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Abstract: We investigate the effect of an isospin chemical potential (u;) within the quark-meson model, which ap-
proximates quantum chromodynamics (QCD) by modeling low energy phenomena such as chiral symmetry break-
ing and phase structure under varying conditions of temperature and chemical potential. Using the functional renor-
malization group (FRG) flow equations, we calculate the phase diagram in the chiral limit within the two-flavor
quark-meson model in a finite y; with p vector meson interactions. Fluctuation effects significantly decrease the crit-
ical chemical potential from the mean-field (MF) value ujyr >, to lower value, at which point the p vector
meson condensates alongside the chiral condensate once the isospin chemical potential exceeds the critical value
,uﬁm. This p condensation is investigated numerically for different meson coupling strengths. The p meson domin-
ated region is delineated from other phases by a second-order phase transition at lower y; and a first-order transition
at slightly higher y;.
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fluences the structure of the QCD phase diagram by shift-
ing the boundaries of critical transitions such as chiral
symmetry restoration and quark-gluon plasma (QGP)
formation to higher values of baryon chemical potential

1. INTRODUCTION

Quantum chromodynamics (QCD) describes the
strong interactions between quarks and gluons. Its phase

structure, dependent on temperature and chemical poten-
tial, reveals various phases of matter [1—6]. The phase
structure is often depicted in the baryon chemical poten-
tial up versus temperature 7 plane, known as the ug-T
plane [7—11]. This diagram illustrates the various phases
of QCD matter under extreme conditions [3, 12—15], such
as those in high-energy collisions or dense astrophysical
objects like neutron stars.

The isospin chemical potential (y;) significantly in-
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() [16—19]. This is due to the isospin asymmetry
between up and down quarks [20]. When g, exceeds the
pion mass, a pion condensation phase occurs, resulting in
spontaneous symmetry breaking [21-24]. Furthermore,
large values of y; alter the formation of the QGP and
modify the behavior of color superconducting phases, es-
pecially in high-density environments like neutron stars
[25]. In this connection, lattice (QCD) is free from the
sign problems, thereby permitting the utilization of stand-
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ard Monte Carlo theory to calculate thermodynamic prop-
erties and to draw the phase diagram as a function of tem-
perature (T) and isospin (y;). This benefit allows con-
frontation with low-energy effective theories, such as
chiral perturbation theory [26—28], as well as with mod-
els like the Nambu-Jona-Lasinio [29—-38] and the quark-
meson model [39—47].

In Ref. [48], holographic QCD was employed to in-
vestigate p-meson condensation, providing valuable in-
sights from the strong-coupling regime that extend our
understanding of this phenomenon beyond conventional
approaches. In the present work, we address a related but
simpler problem: p condensation in the presence of a fi-
nite isospin chemical potential y;. Using a two-flavor
quark-meson model, we explore the formation and beha-
vior of the p condensate under varying u;, temperature
(1), and coupling constant (g,). Our objective is to ad-
vance the understanding of QCD phase structure and the
properties of dense hadronic matter. Calculations within
such models are typically performed at the mean-field
level; going beyond this approximation is an essential
step toward a more complete and realistic description. To
achieve this, we employ the functional renormalization
group (FRG) method [49—-55], which systematically "in-
corporates quantum and thermal fluctuations beyond
mean-field theory. The Functional Renormalization
Group is a potent non-perturbative method that allows
quantum and thermal fluctuations to be-incorporated into
a field theory. The FRG has been utilized extensively to
investigate the QCD phase diagram with chiral effective
models beyond the MF, such as the NJL and the QM
models.

This paper is organized as follows: The 2-flavour
quark-meson model, including the p vector meson, and
the FRG method, is presented in Sect. 2. In Sect. 3 the
results are discussed. Finally, in Sect. 4 the conclusions is
presented.

II. THE QUARK-MESON MODEL WITH p
VECTOR MESONS

The Lagrangian of the two-flavour Quark-Meson
model with p vector meson in Euclidean space is

L=y (7115‘” + %YOTa —/Wo) ¥
—¥ [g5(0—+i757'”)+i7u (g/ﬂ"p“)] v
1 1 1
+ 56”0'6"0'+ 5(9”71'(9”71'+ ZRL"V)R(")’“

-U(o,m,p). (1

The field strength tensors of the vector bosons p, is gen-
erally given as: R,(fy) = 0Py — 0vPu— 8pPu X Py A field y is
the light two-flavor quark field = (u,d)”, and coupled to

scalar (¢0) and isoscalar () fields transforming as a four-
component field (o,7)T under the chiral group. A bold
symbol stands for a vector, and 7= (71,7,,7;) are the
Pauli matrices in isospin space, and introducing isospin
chemical potential y; =p, —p,. Treated as background
fields, only p} is non-vanishing, and the non-abelian of
RY%) does not contribute in practice. The spatial compon-
ents vanish because of the assumption of homogeneous
isotropic matter. A Hubbard-Stratonovich transformation
bosonizes these interactions, introducing effective vector-
isovector fields, p,. While the fluctuations of the # and o
fields will be included non-perturbatively, p, will be
treated as mean fields. These vector bosons conveniently
parametrize unresolved short-distance physics. The po-
tential for o, wand p,, is

2
m o

U(o,m,p,) = 40 +7° = f2)? — L pup”, 2)

where' f; is the pion decay constant. We will use the
value f, =93 MeV, and m, ~1 GeV. The parameters in
our model are g, g, and A. The values of these paramet-
ers for the FRG calculations are seeted to reproduce the
same value for quantities such as the constituent quark
mass of ~300 MeV. As for the value of g,, m,, in our
calculation, they always appear in the form of g,/m,, so
we will not discuss their values independently.

A. FRG flow equation

Functional Renormalization Group (FRG), a power-
ful non-perturbative method that allows incorporating
quantum and thermal fluctuations in a field theory [52,
56] and has been extensively applied to effective QCD
models [47, 57, 58]. The effective average action I', with
a scale k obeys the exact functional flow equation

1
(9ka = ES Tr

Ok Ry

(2)
Fk + Ry

: )

Where T is the second functional derivative of the ef-
fective average action with respect to the fields, the trace
includes momentum integration as well as traces of over-
all inner indices. An infrared regulator R, was introduced
to suppress fluctuations at momenta below the scale k.
Following the RG scale, the regulator may assume a
functional form [59]. In this investigation, quarks serve as
the dynamical fields in the flow equation, o, and z, and
they affect the effective potential and the pj field. Con-
trary to vector fields' spatial components, because it is not
coupled to the time derivative, the p, field is not dynam-
ical. Therefore, the value of pj is completely fixed by
specifying the values of other fields. At each scale & in
the flow equation, we determine the value of p} field by
solving the consistency equation for given o, and z.



Functional renormalization group study of p meson condensate at a finite isospin...

Chin. Phys. C 50, (2026)

These pj field in turn appear in the effective chemical po-
tential for quarks, affecting the dynamical fluctuations in
the flow equations. Throughout our study, we neglected
the flow of all wave-function renormalization factors in
the so-called Local Potential Approximation (LPA)

The scale-dependent effective potential can be ex-
pressed by replacing the potential U with the scale-de-
pendent one Uy,

r = / FxLIU — U, )

with the Euclidean Lagrangian from Eq.1, Finite temper-
atures are treated within the Matsubara formalism. The
time-component is Wick-rotated, t — —ir and the imagin-

ary time 7 is compactified on a circle with radius 8 = T
where T li/ST the temperature, for which after introduced
Jd*x= [;" dxo [,d°x. Due to the chiral symmetry, the
potential U depends on ¢ and « only through the chiral in-
variant

¢2 =0’ +7n, (5)
As mentioned, the vector field p} appears here only as
mean fields. The complete k-dependence is in the effect-
ive potential U,. In analogy to the mean-field potential,
the effective potential has a chirally symmetric piece, UY,
the explicit chiral symmetry breaking term, and the mass
terms of the vector bosons:

Uy =Ul+U.. (6)
Starting with some ultraviolet (UV) potentials U, as our
initial conditions, we integrate fluctuations and obtain the
scale-dependent U,. The form of U{ will be determined

without assuming any specific forms, while for the poten-
tial of the p field:

2
m
P, 3 \2
—*(Po,k)~

5 O

U, =

To use Wetterich’s equation, a regulator function, that re-
spects the interpolating limits of the effective average ac-
tion, has to be chosen. We employ the so-called optim-
ized or Litim regulator function [60], for bosons and fer-
mions, respectively given by:

RE(p) = (K — pHo(k*> - p*), ®)
0 ipi(yE)" k2

Rf (p) = ’ — - 1) 6k -p*),

i (D) ( ipyE 0 ) ( o > (k= p°)

)

because of the structure of the regulators, the dependence
on three-momenta is eliminated, and only integral over
theta function remains. The flow equation for the poten-
tial U{ can be obtained as:

AU (T p) =

K { {3[1 +2np(E,)] N [1 +2nB(E(r)]}
127'[2 En E(r
{ V=1 Hepp) = ne(Eq, —Hers) }
-V,
E‘{
1- nF(Eqv _/J:ff) - nF(Eq’,ug_ff)
-V E .
q

(10)

Here, v, =2(spin)x 2 (flavor) X 3 (color) = 12 is the quark
degeneracy factor, and E, = /p?+m?%; with the effective
quark-mass m.z = g,0. The effective energies are given
by:

E.= /K +M, (11)
E,= \/i2+ M2, (12)
E,= \/k+ M2, (13)

for pion, sigma-meson, and quark, respectively. And the
scale-dependent particle masses are:

M? = g4, (14)
M, =2U;(¢"), (15)
M; = 2U[(¢%) +44° U} (9°), (16)
and we also define U; = %
The effective chemical potential,
iy =nx (B gl ), (17)

depends also on the field py;, and depend on the scale £.
The extended occupation numbers simplify to the usual
Fermi-Dirac distribution functions for boson and fermion
occupation numbers:

1
ng(E) = ﬁ’ np(E,p1) = m- (18)

According to the flow equation for the effective potential,
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the p field can be calculated self-consistently. Therefore,
at each momentum scale k [61] we solve the equation for

3
Po-

oU,

3 = (19)
aP(S),k

The dependence on pj, appears in the mass term and the
fermion loop. The flow equation reads:

Opos = (e (Eqstiys) +nr (Eqo—tyy) ]

gok* 0
mmiE, | Oy

o [nr (Eqottypy) + 1 (Eqs=tigys)] ¢ -
(20)

This equation constitutes our flow equations for the p
field as functions of ¢. Note that the flow equations for p}
can be solved for a given ¢, independently of the poten-
tial U’(; (which only tells us where the minimum of ¢ is).
To understand the behavior of pj}, for the moment we ig-
nore the £ dependence in ./, and carry out the integra-
tion over k. Finally, the initial conditions for the flow
equations must be set up. The UV scale A should be suf-
ficiently large in order to take into account the relevant
fluctuation effects and small enough to render the de-
scription in terms of the model degrees of freedom real-
istic [62]. In our calculation we follow the choice of Ref.
[63], A =500 MeV. The initial for the potential is

&(154

U=7

21)

and set the parameters g, = 3.2, 4 = 8 with the vacuum ef-
fective potential from the FRG computation having the
minimum at o, ~ 93 MeV, which is regarded as f,. We
used the value of 4, which enforces ¢ to stay near f;, is
(A~ 8). If we start with another initial condition with an
additional ¢ term to give the mass, we need to readjust 1
but obtain qualitatively similar results; in fact, starting
with the condition Eq.(21), the scale evolution first gener-
ates the ¢* terms, reflecting the universality. The initial
condition for the p field has not been examined in detail,
and we simply try.

PiA(®) = 0. (22)

We also examined a different initial condition but do not
present it here, as it does not affect our main results.
Assembling all these elements, we calculate the ef-
fective potential with the fluctuations integrated to I';z =
0. The final step is to find ® = ¢*, which minimizes the

effective potential. At the location of minimum, the ef-
fective potential is identified as the thermodynamic po-
tential,

TOW,T)

= Tiroo(u, T, ),
% =0, T,07")

(23)

In practice, it is numerically expensive to reduce the /R
cutoff, and we typically stop the integration under
k[R ~20MeV.

II1. RESULTS

A. Chiral Phase Diagram with isospin couplings

In this section, we investigate the effects of varying
isospin chemical potentials and coupling constants on the
chiral phase transition in the chiral limit. The analysis is
performed using the FRG flow equation for the p meson,
given in Eq. (20), over a range of temperatures and chem-
ical potentials. Additionally, we determine the p meson
condensate by solving the FRG effective potential equa-
tion, Eq. (20), for different parameter sets to facilitate
comparison.

Fig. 1 illustrates the impact of the vector coupling
constants on the chiral phase boundary. We observed
that, at fixed temperatures, the chiral phase transition oc-
curs at higher chemical potentials. Although p vector
mesons contribute to the system's increased stability, their
influence on the phase boundary becomes progressively
limited as the coupling strength increases. The boundary
of the first-order phase transition shifts to lower temperat-
ures.

The chiral phase diagram derived from the functional

Chiral Limit FRG T—p Phase Diagram
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Fig. 1.  (color online) The FRG 7 -y chiral phase diagram
with different vector couplings. The solid lines show the first-
order phase transition, and the dashed lines show the second-
order phase transition. The stars show the TCPs. The paramet-
ers are set as: f; = 93 MeV, g, = 3.2, 4 = &, the ultraviolet

cutoff AFRG =500 MeV, M = 200 MeV.
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renormalization group equation at various isospin chem-
ical potentials is presented in Fig. 2. As the isospin chem-
ical potential increases, the chemical potential required
for the chiral phase transition decreases, leading to a left-
ward shift of the critical endpoint toward lower temperat-
ure and chemical potential regions, where RG flow evolu-
tion is significantly influenced by low-temperature fluctu-
ations. This shift of the chiral boundary with increasing
u; 1s consistent with both analytical calculations and lat-
tice QCD results [22]. While Ref. [64]reported compar-
able behavior under specific conditions, the present study
extends these findings and provides a more comprehens-
ive demonstration.

In order to understand the precise process of phase
transition under the influence of isospin chemical poten-
tial, see Fig. 3. The change of order parameters in the
low-temperature region of the phase diagram with chem-
ical potential can be observed. Evidently, a first-order
phase transition is occurring in this region. As the chem-
ical potential increases, the chiral condensate changes and
drops to zero at the phase transition. On the other hand,
we note that with the increase of the isospin chemical po-
tential, the initial value of the chiral condensate gradu-
ally decreases smoothly. It can be imagined that when the
isospin chemical potential gradually increases to a cer-
tain value, the first-order phase transition region will
eventually disappear, which is also expressed in the phase
diagram.

B. pmeson condensate

Based on the analyses in Figs. 1 and 2, we selected
optimal parameter values to compute the p meson con-
densation, considering different couplings g,/m,. These
choices were guided by the observed shifts in the phase
boundary and the influence of varying isospin chemical
potentials on the system’s stability. The data for g,p;
were obtained by directly solving Eq. 20. The figures il-
lustrate how combinations of temperature, chemical po-
tential, and coupling strength affect meson condensation.
By carefully tuning these variables, we accurately de-
termined the condensation values, providing deeper in-
sights into chiral phase transitions under varying condi-
tions. Near chiral restoration, vector and axial-vector
modes broaden and nearly degenerate. The p channel
competes with the chiral condensate and reshapes Uy,
producing the mutual "pull" observed in the curves. This
reflects a coupled dynamical interplay rather than two
separable phenomena, arising from their shared origin in
the QCD Lagrangian, where both structures emerge from
the same fermionic degrees of freedom and their interac-
tions. These results highlight the role of the p meson in
stabilizing the system, particularly in regions of the phase
diagram where fluctuations are pronounced, and are es-
sential for understanding the behavior of hadronic matter
in extreme environments such as heavy-ion collisions or

Chiral Limit FRG T—yx Phase Diagram
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Fig. 2.  (color online) The FRG 7 -y chiral phase diagram

with different y;. The solid lines represent the first-order
phase transition, and the dashed lines represent the second-or-
der phase transition. The stars show the TCPs. The paramet-
ers are set as: f; = 93 MeV, g, = 3.2, 1 = 8, the ultraviolet

cutoff “Aprg’ =500 MeV, the coupling constant g,
m;! =0.006 MeV™!.
Order Parameters
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Fig. 3.  (color online) Chiral condensates as a function of

quark chemical potential under different isospin chemical po-
tentials, calculated at 7=10 MeV, g,/m, =0.006 MeV~'. The
different colored lines correspond to different isospin chemic-
al potentials.

astrophysical settings [65, 66].

In Fig. 4, we compare the results for the p condensate
as a function of isospin chemical potential, for 4 = 100
MeV, and different p couplings panel (a) g, m,'= 0.002
MeV™', panel (b) g, m,'= 0.006 MeV™', panel (c) g,
m;'=0.008 MeV™', and panel (d) g, m;'=0.010 MeV "',
respectively. The temperature for this calculation is T =
10 MeV. In this scenario, the chiral condensate decreases
with increasing y; while the p condensate starts to grow
for u; greater than the critical value. But at even higher
isospin chemical potential, a new first-order transition oc-
curs, and the chiral condensate drops to zero. In this new
region, the p condensate becomes dominant when the
coupling value for the p meson increases.
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Fig. 4. (color online) The chiral and p condensates as a function of isospin chemical potential, shown for (a) ij =0.002 MeV!, (b)
7]
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30 20,006 Mev, (c) 22 =0.008 MeV and (d)
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MeV and the ultraviolet cutoff Aprg =500 MeV

Fig. 5 depict the chiral and p-condensates as func-
tions of the isospin chemical potential for u =200 MeV,
respectively. Across all panels, the behavior differs from
that at lower u. The p condensate begins to grow when
exceeds the critical value for a second-order phase trans-
ition, while the chiral condensate simultaneously drops to
zero. In this regime, the p condensate remains dominant
for larger p meson couplings. The chiral condensate has
vanished in all panels of Fig. 6, corresponding to
T =10 MeV and p = 300 MeV. Comparing g,/m, = [0.002,
0.010]MeV™', one finds that larger g, values enhance
isovector repulsion, causing the p condensate to domin-
ate the order-parameter dynamics while the chiral con-
densate becomes almost completely suppressed. At strong
coupling, the system is increasingly governed by the vec-
tor channel, reinforcing the conclusion that isovector re-
pulsion reshapes the low-temperature phase structure
[57]. In Figs. 4, 5 and 6, we observe the influence of the
chemical potential on the chiral and p condensates; the
isospin chemical potential takes different critical values
when the transition of the p condensate occurred from
zero to non-zero.

Fig. 7 illustrates the evolution of the p condensate
from microscopic to macroscopic scales with different
isospin chemical potentials. In the mean-field approxima-
tion, the condensation of the p meson occurs only when

0.010 MeV™". The chemical potential is u =100 MeV, temperature is T = 10

the isospin chemical potential exceeds its vacuum mass,
i.e., u; > m,. However, beyond the mean-field level, such
as in the Random Phase Approximation (RPA) and Chir-
al Perturbation Theory (CPT) [22], fluctuation effects sig-
nificantly lower this critical chemical potential to w; = m,.
This value agrees well with our own calculations in Figs
4,5 and 6. As illustrated in Fig. 7, our results further con-
firm that when fluctuations are included, p condensation
appears at the IR scale.

In Fig. 8, we show the p condensate as a function of
the chemical potential for different isospin chemical po-
tentials p; =200 MeV, u; =300 MeV,u; =400 MeV and
;=500 MeV, panel (a, b, ¢), and (d), respectively. It can
be read that when the chemical potential increases, the p
condensate increases first and then drops to zero. Also the
critical chemical potential shifts left when the isospin
chemical potential increases at a fixed temperature. Fur-
thermore, it is seen that the p condensate increases with
increasing couplings at a fixed temperature. It is worthy
of mentioning that p meson becomes condensate when
the isospin chemical potential is larger then 210 MeV for
fixed chemical potential =200 MeV, see the panel (a)
in Fig 5. Also it's more clear at isospin chemical poten-
tial y; =400 MeV panel(c) when the chemical potential is
below than u = 100 MeV, which is almost the critical
chemical potential for the p meson condensate (in addi-
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tion to the chiral condensate) see Fig 4. This happened for
all the isospin chemical potential relation with chemical
potential for the chiral and p condensates.

Finally, Fig. 9 shows the p meson condensate as a
function of temperature for different isospin chemical po-
tentials: u; =200 MeV (panel (a)), u; =400 MeV (panel
(b)), and u; =500 MeV (panel (c)), at a fixed u =200
MeV and g,/m, =0.006 MeV~'. The condensation value
of the p meson for u; =200 MeV (panel (a)) and p =200
MeV is consistent with the results obtained in Fig. 5, con-
firming the reliability of our calculations. The coupling
dependence shows that a larger g, enhances the mag-
nitude of the p condensate without altering its qualitative
temperature dependence. At finite temperature, the isov-
ector order tends to melt, whereas stronger repulsion rein-
forces it at low 7. This interplay explains why p effects
are most pronounced in cold, dense matter. As the tem-
perature increases, the p mode softens and approaches
p—a; degeneracy, with the decreasing condensate follow-
ing the chiral trend—signaling proximity to (partial) chir-
al restoration [41].

IV. CONCLUSIONS

We investigated the p meson condensation in isospin
chemical potential by applying the FRG, using a two-fla-

vor quark-meson model with the p meson. We have also
investigated the impact of vector mesons and isospin
chemical potential on the phase structure of the chiral
phase transition. The primary conclusions are categor-
ized into two facets: the impact of vector couplings and
the isospin chemical potential on the phase structure. The
phase boundary moves as a unit to the low temperature
and low density region as the isospin chemical potential
increases, with the vector coupling strength remaining
constant. Consequently, the temperature of TCP gradu-
ally decreases. In contrast to changing only the vector
coupling, as in [16], the isospin chemical potential also
very slightly reduces the temperature at which the phase
transition occurs at low chemical potential, and this ef-
fect is very slight, with no observed back bending behavi-
or, consistent with the explanation provided in [64]. On
the other hand, we investigated the p condensation as a
function of the isospin chemical potential with different
vector coupling constants. Beyond the mean-field approx-
imation, fluctuation effects lower the critical isospin
chemical potential for p meson condensation from
;> m, to yu; =m,, at which point the p meson condenses
alongside the chiral condensate, consistent with the res-
ults from RPA and CPT [22], and confirmed by our FRG
calculations. We noted that at large chemical potential
and large isospin chemical potential, the p meson con-
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densate dominates. Increasing the coupling constant for
the p meson enhances the condensate value, though the
critical isospin chemical potential remains relatively
stable around 200 MeV. Increasing p meson coupling
slightly shifts the boundary of the phase transition.
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