-
[1]
M. Salvatores, A Report by the Working Party on International Evaluation Cooperation of the Nuclear Science Committee, (2008)
-
[2]
N. Otuka, E. Dupont, V. Semkova et al., Nuclear Data Sheets 120, 272-276 (2014)
-
[3]
S. Goriely, S. Hilaire, and A. J. Koning, Astronomy & Astrophysics 487, 767-774 (2008)
-
[4]
A. Tumino, C. Spitaleri, M. L. Cognata et al., Nature 557, 687-690 (2018)
-
[5]
G. Aliberti, G. Palmiotti, M. Salvatores et al., Nuclear Science and Engineering 146, 13-50 (2004)
-
[6]
G. Aliberti, G. Palmiotti, M. Salvatores et al., Annals of Nuclear Energy 33, 700-733 (2006)
-
[7]
V. Semkova, N. Otuka, M. Mikhailiukova et al., Exfor–a global experimental nuclear reaction data repository: Status and new developments, in: EPJ Web of Conferences, volume 146, EDP Sciences, 2017, p. 07003
-
[8]
D. A. Brown, M. Chadwick, R. Capote et al., Nuclear Data Sheets 148, 1-142 (2018)
-
[9]
Z. Ge, R. Xu, H. Wu et al., Cendl-3.2: The new version of chinese general purpose evaluated nuclear data library, in: EPJ Web of Conferences, volume 239, EDP Sciences, 2020, p. 09001
-
[10]
A. Plompen, O. Cabellos, C. De Saint Jean et al., The European Physical Journal A 56, 1-108 (2020)
-
[11]
K. Shibata, O. Iwamoto, T. Nakagawa et al., Journal of Nuclear Science and Technology 48, 1-30 (2011)
-
[12]
A. Blokhin, E. Gai, A. Ignatyuk et al., Yad. Reak. Konst 2, 62 (2016)
-
[13]
M. Salvatores, G. Palmiotti, G. Aliberti et al., Nuclear Data Sheets 118, 38-71 (2014)
-
[14]
C. De Saint Jean, P. Archier, E. Privas et al., On the use of bayesian monte-carlo in evaluation of nuclear data, in: EPJ Web of Conferences, volume 146, EDP Sciences, 2017, p. 02007
-
[15]
E. Alhassan, D. Rochman, A. Vasiliev et al., Iterative bayesian monte carlo for nuclear data evaluation, arXiv preprint arXiv: 2003.10827 (2020)
-
[16]
Z. Niu and H. Liang, Physics Letters B 778, 48-53 (2018)
-
[17]
Z.-A. Wang, J. Pei, Y. Liu et al., Physical review letters 123, 122501 (2019)
-
[18]
A. Koning, Statistical verification and validation of the exfor database: (nn), (n, 2n), (n, p), (n, a) and other neutron-induced threshold reaction cross-sections, 2014
-
[19]
D. J. Watts and S. H. Strogatz, nature 393, 440-442 (1998)
-
[20]
V. Latora and M. Marchiori, Physical review letters 87, 198701 (2001)
-
[21]
A. Barrat, M. Barthélemy, and A. Vespignani, Physical review letters 92, 228701 (2004)
-
[22]
S. Boccaletti, V. Latora, Y. Moreno et al., Physics reports 424, 175-308 (2006)
-
[23]
R. D. Gray and Q. D. Atkinson, Nature 426, 435-439 (2003)
-
[24]
D. H. Erwin and D. C. Krakauer, Science 304, 1117 (2004)
-
[25]
F. Saracco, R. Di Clemente, A. Gabrielli et al., PloS one 10, e0140420 (2015)
-
[26]
M. Andjelković, B. Tadić, M. Mitrović Dankulov et al., PloS one 11, e0154655 (2016)
-
[27]
B. Hofstra, V. V. Kulkarni, S. M.-N. Galvez et al., Proceedings of the National Academy of Sciences 117, 9284-9291 (2020)
-
[28]
C. Cattuto, V. Loreto, and L. Pietronero, Proceedings of the National Academy of Sciences 104, 1461-1464 (2007)
-
[29]
F. Tria, V. Loreto, V. D. P. Servedio et al., Scientific reports 4, 1-8 (2014)
-
[30]
B. Monechi, A. Ruiz-Serrano, F. Tria et al., PloS one 12, e0179303 (2017)
-
[31]
H. S. Heaps, Information retrieval, computational and theoretical aspects, Academic Press, 1978
-
[32]
I. Iacopini, S. Milojević, and V. Latora, Physical review letters 120, 048301 (2018)
-
[33]
I. Iacopini, G. Di Bona, E. Ubaldi et al., Physical Review Letters 125, 248301 (2020)
-
[34]
A. Rzhetsky, J. G. Foster, I. T. Foster et al., Proceedings of the National Academy of Sciences 112, 14569-14574 (2015)
-
[35]
R. Sinatra, D. Wang, P. Deville et al., Science, 354 (2016)
-
[36]
S. Fortunato, C. T. Bergstrom, K. Börner et al., Science, 359 (2018)
-
[37]
X. Li, Y. Ye, and X. Xu, Low-rank tensor completion with total variation for visual data inpainting, in: Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017
-
[38]
B. Ran, H. Tan, J. Feng et al., Computational intelligence and neuroscience, 2015 (2015)
-
[39]
J. Liu, P. Musialski, P. Wonka et al., IEEE transactions on pattern analysis and machine intelligence 35, 208-220 (2012)
-
[40]
R. Salakhutdinov and A. Mnih, Bayesian probabilistic matrix factorization using markov chain monte carlo, in: Proceedings of the 25th international conference on Machine learning, 2008, pp. 880–887
-
[41]
T. G. Kolda and B. W. Bader, SIAM review 51, 455-500 (2009)
-
[42]
L. Xiong, X. Chen, T.-K. Huang et al., Temporal collaborative filtering with bayesian probabilistic tensor factorization, in: Proceedings of the 2010 SIAM international conference on data mining, SIAM, 2010, pp. 211–222
-
[43]
X. Chen, Z. He, and L. Sun, Transportation research part C: emerging technologies 98, 73-84 (2019)
-
[44]
J. L. Fowler and J. Slye Jr, Physical Review 77, 787 (1950)
-
[45]
J. Frehaut, A. Bertin, R. Bois et al., CEA Centre d’Etudes de Bruyeres-le-Chatel, (1980)
-
[46]
R. Edge, Australian Journal of Physics 9, 429-435 (1956)
-
[47]
X. Chen, Z. Han, Y. Wang et al., A general model for robust tensor factorization with unknown noise, arXiv preprint arXiv: 1705.06755 (2017)