPIE, (11)
where A >0 is the regularization parameter, which con-
trols the penalty intensity.

Increasing the A value amplifies the regularization ef-
fect, causing parameter estimates to shrink towards smal-
ler magnitudes, thereby mitigating model complexity and
overfitting risks. The regularization term enhances model
stability in the presence of multicollinearity. Ridge re-
gression reduces to OLS regression when regularization
is disabled (1 = 0).

Similar to OLS, ridge regression also has an analytic-
al solution:

p=(F'F+AD)""F’ By, (12)

In the selection of regularization parameters, the root

mean square error of the model increases with the in-
crease of .. When 4 € (0,0.08), the model accuracy re-
mains consistent with least squares. If 1 exceeds this
range, the model accuracy will be lower than that of the
least squares method. The ridge regression validation
verified this total deviation as the optimal point in the
present mass model.

IV. DISCUSSIONS

The formalism presented in Sec. II is now exploited
to examine the uncertainties and the correlations of the
parameters entering the liquid drop model, cf. Eq.(1). A
particular emphasis is given to the parameters, their un-
certainties and correlations, as well as a diversity of ob-
servables.

The following results are based on the nuclear bind-
ing energy of N,Z > 8 derived from Refs. [54], and a total
of 3250 atomic nuclei were considered.

A. The statistical nature of the model

The parameters of the BW3 formula obtained from
formula (Eq. (1)) are shown in the first column of Typel
in Table 1, and the second column represents the corres-
ponding standard error. The root mean square error
DBWois = 1.66 MeV, which is 10.8% lower than that be-
fore the coefficient was updated.

In multivariate linear regression, the fundamental ob-
jective of significance testing (F-test) is to assess the
overall statistical significance of the model. The BW3
model incorporating higher-order symmetry energy terms
demonstrated an F-statistic of 1.479« 10® with a Prob (F-
statistic) of 0.00 (p < 0.05), validating the improvement's
effectiveness in nuclear mass prediction at the 95% con-
fidence level. Following model specification validation,

Table 1. The parameters of the BW3 formula obtained by least squares fitting (Typel) and bootstrap fitting (Type2).
Type 1 Type 2
coef std. err. t P> |1 at (o] lomi /@ |(%)
ay 16.1488 0.054 301.744 0.000 16.1481 0.054 0.33
@ —23.7980 0.372 —63.979 0.000 —23.7947 0.372 1.56
ac —0.7443 0.002 -311.590 0.000 —0.7443 0.002 0.32
a; —32.0760 0.227 —141.488 0.000 —32.0716 0.227 0.70
axc 1.6694 0.049 33.760 0.000 1.6696 0.049 2.92
@y —76.0155 2.394 —31.758 0.000 —75.9916 2.354 3.09
g 66.8440 1.323 50.520 0.000 66.8271 1.311 1.96
ap 10.7051 0.415 25.795 0.000 10.6994 0.416 3.89
agR 10.9821 0.652 16.842 0.000 10.9769 0.648 5.90
O, —1.7686 0.034 —52.678 0.000 —1.7685 0.034 1.94
Bm 0.1246 0.003 37.827 0.000 0.1245 0.003 2.68
ap —12.0663 0.796 —15.155 0.000 —12.0731 0.784 6.49
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significance testing (t-test) was conducted to evaluate
parameter impacts on binding energy. Column 3 of Typel
in Table 1 lists parameter-specific t-values, with Column
4 showing all P > |¢f| values below 0.05, confirming coef-
ficient significance at the 95% confidence level.

In Table 1, Type2 presents the parameters obtained
through the bootstrating method. The sixth column rep-
resents the standard deviation corresponding to each para-
meter, that is, the uncertainty of each parameter, which is
calculated as

T . 2
o= \/ﬁ ZFI (af-a)". (13)
where @; represents the mean value of the parameter.
Meanwhile, the relative uncertainty |o;/@;| is given to fur-
ther explain the variation amplitudes of each coefficient.
Obviously, the volume term and the Coulomb term are
the most stable, while the higher-order terms of sym-
metry energy, the curvature term and the Wigner term
change relatively large and have less constraint on the
model.

It can be found from the second and sixth columns of
Table 1 that the parameters obtained by the bootleg meth-
od and the least square method are basicallg/ the same. By
calculating the root mean square error Do 5 = 1,66
MeV of the BW3 formula under the bootstrap coefficient,
it means that the two have the same fitting accuracy.

B. Parameter uncertainty and transmission

X = (x1,X2,...,%,) as random variables, the mathemat-
ical expectation of g = (uy, o, ..., M), coOvariance matrix is
>°. Among them, the element X; = cov(x;,x;). A given
function y = F(x), y variance can use covariance matrix
representation of F.

Perform the first-order Taylor expansion of F(x) at u:

oF
9 (i = ). (14)
Xi u

F)~FX)+Y
i=1

Here, higher-order minor terms (second-order and above)
are ignored, and the uncertainty of the function is domin-
ated by first-order linear terms.

Defined by variance

Var(y) = E [(F(x) - E[F(x)])’]. (15)
Substitute Eq.(14)
" OF
FE)=EIF)] > ) o] (=), (16)
tlp

i=1

Therefore, the variance is

n n

OF OF
\Y = —E[(x; — ) (xj— ). 1
m>;;ﬁ%uxm@w] (17)
where E[()C,' —ﬂ[)(xj* —/Jj)] = COV()C,',XJ‘) = ZU
The final error transfer formula is
N 2 N-1 N
OF OF OF
Var(y) = Z ( ) var(x;) + ZZ Z —— ——cov(x;, X;),
o \Ox; i=1 j=it] 0x; Ox;

or expressed as

OF OF
7:0()61'7 -xj)o-x, O-x_,- )

6)(,’ 6)61'
(18)

i+1

T
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where p(x;,x;) 1is the correlation coefficient between x;
and x;, defined as

P(xi,x;) = COV(Xi, X))/ 03,0y (19)
When p(x;,x;) = 0, the Eq. (18) becomes
N 2
oF 2

2 _

oy = ; ( 6x,-> o (20)
It is written in matrix form as

Var(y) = VFTEVF, 1)

OF OF oF
where VF = (67%’67)@""’67)@,

The error range of the predicted atomic mass values
on the entire nuclide map calculated by the Eq.(21) is
from 1.996 to 124.469 keV, with an average value of
9.311 keV. The accuracy distribution characteristics of
nuclear binding energy prediction were revealed through
error analysis. As shown in the confidence heat map Fig.
1, compared with the model error, the statistical error
fluctuation of the predicted value of the combined energy
is quite small. In the low-mass number region (A < 50)
and the super-heavy core region (A > 210), the dispersion
degree of the predicted value has significantly increased
(Ao > 63) keV, while the medium-mass nuclide region
(50 <A <210) presents a high confidence feature
(Ao <32.25) keV.

To further analyze the error evolution law of the inter-
mediate transition region, a relationship graph between
the uncertainty of the predicted binding energy value and
the number of neutrons was constructed (embedded Fig. 1
at the lower right corner). Quantitative analysis shows

T
) is the gradient vector.
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Fig. 1. (color online) The uncertainty of the predicted value
of the binding energy.

that the statistical error of the predicted binding energy
value shows a trend of first decreasing and then increas-
ing with the increase of the number of neutrons. Specific-
ally, in the light nuclei region (N < 28) it reaches the peak
(Ao~ 120 keV), and gradually converges to the stable
state (Ao ~ 20 keV) as the number of neutrons increases
to the medium nuclei region (28 < N < 126). And in the
heavy nuclei region (N > 126) a secondary increase phe-
nomenon occurred again (Ao ~40keV). It is worth not-
ing that the excellent performance of the higher-order
terms of symmetry energy in the medium kernel region
verifies the applicability of the BW3 formula in this re-
gion.

C. The correlation among model parameters

This study employs nuclear mass data from the
AME2020 database to generate normally distributed ran-
dom nuclear mass values via Monte Carlo method (5,000
samples), subsequently fitting and deriving 5,000 sets of
optimized BW3 parameters while quantifying their stand-
ard deviations and Pearson correlation coefficients. Cor-
relation information can be extracted from the final para-
meter distributions.

The visualization scheme in Fig. 2 systematically re-
veals linear correlation patterns among parameters. This
figure implements a partitioned visualization strategy: the
upper triangular section employs two-dimensional kernel
density estimation to demonstrate association intensity,
where elliptical distributions indicate strong linear correl-
ations and circular patterns denote weak/no significant as-
sociations; the lower triangular section utilizes graduated
color-scale heatmaps to quantify Pearson correlation
coefficients between BW3 parameter pairs, with the chro-
matic spectrum spanning deep red (r=—1) to deep blue
(r=+1).

It can be known from Fig. 2 that there is significant
collinearity among the volume term, surface term, Cou-
lomb term and curvature term. The model represents the
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Fig. 2.
histogram of BW3 model parameters obtained by bootstrap-

xC w st p R

(color online) Matrix heat map and two-dimensional

ping method. The color code of a two-dimensional histogram
is a-heat map. The total number of parameters involved in
each graph is fixed at T=5000.

binding energy of atomic nuclei as a power series expan-
sion of the reciprocal of the nuclear radius (1/R). Since
the relationship between the nuclear radius R and the
number of nucleons 4 is R o A'/3, these terms are actu-
ally functions of different powers of A/ (such as the
volume term oc A, the surface term o A%3, the coulomb
term oc Z2/A'3 and the curvature term o A'/?). The shell
correction term based on the number of valence nucleons
presents a binary coupling structure, and the relationship
among its parameters is significant (r = —0.92). This in-
dicates that the parameters describing the shell effect are
not independent. The change of one parameter can be off-
set by the change of another parameter. This means that
the parametric form of shell correction terms needs to be
optimized to reduce this redundancy. The paired items
show statistical independence characteristics in the entire
parameter system. Its independence indicates that the
pairing term provides unique physical information for the
nuclear mass formula that cannot be replaced by any oth-
er term.

The higher-order terms of symmetry energy and the
surface symmetry terms show the strongest covariation
trend (r =—-0.43). This means that when fitting nuclear
mass data, it is very difficult to separate the surface sym-
metry effect from the higher-order correction effect of
symmetry energy. This directly affects the coefficients
for precisely extracting the higher-order terms of sym-
metric energy from the atomic nucleus mass. The above
analysis provides a clear direction for the further develop-
ment and optimization of the droplet model. Reduce or
eliminate the collinearity between the core droplet terms
(volume, surface, coulomb, curvature) and the symmetry
energy terms. Explore alternative mathematical expres-
sions that do not rely entirely on the expansion of 1/R
power series.
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D. The calculation accuracy of the model

The optimization performance of the model is re-
vealed through the three-dimensional error distribution
map (Fig. 3). In the figure, the blue spheres represent the
calculation results after parameter optimization, while the
black spheres represent the benchmark data of the origin-
al model. Analysis shows that the error distribution char-
acteristics of the modified model converge significantly
towards the zero-value reference plane, indicating that the
root mean square error between the calculated binding
energy value and the experimental value after optimiza-
tion presents a systematic reduction. The error surface
presents a parabolic shape that rises first and then falls. It
shows significant changes in the region with a low num-
ber of nucleons and gradually stabilizes as the number of
nucleons increases.

In order to explore which types of nuclei the mass

Binding Bnergy per Nucleon Bxp—Theo MeV)

Fig. 3.

(color online) 3D comparison of prediction results
before and after updating of BW3 formula coefficients.

model after updating the coefficients has a greater effect
on, the predictive efficacy of the BW3 formula paramet-
er optimization for the binding energy of different types
of atomic nuclei was systematically evaluated. Figure 5
shows the comparative analysis framework before and
after the model correction, including the nuclide distribu-
tion and residual mapping diagrams. The horizontal axis
represents the number of neutrons and the corresponding
residual distribution range, the vertical axis describes the
number of protons.and the corresponding residual range,
the residual distribution graph at the top shows the rela-
tionship between the residual and the number of neutrons,
and the one on the right shows the relationship between
the residual and the number of protons.

The statistical evaluation based on the least square
method shows that the parameter optimization signific-
antly improves the calculation accuracy of the nuclide
binding energy. The residual distribution characteristics
show that the error convergence in the neutron-rich nuc-
leus region is better than that in the neutron-deficient nuc-
leus region, which is closely related to the core-shell
filling effect on the calculation accuracy of the binding
energy of the model. The improvement in the proton
droplet line region was more significant. The root mean
square error was optimized from 2.89 MeV to 1.92 MeV,
with a reduction of 33.6%. In the neutron drop line re-
gion, the root mean square error decreases from 2.42
MeV to 1.89 MeV, and the relative optimization amp-
litude reaches 21.9%. For further investigating the im-
pact of parameter uncertainties on mass difference, the
single neutron separation energies are compared with data
in neutron-rich nuclei. As shown in Fig. 5, the calcula-
tions reproduce experimental value well in medium and
heavy nuclear region, except j°Zr’®. The difference is
some large before Z <20 or A <56. The update of for-
mula coefficients make a slight improvement in single
neutron separation energies. For example, the value in
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Fig. 4. (color online) Comparison of binding energy prediction results before and after BW3 formula coefficients update.
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©Spm!™ is from 4.866 to 4.863 MeV (datum is 4.384
MeV). Such little improvement can not be distinguished
in Fig. 5.

V. SUMMARY

In summary, we studied the ground state properties
and predictive power of atomic nuclei by using the im-
proved nuclear mass formula. Combining least squares
fitting and Monte Carlo sampling, 5,000 traversal calcula-
tions were conducted on the 12-dimensional parameter
space to re-fit the parameters of the BW3 mass formula.
Our main conclusions are:

(1) The root mean square error of the improved BW3
mass formula was reduced to 1.66 MeV, which was
10.7% lower than before.

(2) In the proton droplet line region, The root mean
square error was optimized from 2.89 MeV to 1.92 MeV,
with a reduction of 33.6%. In the neutron droplet line re-
gion, the root mean square error decreased from 2.42
MeV to 1.89 MeV, and the relative optimization amp-
litude reached 21.9%.

utron-rich nuclei.Label A means nuclear mass. Results Th1 (Th2)

(3) There is significant collinearity among the volume
term, surface term, Coulomb term and curvature term.
The shell correction term based on the number of valence
nucleons presents a binary coupling structure, and there is
a significant correlation among its parameters. The
curvature term shows a weak correlation feature with the
paired term, but has a strong correlation with the remain-
ing terms. The paired items show statistical independ-
ence in the entire parameter system. The higher-order
terms of symmetry energy show a significant correlation
with the surface symmetry terms.

(4) The error situation of theoretical binding energy
was studied by using the error transfer theory. The error
range of the predicted atomic mass value on the entire
nuclide map is from 1.996 to 124.469 keV, with an aver-
age value of 9.311 keV. The error shows a trend of first
decreasing and then increasing with the increase of the
number of neutrons.

Our results are in good agreement with some experi-
mental and theoretical studies. This study demonstrates
good performance in the neutron-rich mass region, which
is useful for rapid neutron capture in nuclear astrophysics.
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