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Abstract: We  investigated  a  time-varying  cosmological  constant  model  using  recent  BAO  measurements  from
DESI  DR2,  combined  with  Type  Ia  supernova  samples  (Pantheon ,  DES-Dovekie,  and  Union3)  and  CMB  shift
parameters, to constrain the CDM model parameters via Markov Chain Monte Carlo analysis. We find that the
interaction term Q(z) shows a sign change for all dataset combinations by crossing Q(z)=0, depending on the choice
of  the  dataset:  at  low redshift Q(z)<0,  indicating  vacuum energy decaying into  dark  matter,  while  at  high  redshift
Q(z)>0,  corresponding  to  dark  matter  decaying  into  vacuum  energy.  The  dynamical  system  analysis  found  three
critical points, namely , and  respectively. The resulting critical points, determined by the underlying cos-
mological parameters, correspond to distinct epochs in cosmic evolution. Depending on the parameter combinations,
these  points  characterize  various  cosmological  phases,  ranging  from  an  accelerated  stiff  matter-dominated  era  to
late-time accelerated expansion. The stability of each critical point is analyzed using linear stability theory, with the
relevant  physical  constraints  on  the  cosmological  parameters  duly  incorporated  throughout  the  analysis.  For  each
dataset combinations, the CDM model predicts that , showing a preference for dynamical dark energy
over  the  cosmological  constant  scenario  with .  Consequently,  the  model  exhibits  a  transition  phase  in
the range  to −0.48 and predicts  in the range −0.54 to −0.52, with the precise transition point
depending on the choice of  dataset.  Finally,  the  Bayesian evidence shows strong support  for  the CDM model
over ΛCDM
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I.  Introduction

The ΛCDM model commonly known as the concord-
ance model  of  cosmology  has  achieved  remarkable  suc-
cess in  describing  the  statistical  properties  and  morpho-
logy  of  large-scale  structure  (LSS)  and  evolution  of  the
universe. It postulates a specially flat universe dominated
by cold  dark  matter  (CDM) and a  positive  cosmological
constant  (Λ),  the  latter  being  responsible  for  observed
late-time acceleration [1−6]. Despite its empirical robust-
ness, the ΛCDM framework is not without theoretical and
observational  tensions  [7−10].  Chief  among  these  is  the
cosmological  constant  problem,  which  arises  from  the
striking discrepancy between the observed value of Λ and
the  vastly  larger  vacuum  energy  density  predicted  by
quantum  field  theory  posing  a  significant  fine-tuning

σ8

challenge  [11−16].  Equally  puzzling  is  the  coincidence
problem, which asks why the energy densities of dark en-
ergy and  dark  matter  are  of  the  approximately  same  or-
der  in  the  current  epoch  [8, 17].  Moreover,  ΛCDM
struggles  to  resolve the growing Hubble tension,  as  well
as  the  tension,  which  highlight  inconsistencies
between  early  and  late  universe  measurements  of  the
Hubble constant and the amplitude of matter fluctuations,
respectively [10, 18−25]. In response to these challenges,
various theoretical  frameworks  have  been  proposed,  in-
cluding dynamical dark energy models [26−31], interact-
ing  dark  energy  scenarios  [32−36],  and  modifications  to
general relativity [37−46].

Motivated by the  latest  DESI observations  (that  sug-
gest dynamical behaviour of Λ), we focus here on invest-
igating  time-dependent  cosmological  constant  models
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[47].  In  this  regard,  the  simplest  examples  of  interacting
dark matter/dark energy models are scenarios with vacu-
um decay commonly referred to as  models [48−50].
In these models Λ evolves as a function of cosmic time,
potentially alleviating some of the theoretical inconsisten-
cies  associated  with  constant  Λ.  Such  models  have  also
been explored  as  viable  alternatives  capable  of  explain-
ing recent tensions in cosmological data, particularly dis-
crepancies in Hubble constant ( ) and amplitude of mat-
ter fluctuation ( ) inferred from early and late time stud-
ies [51, 52].

Λ(t)
Our work explores the cosmological implications of a

specific class of CDM models in which the cosmolo-
gical constant term evolves as the time-dependent cosmo-
logical constant term: 

Λ(t) = αa−2+βH2+λ∗, (1)

α,βwith  as constant parameters.  This form is physically
motivated by the combination of phenomenological argu-
ments  and  theoretical  considerations  that  have  appeared
in the literature [52, 53]. Each contribution can be associ-
ated with a distinct physical origin:
 

a−2 αa−2

Λ ∝ a−m m = 2

● The  term ( ): This  component  mimics  the
behavior of a curvature term in the Friedmann equations.
Dimensional arguments  from  quantum  cosmology  sug-
gest that  with  is natural, since it decays in
the same way as the curvature term [52]. Historically, this
form was proposed by Özer and Taha [54, 55] as a mech-
anism to alleviate cosmological problems such as the ho-
rizon and flatness issues.
 

H2 βH2

H2

● The  term ( ): This contribution arises natur-
ally  in  the  context  of  the  Running  Vacuum  Model
(RVM), which is motivated by renormalization group ar-
guments in quantum field theory in curved spacetime [56,
57].  In  this  framework,  the  vacuum  energy  density
evolves  as  a  series  expansion  in  powers  of  the  Hubble
parameter and its derivatives, with the leading correction
beyond the constant term proportional to .  Physically,
this  reflects  the  idea  that  vacuum  energy  is  not  strictly
constant but "runs" with the energy scale of the universe,
here identified with H.
 

λ∗● The  constant  term  ( ): This  corresponds  to  the
usual cosmological constant of the ΛCDM model, ensur-
ing that  the parameterization reduces to the concordance
scenario in the appropriate limit. As shown in [52], obser-
vational  constraints  disfavour  models  with  only  time-
variable terms,  thereby  requiring  the  presence  of  a  con-
stant contribution.
 

The combination of these three terms provides a flex-
ible framework that  interpolates between different theor-

αa−2

βH2

λ∗

etical motivations. The  term captures curvature-like
decay behavior, the  term incorporates quantum field
theoretical running of vacuum energy, and the constant 
ensures  consistency  with  late-time observations.  As  em-
phasized in [52], this hybrid form is phenomenologically
rich,  observationally  testable,  and  capable  of  addressing
both theoretical puzzles (cosmological constant and coin-
cidence  problems)  and  observational  tensions  (e.g.,  the
Hubble  tension).  Here  in  this  work we have updated the
constraints  with  recent  DESI  DR2 datasets.  These  terms
are  inspired  by  different  theoretical  considerations,  such
as quantum field theory in curved space and vacuum de-
cay models [48−50].

Λ(t)

In this  paper,  we  go  a  little  further  in  our  investiga-
tion  and  study  new  observational  consequences  of  the

CDM scenario  with  recent  data  sets  and using a  dy-
namical systems approach. This enables a systematic ana-
lysis of the model's background evolution, stability prop-
erties, and  critical  points.  Further,  such  investigation  al-
lows us to understand the qualitative behavior of the cos-
mological  model  across  different  epochs  and  to  identify
stable  attractors  corresponding  to  various  evolutionary
phases of the Universe.

The  current  work  is  presented  as  follows:  In  Section
II, we provide an overview of the mathematical formula-
tion and  discuss  the  proposed  model.  Section  III  dis-
cusses  the  Methodology  and  recent  observational  data
used in this work, along with the constraints obtained on
the  cosmological  parameters.  Section  III,  is  devoted  to
the  dynamical  system  approach  to  compare  the  models.
Finally, we conclude with our results and findings in Sec-
tion V. 

II.  Theoretical Background

We assume  that  the  spacetime  is  homogeneous,  iso-
tropic and spatially flat. This is given by the Friedmann-
Lemaitre-Robertson-Walker (FLRW) spacetime metric 

ds2 = −dt2+a2(t)
(
dr2+ r2dΩ2

)
, (2)

a(t) dΩ2 = dθ2+ sinθ2dϕ2here  is the usual scale factor and .
The Einstein-Hilbert action for ΛCDM model is 

S = 1
16πG

∫
d4x
√−g (R−2Λ)+Sm. (3)

Sm(gµν,Ψm)

Ψm

gµν

Here Λ is  the  cosmological  constant,  repres-
ents the action the action of the standard matter compon-
ent with the matter field ,  and g is the determinant of
the  metric  tensor . G is  the  Newtonian  gravitational
constant.  The  cosmological  implications  of  varying
ΛCDM models is discussed in [48−50].

gµν
Now varying the action (equation (3)) with respect to

, we get the Einstein field equation in its usual form as 
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Rµν−
1
2

Rgµν+Λgµν = 8πGTµν (4)

Rµν R = gµνRµν
Tµν

In the above equation  is the Ricci tensor,  is
the  Ricci  scalar  term  and  is  the  usual  energy-mo-
mentum-stress tensor of a perfect fluid 

Tµν = (ρ+ p)uµuν+ pgµν, (5)

uµ
uµuµ = −1 uµ∇νuµ = 0

∇µTµν = 0

where ρ and p are density and pressure, respectively, and
 is the usual four velocity vector that satisfies the con-

dition  and  respectively. One sees by
Bianchi identities that when the energy-momentum tensor
is  conserved ,  it  follows  necessarily  that  Λ=
constant.

Here, we consider Λ to vary with time, so the total en-
ergy-momentum tensor is modified accordingly. We write: 

T total
µν = Tµν+TΛµν (6)

where the contribution from the time-dependent cosmolo-
gical term is given by: 

TΛµν = −
Λ

8πG
gµν (7)

∇µT total
µν = 0

This  form  ensures  that  the  cosmological  term  acts  as  a
dynamic  vacuum  energy  component,  influencing  the
evolution  of  the  Universe  through  its  time  dependence.
The  conservation  equation  corresponding  to  the  matter
and the  dark  energy sector  can be  obtained by consider-
ing the vanishing four divergence of the total energy-mo-
mentum tensor i.e, , in the following form 

ρ̇m+3Hρm = Q (8)

 

ρ̇Λ = −Q (9)

Here, Q represents the interaction between the dust  mat-
ter  and  the  dark  energy  component.  By  considering  the
above assumption,  we  can  write  the  Friedmann's  equa-
tion in the following form 

3H2 = 8πG (ρm+ρΛ) (10)

 

Ḣ+H2 = −4πG
3

(ρm−2ρΛ) (11)

Now multiplying the equation (11) by 2, and adding with
the equation (10), we get 

2Ḣ+3H2 = 8πGρΛ (12)

8πG = 1 Λ = 8πGρΛConsidering  and , we  get  the  Fried-
mann field equations in the form 

3H2 = ρm+Λ (13)
 

2Ḣ+3H2 = Λ (14)

d
dt
= −H(1+ z)

d
dz

Now,  from  the  Friedmann  equations,  the  expression  of
the Hubble parameter H can be obtained as a function of
redshift z and Λ by considering  as
 

dE
dz
=

3E
2(1+ z)

− Λ

2EH2
0 (1+ z)

(15)

E (z) =
H (z)
H0

H0

E(z)

Here,  and  is  the  present  value  of  the
Hubble  parameter.  For  a  given  Λ,  (15)  can  be  solved  in
order to obtain the Universe evolution .

Λ(= α′a−2+βH2+λ∗) λ∗

In  this  study,  we  consider  a  generalized  form  of
 with α, β and  (a "bare" cosmolo-

gical term) are constants [58]. Such generalization allows
us  to  investigate  both  observational  constraints  and  the
associated  dynamical  system  behavior.  To  analyze  the
cosmological  scenario,  we  have  the  background  density
parameter corresponding  to  the  matter  and  the  dark  en-
ergy sector, respectively, as 

Ωm =
ρm

3H2
,ΩΛ =

Λ

3H2
(16)

Ωm = 1 ΩΛ = 0
Ωm = 0 ΩΛ = 1

Λ(t)
Λ(t)

From the above relation between the density parameters,
one  can  classify  a  matter-dominated cosmological  solu-
tion for  with  and a complete dark energy-
dominated  solution  as  and . We  also  de-
termine  the  interaction  term  for  the CDM  model  in
order  to  analyze  its  behavior  later.  For  the CDM
model, the interaction term is expressed as 

Q(z) ≡ 2α
′
(1+ z)2E(z)+βE(z)(1+ z)

dE2(z)
dz

(17)

ωe f fThe effective equation of state (EoS)  and the de-
celeration parameter q are defined as 

ωe f f = −1− 2Ḣ
3H2

(18)

 

q = −1− Ḣ
H2

(19)

The  various  stages  of  cosmological  evolution  can  be
characterized  according  to  the  value  of  EoS  parameter
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ωe f f ωe f f = −1

ωe f f = 0

−1 < ωe f f < −
1
3 q < 0

q > 0

.  Specifically, for  corresponds to a De-sit-
ter era where the dark energy component mimics the cos-
mological  constant  behavior.  A  value  of  indic-
ates the matter dominated era and the quintessence era is

associated with .  Similarly, for ,  one
can  obtain  the  accelerated  expansion  phase,  and 
represents the decelerated phase. 

III.  Methodology and Datasets

Λ(t) SimpleMC

R−1

R−1 < 0.01

In  this  study,  we  constrain  the  parameters  of  the
CDM  cosmological  model  using  the  cos-

mological inference code [59, 60]. The parameter estima-
tion  is  performed  with  the  Metropolis–Hastings  Markov
Chain Monte Carlo (MCMC) algorithm [61], which effi-
ciently  explores  the  multidimensional  parameter  space
and provides robust  posterior  distributions for  the model
parameters. The convergence of the MCMC chains is as-
sessed  using  the  Gelman–Rubin  diagnostic  [62],
and  the  simulations  are  continued  until  the  condition

 is achieved, ensuring reliable sampling of the
posterior distributions.

h ∈ [0,1] Ωm0 ∈ [0,1]
Ωbh2 ∈ [0,0.1] α ∈ [−2,2] β ∈ [−5,15]

getdist

During  our  analysis,  we  choose  uniform  priors  for
each  cosmological  parameter: , ,

, ,  and .  To  analyze
and  visualize  the  results,  we  employ  the  pack-
age1), which produces detailed marginalized posterior dis-
tributions and parameter correlation plots. In our analysis,
we  use  a  combination  of  observational  datasets:  Baryon
Acoustic  Oscillations  from  Dark  Energy  Spectroscopic
Instrument Data Release 2,  Type Ia Supernovae, and the
CMB  compressed  likelihood.  Below,  we  describe  each
datasets.
 

DH(z) =
c

H(z)
,

DM(z) = c
∫ z

0

dz′

H(z′)
,

DV (z) =
[
z D2

M(z) DH(z)
]1/3
.

DH(z)/rd DM(z)/rd DV (z)/rd

rd

rd =

∫ ∞

zd

cs(z)
H(z)

dz,

cs(z)

● Baryon Acoustic Oscillation: First, we use the ba-
ryon  acoustic  oscillation  (BAO)  measurements  from
more than 14 million galaxies and quasars obtained from
the  Dark  Energy  Spectroscopic  Instrument  (DESI)  Data
Release 2 (DR2) [63]. These measurements are extracted
from  various  tracers,  including  BGS,  LRGs  (LRG1–3),
ELGs (ELG1–2), QSOs, and the Lyman-α forest. To ana-
lyze these measurements, we compute three key distance
measures: the Hubble distance  the comov-

ing angular diameter distance  and the

volume-averaged distance 
These quantities  are  used  to  form  the  dimensionless  ra-
tios , ,  and ,  as  the  BAO  data
are  provided  in  these  forms.  Here,  is the  sound  hori-

zon at the drag epoch, defined as  where
 is the sound speed of the photon–baryon fluid. In the

rd = 147.09±0.26flat  ΛCDM  model,  this  yields  Mpc
[64].
 

0.01 ⩽ z ⩽ 2.26 z < 0.01

0.025 < z < 1.14
z < 0.1

M

● Type  Ia  supernova: We  also  use  the  unanchored
supernova  (SNe  Ia)  dataset,  which  includes  1,701  light
curves from 1,550 Type Ia supernovae (SNe Ia) [65]. We
consider only  the  SNe  Ia  measurements  within  the  red-
shift range , excluding those with ,
as  such low-redshift data are affected by significant  sys-
tematic  uncertainties  due  to  peculiar  velocities.  We  also
use  the  re-calibrated 1,820  photometric  Type  Ia  super-
nova  light  curves  obtained  over  five  years  by  the  Dark
Energy Survey Supernova Program (DES-Dovekie) [66].
This  catalog  consists  of  1,623 DES SNe Ia  covering  the
redshift  range ,  with  197  low-redshift
( )  SNe  Ia  from  the  CfA3-4/CSP  Foundation
sample [67−69]. The revised DES-Dovekie has 1,718 SNe
Ia  overlapping  between  DES-Dovekie  and  DES  SN5YR
[70]. Finally, we consider the Union3 catalog [71]. It con-
sists  of  2,087  Type  Ia  supernovae,  with  1,363  of  them
overlapping  the  Pantheon+ compilation. During  our  ana-
lysis, we marginalize over the nuisance parameter ; see
Eqs (A9–A12) in [72] for further details.
 

ℓa ωb

R =
√
ΩmH2

0 DM(z∗)

ℓa = π
DM(z∗)
rs(z∗)

DM(z∗)

rs(z∗)

v = {R, ℓa,ωb}

● CMB Compressed Likelihood: Finally, we use the
CMB compressed likelihood approach, which effectively
encapsulates  the  main  geometric  information  from  the
full CMB power spectra into a few well-defined paramet-
ers.  This  method  allows  us  to  include  CMB  constraints
without the need for a full Boltzmann code evaluation at
each sampling step. Specifically, we employ a three-para-
meter compression  scheme  involving  the  shift  paramet-
ers R and ,  along with the physical baryon density .
These  quantities  are  defined  as  and

, where  is the comoving angular dia-
meter distance to the surface of last scattering, and 
is  the  comoving  sound  horizon  at  recombination  [73].
The  CMB information  is  then  encoded  as  a  multivariate
Gaussian likelihood in the parameter vector ,
characterized  by  the  mean  values  and  covariance  matrix
calibrated from the Planck 2018 data.
 

Λ(t)
Ltot =LBAO×

LSNe Ia×LCMB

The  posterior  distributions  of  the  parameters  in  the
CDM model are obtained by maximizing the overall

likelihood  function,  which  is  given  by: 
.

Λ(t)
lnZ

lnZ

To  compare  the CDM  model  with  the  standard
ΛCDM  model,  we  use  the  computed  using  the
MCEvidence  [74], which  is  integrated  into  the  Sim-
pleMC  code.  The  Bayesian  evidence,  ( ),  provides  a
quantitative  assessment  of  how  well  a  statistical  model
describes the observed data. It enables direct comparison
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1) https://github.com/cmbant/getdist

-4

CPC
 A

cce
pte

d

https://github.com/cmbant/getdist


Bab ≡
Za

Zb
,

ln Bab ≡ ∆ lnZ.
| lnZ|

0 ⩽ |∆ lnZ| < 1
1 ⩽ |∆ lnZ| < 3

3 ⩽ |∆ lnZ| < 5 |∆ lnZ| ⩾ 5

between  two  cosmological  models,  (a)  and  (b),  through
the  Bayes  factor  or  equivalently,  the  relative
log-Bayes  evidence  The  model  with  the
smaller ( ) is considered the preferred one. To evalu-
ate the significance of the comparison, we adopt Jeffreys’
scale [75]: weak evidence corresponds to ( ),
moderate evidence to ( ), strong evidence to
( ), and decisive evidence to ( ), in
favor of the model with the higher Bayesian support. 

A.    Observational and Statistical Results

Λ(t)
Fig 1 shows the corner plot for the parameters of the
CDM  model,  obtained  using  different  combinations

of DESI DR2 with CMB and Type Ia supernova samples
(Pantheon+,  DES-Dovekie,  and Union3).  The corner plot
represents  the  off-diagonal  plots  as  2D  contour  plots,

β−α

Λ(t)

showing  the  correlations  between  different  parameter
pairs, while  the  diagonal  terms  show  the  1D  marginal-
ized  distributions.  It  is  important  to  note  that  there  is  a
negative  correlation  between  the  Table  1 presents
the mean values along with the 68% 1σ confidence inter-
val  for  the CDM model  with  different  dataset  com-
binations.

Λ(t)
Λ(t)

1.74σ
1.24σ 2.11σ

Λ(t)
0.6σ

0.51σ

One can observe that in all  dataset combinations, the
CDM model predicts a higher value of h compared to

ΛCDM. Specifically, the CDM model shows a devi-
ation  of  about  for  CMB+DESI  DR2+Pantheon+,

 for  CMB+DESI  DR2+DES-Dovekie,  and 
for CMB+DESI  DR2+Union3.  The  matter  density  para-
meter in the CDM model shows deviations from the
ΛCDM prediction at the level of less than , depend-
ing on the choice of the dataset combination. Specifically,
the  deviations  are  for  CMB+DESI  DR2+

 

1σ 2σ Λ(t)Fig. 1.    (color online) This figure shows the confidence contours at the  and  levels for the parameters of the CDM model ob-
tained using DESI DR2 BAO data combined with CMB shift parameters and different SNe Ia samples (Pantheon+, DES-Dovekie, and
Union3).
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0.38σ
0.51σ

Pantheon+,  for  CMB+DESI  DR2+DES-Dovekie,
and  for CMB+DESI DR2+Union3.

Ωbh2

0.60σ
0.50σ 0.60σ

rd

0.89σ 1.04σ
0.89σ

Λ(t)

rd

h = 0.735±0.014 rd = 138.0±1.0

Similarly, the baryonic density parameter  exhib-
its  only  small  deviations  between  the  two  models,  with
differences  of  for  CMB+DESI  DR2+Pantheon+,

 for  CMB+DESI  DR2+DES-Dovekie,  and 
for  CMB+DESI  DR2+Union3.  In  the  case  of  the  sound
horizon, , the deviations are slightly larger, with differ-
ences  of  for  CMB+DESI  DR2+Pantheon+, 
for  CMB+DESI  DR2+DES-Dovekie,  and  for
CMB+DESI  DR2+Union3.  These  results  shows  that  the

CDM  model  cannot  solve  the  Hubble  tension,  since
an important aspect of the tension is that the combination
of CMB + DESI DR2 + Pantheon+ must produce a high-
er value of h together with a lower value of , so that it
can match  [76] and  Mpc.

Q(z)

Q(z)
z = 1.74

z = 1.68
z = 1.40

Λ(t)CDM β < 0
α′ > 0

Fig.  2 shows the redshift  evolution of  the interaction
term  for  each dataset  combination.  In  all  cases,  the
interaction term is positive at low redshift, meaning vacu-
um decaying  into  dark  matter.  As  the  redshift  increases,
each dataset predicts a distinct transition redshift at which

 changes sign from positive to negative. Specifically,
the zero crossing occurs at  for CMB+DESI+Pan-
theon+,  at  for  CMB+DESI  DR2+DES-Dovekie,
and at  for CMB+DESI DR2+Union3. The negat-
ive interaction terms correspond to a decay of dark mat-
ter into the vacuum sector. This characteristic sign change
is due to the fact that the  model predicts 
and  in each combination.

ρde(z) = (1+ z)3(1+ω)ï
ρde,0+

∫ z

0

Q(z′)
H(z′)(1+ z′)4+3ω

dz′
ò
. Q = 0

Q(z) Q(z) > 0

(1+ z)3(1+ω) ρde

z ⩾ 1

The evolution of dark energy and dark matter can be
understood through  their  respective  solutions.  Dark  en-
ergy density evolves approximately as 

 Clearly,  for  stand-
ard evolution is recovered. Hence, the DE density evolves
according to  the  sign of .  For :  The integral
term  is  positive,  but  appears  with  a  plus  sign  inside  the
bracket  multiplied  by .  This  causes  to de-
cay  faster.  At  high  redshift ,  DE  is  suppressed  but
not  eliminated,  allowing  an  early  dark  energy  scenario.

Q(z) < 0Also for , the integral term becomes negative, ef-
fectively enhancing DE density at late times.

ρdm(z) = (1+ z)3

ï
ρdm,0−

∫ z

0

Q(z′)
H(z′)(1+ z′)4

dz′
ò
. Q(z) > 0

(1+ z)3

Q(z) < 0
(1+ z)3

Λ(t)

3 < |∆ lnZ| < 5

Similarly,  DM  density  evolves  approximately  as

 For :
The integral  term  is  negative.  Thus,  matter  density  di-
lutes slower than  results in enhancing early struc-
ture  formation.  Also  for :  The  integral  term  is
positive. Matter density dilutes faster than  results
in  suppression  of  structure  growth.  Statistically,  the
Bayesian evidence shows that the CDM model shows
strong evidence over the ΛCDM model for  all  combina-
tions of data sets, with . 

IV.  Dynamical system analysis
 

A.    A short review of dynamical system analysis
In  mathematics,  an  ordinary  differential  equation

 

Λ(t)

1σ

Table 1.    This table shows the numerical values of the parameters obtained from the MCMC analysis for the CDM and ΛCDM
models  at  the  68%  ( )  confidence  level,  using  DESI  DR2  BAO  data  combined  with  CMB  shift  parameters  and  different  SNe  Ia
samples (Pantheon+, DES-Dovekie, and Union3).

Dataset / Model h Ωm Ωbh2 α′ β rd (Mpc) |∆ lnZΛCDM,Model |

ΛCDM

DESI DR2 + CMB + Pantheon+ 0.680±0.004 0.306±0.005 0.02246±0.00013 — — 147.09±0.22 0

DESI DR2 + CMB + DES-Dovekie 0.678±0.004 0.307±0.005 0.02251±0.00012 — — 147.13±0.23 0

DESI DR2 + CMB + Union3 0.680±0.004 0.305±0.005 0.02246±0.00013 — — 147.09±0.22 0

Λ(t)CDM

DESI DR2 + CMB + Pantheon+ 0.689±0.007 0.302±0.006 0.02234±0.00016 0.0051±0.047 −0.0042±0.038 146.76±0.30 3.21

DESI DR2 + CMB + DES-Dovekie 0.688±0.007 0.302±0.006 0.02234±0.00016 0.0038±0.046 −0.0035±0.037 146.75±0.30 4.54

DESI DR2 + CMB + Union3 0.690±0.007 0.301±0.006 0.02234±0.00015 0.0069±0.045 −0.0056±0.036 146.76±0.31 4.51

 

Q(z) Λ(t)

Q(z) = 0

Fig. 2.    (color online) This figure shows the evolution of the
interaction term  as a function of redshift for the CDM
model using DESI DR2 BAO data combined with CMB shift
parameters and different SNe Ia samples samples (Pantheon+,
DES-Dovekie, and  Union3).  The  horizontal  dashed  line  de-
notes ,  shows  the  redshift  at  which  the  interaction
changes sign for each dataset combination.
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(ODE) is a mathematical equation that consists of one in-
dependent  variable  with  one or  more  dependent  variable
and their derivative with respect to the independent vari-
able. An autonomous dynamical system is a system of or-
dinary  differential  equations  where  each  differential
equation  of  the  system solely  depends  on  the  dependent
variables and does not explicitly depend on the independ-
ent variable. Mathematically, a dynamical system can be
expressed as 

dXi

dt
= fi (X1 (t) ,X2 (t) , · · · ,Xn (t)) (20)

fi

Xi

i = 1,2, · · · ,n

t = t0

Xi (t0)

fi (Xi (t)) = 0

X∗i (t)
ϵ > 0

∃ δ > 0 ξi (t)
||ξi (t0)−X∗i (t0)|| < δ ||ξi (t)−X∗i (t)|| < ϵ ∀ t > t0

X∗i (t)
ϵ > 0 ∃ δ > 0 ξ (t)

||ξi (t0)−X∗i (t0)|| < δ
limt→∞ ξi (t) = X∗i (t)

Here t is  the  independent  variable  and  are  n  well-
defined  functions  of  the  dependent  variable ,

. Dynamical system analysis offers a power-
ful theoretical framework for investigating the qualitative
dynamical behavior of complex physical models [77−79].
For a particular choice of the independent variable ,
the  value  of  the  dependent  variable  is  called  the
state of the system. The collection of all possible states is
defined as the phase space of a dynamical system. If  for
any  particular  state,  the  system  is  in  equilibrium,  called
the  critical  point  or  the  equilibrium  point.  The  critical
points  of  the  dynamical  system (20)  can  be  obtained  by
solving the system of nonlinear equations . In
the context of stability, a critical point can be classified as
stable, unstable, or a saddle point, respectively. a critical
point  of the  dynamical  system  (20)  will  be  con-
sidered  to  be  a  stable  critical  point  if  for  any ,

 such that if  is a solution of the system (20)
with ,  then ,  .
Similarly, a critical point  is asymptotically stable if
for any ,   such that if  be any solution of
the  dynamical  system  with ,  then

.  Mathematically,  the  linear  stability
theory can be used to determine the stability behavior of a
critical point. In the linear stability theory, we can define
the Jacobian matrix for the dynamical system (20) in the
following way 

J(X1,X2, · · · ,Xn) =



∂ f1

∂X1

∂ f1

∂X2
· · · ∂ f1

∂Xn

∂ f2

∂X1

∂ f2

∂X2
· · · ∂ f2

∂Xn
...

...
...

...

∂ fn

∂X1

∂ fn

∂X2
· · · ∂ fn

∂Xn



X∗i
J
(
X∗1 ,X

∗
2 , · · · ,X∗n

)
J∗i

In order to determine the stability criteria for a partic-
ular critical point , first we compute the Jacobian mat-
rix at this particular critical point as . Let

 are  the  eigenvalues  of  the  Jacobian  matrix

J
(
X∗1 ,X

∗
2 , · · · ,X∗n

)
X∗i

J∗i

 respectively.  Then  the  stability  of  the
critical point  will depend on the signature of eigenval-
ues  according to the following manner:
 

ℜ
(

J∗i
)
> 0,∀i = 1,2, · · · ,n X∗i

●  If  the  real  part  of  all  eigenvalues  satisfies
, then  is unstable.

 

ℜ
(

J∗i
)
< 0,∀i = 1,2, · · · ,n X∗i

●  If  the  real  part  of  all  eigenvalues  satisfies
, then  is stable.

 

ℜ
(

J∗i
)
< 0 ℜ

(
J∗j
)
> 0

i , j X∗i

● If the eigenvalue spectrum contains both the posit-
ive  and  negative  real  part  i.e.  and 
for some , then  is neither stable nor unstable, and
it is called a saddle point.
 

J∗i = 0 i = 1,2, · · · ,n
X∗i

If  for  some , then the correspond-
ing critical point  is classified as a non-hyperbolic crit-
ical point and the linear stability theory fails to determine
its  stability  behavior.  In  that  scenario,  some  advanced
methods  of  dynamical  systems,  like  the  center  manifold
theory  or  the  Lyapunov  functions,  are  useful  to  analyze
the  stability  behavior.  However,  in  the  present
manuscript, all the critical points are hyperbolic in nature,
and  the  linear  stability  theory  is  sufficient  to  study  the
stability behavior. Due to the inherent nonlinearity of the
field equation in cosmology, obtaining the exact analytic-
al solution is  challenging.  However,  by introducing suit-
able dynamical variables, these field equations can be re-
formulated  as  a  nonlinear  dynamical  system.  Within  the
framework of cosmology, the critical points of a dynam-
ical  system  can  be  interpreted  as  representing  distinct
cosmological  epochs  [77−79].  An  ideal  cosmological
model is expected to exhibit critical points corresponding
to  important  cosmological  phases  such  as  the  inflation
era,  matter-dominated  era,  and  late-time  accelerated  era.
Generally,  the  critical  point  associated  with  inflation  is
unstable, while those corresponding to the matter-domin-
ated era exhibit saddle-like behavior. In contrast, the crit-
ical  point  representing  the  late-time  accelerated  phase  is
generally  stable,  reflecting  the  asymptotic  behavior  of
cosmological dynamics. 

Λ(t)

B.    Formulation of dynamical system for
CDM Model

Λ(t)

Λ(t)

In this section, we have explored a detailed dynamic-
al  behavior  and  corresponding  cosmological  evolution
within the framework of CDM dark energy model by
using the  dynamical  system  theory.  The  dynamical  sys-
tem analysis  method  provides  a  rich  mathematical  tech-
nique  for  investigating  highly  nonlinear  field  equations.
Moreover, this method allows us to investigate the evolu-
tion of cosmological solutions over time and offer a valu-
able  insight  into  the  nature  of  dark  energy  and  late-time
acceleration.  We  have  considered  the CDM  model,
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(α′,β,λ∗) a = a(t)

H =
ȧ(t)
a(t)

where  are constant parameter and  is the

cosmic  scale  factor  and  is  the  usual  Hubble
parameter.

To choose  the  dynamical  variable,  first,we  reformu-
late the first Friedmann equation in the following form 

1 =
Å
α′

a−2

3H2
+
β

3
+
λ∗

3H2

ã
+

8πGρm

3H2
(21)

Λ(t)
In order  to  formulate  the  dynamical  system  correspond-
ing to CDM model, we have employed the following
dynamical variable 

x =
a−2

3H2
,y =

1
3H2
,z =

ρm

3H2
. (22)

z =
ρm

3H2

The  dynamical  variables x and y are  related  to  the  dark
energy  sector,  while  the  variable  represents  the
matter density corresponding to the dark matter sector.

ΩΛ

From  equation  (21),  the  expression  of  dark  energy
density  can be written in terms of the dynamical vari-
able as 

ΩΛ = α
′x+
β

3
+λ∗y = 1− z (23)

Using  these  dynamical  variables,  the  first  field  equation
can be transformed as 

α′x+
β

3
+λ∗y+ z = 1 (24)

N = loga(t)

Λ(t)

Now, differentiating the  dynamical  variable  with  respect
to  and  using  the  conservation  equation,  we
get the  dynamical  system  corresponding  to  the  general-
ised CDM model,  which  is  equivalent  to  the  Fried-
mann equation (13)-(14) as 

dx
dN
= −2x

Å
1+

Ḣ
H2

ã
(25)

 

dy
dN
= −2y

Ḣ
H2

(26)

 

dz
dN
=

Q
3H3
−3z−2z

Ḣ
H2

(27)

Ḣ
H2

Ḣ
H2

Now,  due  to  the  existence  of  the  expression ,  the
above  dynamical  system  is  not  closed.  From  the  second

field equation (14), we can write down the expression 
in terms of the dynamical variable in the following way 

Ḣ
H2
= α′x+λ∗y−

1
2

z+
β

3
−1 (28)

One can note that  from equation (23),  the dynamical
variable z is  dependent  on x and y.  Therefore,  we  can
eliminate the variable z by using (23), and in result we get
a two dimensional dynamical system corresponding to the
variable x and y. Finally, by using equation (28) and elim-
inating z, we get the autonomous dynamical system as 

dx
dN
= −x (β+3α′x+3λ∗y−1) (29)

 

dy
dN
= −y (β+3α′x+3λ∗y−3) (30)

ωe f f

Using equation  (28),  the  expression  of  effective  EoS
parameter  and deceleration parameter q can be writ-
ten in terms of the dynamical variables as 

ωe f f = −1− 2
3

Ḣ
H2
= −β

3
−α′x−λ∗y (31)

 

q = −1− Ḣ
H2
=

1
2

(−β−3α′x−3λ∗y+1) (32)

To  study  critical  points  and  analyze  stability,  equations
(29)-(30) are further solved as follows. 

C.    Critical points and their stability analysis

Λ(t)

dx
dN
= 0

dy
dN
= 0

(Ωm,ΩΛ)
ωe f f

ΩΛ = 1 Ωm = 0

Ωm = 1 ΩΛ = 0

ωe f f = 0

−1 < ωe f f < −
1
3

ωe f f = −1

Here  we  investigate  the  physical  characteristics  and
dynamical stability of the CDM cosmological model
through  the  critical  points  of  the  dynamical  system  of
equations (29)-(30). To find the critical points of the dy-
namical system,  we  solve  the  system of  nonlinear  equa-
tions by setting  and , from equations (29)-
(30)  respectively.  Each  critical  point  is  then  associated
with  a  specific  epoch  in  the  cosmological  timeline  by
evaluating  the  corresponding  energy  density ,
equation  of  state  parameter ,  and  the  deceleration
parameter q respectively. The cosmological solution asso-
ciated  with  the  critical  point  corresponds  to  a  fully  dark
energy-dominated  universe  when  and .
Likewise,  a  matter-dominated universe can be character-
ized by  and . In addition, evaluating the ef-
fective  equation-of-state  parameter  at  a  given  critical
point  plays an important  role in determining the specific
cosmological  epoch  associated  with  that  critical  point.
For  instance,  if  at a  critical  point,  then  the  cor-
responding  solution  represents  a  matter  era,  while

 corresponds  to  the  quintessence  era  and
 signifies  the  later  time  de-sitter era  respect-

ively. Moreover,  the  dynamical  stability  features  corres-
ponding  to  each  critical  points  is  examined  by  the
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Λ (t)
P1,P2 P3

Ωm

0 ⩽Ωm ⩽ 1

Lyapnov Linear  stability  method,  which  entails  comput-
ing  the  eigenvalues  of  the  Jacobian  matrix  [77−79].  For
the  present CDM  model,  we  have  found  a  total  of
three  critical  points,  namely ,  and  respectively.
The  coordinates  of  critical  points,  along  with  their  valid
existence condition,  are  presented in Table  2.  Moreover,
during the  stability  analysis  of  critical  points,  the  stand-
ard existence condition has been employed, ensuring that
the  critical  points  lie  within  the  viable  physical  region,
specially  the  matter  density  parameter  remains  non-
negative  and  satisfies  the  condition . Con-
sequently,  the  physically  admissible  two-dimensional
phase space is 

S =
ß

(x,y) ∈ R2 : 0 ⩽ 1−α′x− β
3
−λ∗y ⩽ 1

™
The  trajectories  in  the  phase  space  corresponding  to  the
critical points is presented in Fig 3. A detailed analysis of
dynamical stability with the physical characteristics in the
cosmological context for each critical point is given in the
next paragraph.
 

P1 P1● Critical  point : The  critical  point  consist-
ently exists  at  the  origin  of  the  phase space.  The corres-

Ωm = 1− β
3

ΩΛ =
β

3

β = 3 Ωm = 0 ΩΛ = 1

β = 0 Ωm = 1
ΩΛ = 0

ωe f f = −
β

3 β = 3 ωe f f = −1
β = 0 ωe f f = 0

1 < β < 3

−1 < ωe f f < −
1
3

P1 q =
1
2

(1−β)
β > 1 q < 0

P1

ponding value of matter and dark energy density paramet-
ers  at  this  critical  points  are  and , re-
spectively. As these parameters are functions of the mod-
el parameter β, varying the model parameter β allows the
system to emulate different cosmological epochs. For in-
stance,  setting  yields  and , corres-
ponding to a universe that is completely dominated by the
dark  energy  sector.  Conversely, ,  leads  to 
and , exhibits  a  matter  dominated  epoch.  The  ef-
fective EoS parameter is also β dependent and it takes the
form .  Thus,  for ,  one  obtain ,
representing de-sitter universe. For , we get ,
which characterize  the  matter  dominated  phase.  Further-
more, in the range , the effective EoS parameter
lies  in  the  range , signifying  a  quint-
essence-like regime.  The  deceleration  parameter  corres-
ponding  to  critical  point  is  obtained  as .
Thus,  for ,  the condition  holds,  indicating the
accelerated  cosmological  expansion.  In  order  to  analyze
the dynamical stability behavior corresponding to the crit-
ical point , the set of eigenvalues of the Jacobian mat-
rix is 

{1−β,3−β}

P1

β > 3

1 < β < 3

Due  to  the  existence  of  nonzero  eigenvalues,  these
critical points are hyperbolic, and hence their stability be-
havior  can  be  determined  by  the  linear  stability  theory.
The  stability  features  of  the  critical  point  are  solely
determined  by  the  value  of  the  model  parameter β. Spe-
cifically, for , both eigenvalues are negative, imply-
ing that the critical point is an attractor or stable node. In
the range ,  the eigenvalues are of opposite sign,

 

Λ(t) = α′a−2 +βH2 +λ∗

Table 2.    Critical points along with their existence condition
for 

Critical point x y Ωm ΩΛ ωe f f q Existence Condition

P1 0 0 1− β
3
β

3
−β

3
1
2

(1−β) 0 ⩽ β ⩽ 3

P2 0 −−3+β
3λ∗

0 1 −1 −1 λ∗ , 0

P3 −−1+β
3α′

0
2
3

1
3
− 1

3
0 α′ , 0

 

(x,y) α′Fig. 3.    (color online) Phase space trajectories in  plane corresponding to the critical points for constrained parameter  and β
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P1 β < 1

P1

and  manifests  as  a  saddle  point.  Finally,  when ,
both  eigenvalues  will  be  positive  and  the  critical  point
will  be an unstable node. The phase space trajectories in
the neighborhood of  is presented in Fig 3a correspond-
ing to its saddle behavior.
 

P2 P2

λ∗ , 0

Ωm = 0 ΩΛ = 1

ωe f f = −1

q = −1
P2

P2

● Critical point : The second critical point  ex-
ists in the phase space under the specific condition on the
model parameter . At this critical point, the energy
density of  the  universe  is  entirely  attributed  to  dark  en-
ergy,  with  the  density  parameters  taking  the  values

 and  respectively. This  configuration  cor-
responds to a fully dark energy–dominated cosmological
phase.  The  effective  EoS  parameter  at  this  critical  point
remains  fixed  at , indicating  that  the  dark  en-
ergy  component  behaves  identically  to  a  cosmological
constant.  Consequently,  the cosmic expansion undergoes
exponential acceleration, characterized by a constant neg-
ative deceleration parameter .This places the critic-
al point  firmly within the regime of de Sitter solutions.
To  study  the  stability  behavior,  the  eigenvalues  of  the
Jacobian matrix corresponding to  are obtained as 

{−2,β−3}

β < 3
P2

P2

Since  both  eigenvalues  are  non-zero, the  point  is  classi-
fied as hyperbolic. For , both eigenvalues are negat-
ive,  and  therefore  by  the  linear  stability  theory  be-
haves as a stable attractor in the phase space. Otherwise,
the  critical  point  will  exhibit  a  saddle  nature.  The  phase
space trajectories corresponding to the stable scenario of
critical point  is presented in Fig 3b.

P3

P3

α′ , 0 P3

Ωm =
2
3

ΩΛ =
1
3

ωe f f = −
1
3

q = 0

P3

● Critical  point : The cosmological  solution  cor-
responding to the last critical point  will represent a vi-
able  physical  solution  under  the  particular  condition  on
the model parameter .  The critical point  corres-
ponds  to  a  cosmological  state  in  which  both  the  matter
and  dark  energy  components  coexist  in  non-negligible
proportions.  At  this  point,  the  matter  and  dark  energy
density  parameters  take  the  values  and ,
respectively. These combinations of energy density para-
meters  indicate  a  transitional  regime  where  the  matter
sector remains the dominant component, but the dark en-
ergy has already started to influence the cosmological dy-
namics. The effective EoS parameter associated with this
critical  point  is ,  which  point  out  threshold
between  the  decelarated  and  accelerated  expansion  era.
Consistently,  the  deceleration  parameter  is  found  to  be

, indicating a cosmological era, which is neither ac-
celerating  nor  decelerating.  This  intermediate  behavior
makes  an important point for understanding the trans-
itional  phase  between  the  decelerated  matter-dominated
era  to  the  dark  energy-dominated  accelerated  expansion

P3

era. In order to study the stability behavior, the eigenval-
ues  of  the  Jacobian  matrix  corresponding  to  are ob-
tained as 

{2,−1+β}

β < 1
P3

P3

Due to  the  existence of  one positive  eigenvalue,  the  sta-
bility of this critical point is not possible. Specifically, for

, the eigenvalues are of opposite sign and therefore,
according  to  the  linear  stability  theory,  exhibits  a
saddle behavior.  Otherwise,  this  critical  point  will  be-
have  as  an  unstable  critical  point.  In Fig  3c,  we  have
presented the  phase  space  trajectories  in  the  neighbor-
hood of  corresponding to its unstable/saddle character-
istic. 

Λ(t)D.    Cosmological evolution for CDM Model

Ωm ΩΛ
ωe f f

Following  the  analysis  of  the  stability  behavior  and
dynamical  characteristics  associated  with  each  critical
point,  it  is important to explore the asymptotic evolution
of  the  underlying  cosmological  model.  In  order  to  get  a
detailed  understanding  of  the  dynamical  framework  for
the  specific  cosmological  model,  the  evolution  of  the
background  cosmological  parameters  such  as  the  matter
density parameter , dark energy density parameter ,
effective  EoS parameter , and  deceleration  paramet-
er q plays a significant role.

ΩΛ0 ≈ 0.7
Ωm0 ≈ 0.3

Ωm,ΩΛ

ωe f f

N = 0

N < 0
N > 0

Some  recent  astronomical  observations  indicate  that
the  universe  is  spatially  flat,  with  present-day  values  of
the density parameters approximately given by 
and ,  respectively  [80, 81]. We  have  numeric-
ally integrated the dynamical system (29)-(30) using dif-
ferent  combinations  of  observational  datasets  with  fine-
tuned initial conditions to obtain a detailed description of
the  universe's  evolution  across  several  cosmological
epochs.  The  numerical  solution  describing  the  evolution
of the background density parameters  are presen-
ted in Fig 4. Consequently, the evolution of effective EoS
parameter  and  the  deceleration  parameter q is
presented in Fig 5. The vertical line at  in these dia-
grams  corresponds  to  the  present  cosmological  epoch,
with  the  region  denoting  the  past  epoch  and  the
right  half  representing the  future  epoch,  respect-
ively.

Ωm0 ≃ 0.302

Ωm0 ≃ 0.30

The evolution  of  the  density  parameters  correspond-
ing  to  different  observational  data  combinations  namely
DESI  DR2  +  CMB  +  Pantheon+,  DESI  DR2  +  CMB  +
DES–Dovekie,  and DESI DR2 + CMB + Union3 shows
in Fig. 4a, Fig. 4b, and Fig. 4c, respectively. From the nu-
merical solution of the dynamical system, the present-day
value  of  the  matter  density  parameter  is  found  to  be

 for both DESI DR2 + CMB + Pantheon+ and
DESI  DR2  +  CMB  +  DES–Dovekie  datasets,  while  for
DESI DR2 + CMB + Union3 it is obtained as .
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ΩΛ0 ≃ 0.698
ΩΛ0 ≃ 0.698
ΩΛ0 ≃ 0.70

Ωm

ΩΛ

ΩΛ→ 1 Ωm→ 0

Correspondingly,  the  present  value  of  the  dark  energy
density  parameter  is  estimated  as  for  DESI
DR2 + CMB + Pantheon+,  for  DESI DR2 +
CMB + DES–Dovekie,  and  for  DESI  DR2 +
CMB  +  Union3,  which  are  align  to  the  results  obtained
from observational data analysis. Another important char-
acteristic of the background density parameters can be re-
vealed from 4, that during the early Universe, the matter
density  significantly  dominated  the  dark  energy  sector.
However,  as  time  progresses,  the  matter  density 
gradually  decreases  and  the  dark  energy  density  in-
creases uniformly.  Also,  the  evolution  of  density  para-
meters shows that in the future, the matter density will be
completely  dominated  by  the  dark  energy  density,  i.e,

 and , which indicates a dark energy-dom-
inated Universe in late time.

ωe f f

ωe f f = −0.70
ωe f f = −0.68

The  evolution  of  the  effective  EoS  parameter 
and  the  deceleration  parameter q for the  different  data-
sets are presented in Fig 5. One can note that from Fig 5a,
Fig 5b, and Fig 5c the current value of the effective EoS
parameter  are  obtained  as  (DESI  DR2  +
CMB +  Pantheon+),  (DESI  DR2 +  CMB +

ωe f f = −0.695

(q > 0)
(q < 0)

Λ(t)
Ntr = −0.51

Ntr = −0.48
Ntr = −0.50

Λ(t)

DES–Dovekie) and  (DESI DR2 + CMB +
Union3) respectively. Finally, the evolution of the decel-
eration parameter q clearly shows the transition from the
early  decelerated  era  to  the  late-time  accelerated
expansion era . The transition from decelerated era
to  the  accelerated  era  for CDM cosmological  model
is  obtained  at  (DESI DR2  +  CMB  +  Pan-
theon+),  (DESI  DR2  +  CMB  +  DES–
Dovekie) and  (DESI DR2 + CMB + Union3)
respectively. Also current value of the deceleration para-
meter for CDM model corresponding to three differ-
ent datasets indicated in Fig. 5 are negative, which satis-
fies  the  observational  results  and  represents  the  current
accelerating expansion of the Universe. 

V.  Conclusion

Λ(t)

In this work, we have performed a comprehensive ob-
servational  and  statistical  analysis  of  the  interacting

CDM  cosmological  model  using  the  recent  DESI
DR2 BAO measurements in combination with CMB and
Type  Ia  supernova  datasets,  including  Pantheon+,  DES-

 

Ωm ΩΛ N ≡ loga(t)
N = 0

N < 0 N > 0

Fig. 4.    (color online) This figure shows the numerical solutions of Eqs. (23), (31), and (32) for the evolution of the density paramet-
ers  and  as functions of . The first, second, and third columns correspond to the dataset combinations DESI DR2 +
CMB + Pantheon+, DESI DR2 + CMB + DES-Dovekie, and DESI DR2 + CMB + Union3, respectively. The vertical line at  de-
notes the present epoch, while  and  represent the past and future cosmic evolution, respectively.

 

ωeff

N ≡ loga(t)

N = 0 N < 0 N > 0

Fig. 5.    (color online) This figure shows the numerical solutions of Eqs. (23), (31), and (32) for the effective EoS parameter  and
the deceleration parameter q as functions of .  The first,  second, and third columns correspond to the dataset  combinations
DESI DR2 + CMB + Pantheon+, DESI DR2 + CMB + DES-Dovekie, and DESI DR2 + CMB + Union3, respectively. The vertical line
at  represents the present epoch, with  and  indicating the past and future epochs, respectively.
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Dovekie, and Union3.  The results  have been systematic-
ally compared with the standard ΛCDM framework in or-
der to  assess  the  physical  implications  and  statistical  vi-
ability of vacuum dark matter interactions.

Λ(t)

1.24σ 2.11σ
Ωm Ωbh2

1σ
rd

rd

We  find  that  the CDM model  consistently  pre-
dicts  a  slightly  higher  value  of  the  Hubble  parameter h
compared to ΛCDM across all dataset combinations, with
deviations  ranging  from  to .  However,  the
matter density parameter  and the baryon density 
remain  fully  consistent  with  the  values  predicted  by  the
ΛCDM  model,  showing  deviations  well  below  the 
level.  The  sound horizon  shows slightly  lower  values
than those predicted by ΛCDM, and these are still insuffi-
cient to simultaneously increase h and decrease  enough
to fully resolve the Hubble tension

Q(z)

1.40 ≲
z ≲ 1.74

β < 0 α′ > 0
Λ(t)

The  redshift  evolution  of  the  interaction  term 
shows that  for  all  dataset  combinations the interaction is
positive at low redshift, indicating a decay of the vacuum
sector into dark matter, while at higher redshift it changes
sign,  indicating  a  decay  of  dark  matter  into  the  vacuum
sector.  The  corresponding  transition  redshifts  depend  on
the  dataset  combination  and  lie  in  the  range 

;  this  feature  arises  from  the  predicted  model
parameters  and . From a  statistical  perspect-
ive,  the Bayesian evidence strongly favors the CDM
model over  the  standard ΛCDM cosmology for  all  data-
set combinations considered.

→
→

α′,β λ∗ 1 < β < 3
P1

P1

The dynamics  of  the  cosmological  models  are  stud-
ied through a dynamical system analysis. By formulating
the  field  equations  of  the  proposed  cosmological  model,
we introduced  appropriate  dynamical  variables  to  estab-
lish  the  corresponding  nonlinear  dynamical  system.  An
ideal cosmological framework is expected to reproduce a
sequence of evolutionary phases such as Inflation  mat-
ter  dominated  era  late-time accleration  era.  A critical
point (or  fixed  point)  in  the  phase  space  often  corres-
ponds  to  a  cosmological  regime  (Matter  domination,
Dark  energy  domination  (de  Sitter  phase)  with  constant
negative EoS, or evolving dark energy with non-constant
EoS  for  the  constrained  set  of  model  parameter  values.
The dynamical system analysis revealed the existence of
three critical  points.  The physical  properties  and the sta-
bility criteria of the critical points are highly sensitive to
the  parameters  and .  In  the  range ,  the
critical point  represents the dark energy-dominated ac-
celerated quintessence era. Trajectories around the critic-
al point  are observed to have a saddle point.

P2

ωe f f = −1
q = −1

The existence  of  such  a  critical  point  is  cosmologic-
ally  viable,  since  it  represents  the  accelerated  expansion
phase  for  constrained  values  of β and satisfies  the  re-
quired energy density conditions with a quintessence-like
nature.  The  second  critical  point  represents a  com-
plete  dark  energy  dominated  accelerated  cosmological
solution with constant EoS parameter value  and

. In  terms  of  stability,  this  critical  point  is  an  at-

β < 3

P3

P3 q = 0

ΩΛ ≃ 0.698 0.70
ωeff ≃ −0.68

q0

ω = −1

tractor in the range ;  this feature corresponds to the
stable  behavior  and  represents  the  de-sitter  phase.  Point

 has an unstable nature and represents the matter dom-
ination  phase.  Moreover,  the  value  of  the  deceleration
parameter  at  is  obtained as , indicates  the  trans-
itional epoch from matter domination to the late time dark
energy  domination  phase.  This  outcome  provides  both
theoretical backing and observational consistency for the
proposed framework. Our analysis, based on the observa-
tional data combinations DESI DR2 + CMB + Pantheon+,
DESI  DR2  +  CMB  +  DES-Dovekie,  and  DESI  DR2  +
CMB  +  Union3,  yields − ,  an  effective
equation-of-state  parameter  to −0.70,  and  a
negative  present-day  deceleration  parameter , collect-
ively indicating a phase of accelerated cosmic expansion
driven  by  a  dynamical  dark  energy  component,  distinct
from the canonical ΛCDM scenario with .

Λ(t) Λ(t)

Λ(t)

(> 2σ)

Recent  results  from DESI DR2 provide new insights
into  the  nature  of  dark  energy,  reinforcing  the  relevance
of  cosmological  models  beyond the ΛCDM model,  such
as CDM. In the present analysis, as CDM affects
only  the  late-time  expansion  history,  we  primarily  focus
on the geometrical effects on the CMB rather than the full
CMB  spectrum.  Moreover,  the  full  CMB  power  spectra
exhibit several mild anomalies that are not obviously geo-
metrical  in  origin,  such  as  the  lensing  anomaly  and  the
lack of  power  on  large  angular  scales,  which  may  par-
tially arise from residual  systematics.  These features can
influence  the  inferred  values  of  parameters  of  the

CDM model  and  may spuriously  suggest  non-stand-
ard  dark  energy  behavior  even  when  none  is  physically
present.  A  notable  example  is  the  apparent 
preference  for  phantom  dark  energy  from  Planck  data
alone [82].

Λ(t)

Gadget

Nevertheless, a  more  comprehensive  analysis  re-
mains an important direction for future work. In particu-
lar,  we  plan  to  incorporate  the  full  CMB power  spectra,
extend  our  framework  to  include  the CDM  model,
and  investigate  its  implications  in  greater  depth.
Moreover, we intend to study the impact of these scenari-
os  on  large-scale  structure  formation,  making  use  of  N-
body  simulations  implemented  with  the  code.
These developments will  allow for  a  more complete and
robust  assessment  of  dynamical  dark  energy  models  in
light of current and forthcoming cosmological data. 
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