• [1]

    L. F. Abbott and P. Sikivie, Physics Letters B 120(1-3), 133 (1983)

  • [2]

    M. Dine and W. Fischler, Physics Letters B 120(1-3), 137 (1983)

  • [3]

    John Preskill, Mark B Wise, and Frank Wilczek, Physics Letters B 120(1-3), 127 (1983)

  • [4]

    R. D. Peccei and H. R. Quinn, Physical Review Letters 38(25), 1440 (1977)

  • [5]

    G. G. Raffelt, J. Redondo, and N. V. Maira, Physical Review D—Particles, Fields, Gravitation, and Cosmology 84(10), 103008 (2011)

  • [6]

    P. Sikivie, Physical Review Letters 51(14), 1415 (1983)

  • [7]

    G. G. Raffelt. Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles. University of Chicago Press, 1996.

  • [8]

    M. Meyer, M. Giannotti, A. Mirizzi, et al., Physical Review Letters 118(1), 011103 (2017)

  • [9]

    F. Calore, P. Carenza, C. Eckner, et al. Uncovering axionlike particles in supernova gamma-ray spectra. Physical Review D, 109(4), February 2024.

  • [10]

    S. Hoof and L. Schulz, Journal of Cosmology and Astroparticle Physics 2023(03), 054 (2023)

  • [11]

    H. Primakoff, Phys. Rev. 81, 899 (1951)

  • [12]

    P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983)

  • [13]

    A. De Angelis, V. Tatischeff, M. Tavani, et al., Experimental Astronomy 44(1), 25 (2017)

  • [14]

    H. Fleischhack for the AMEGO-X team. AMEGO-X: MeV gamma-ray Astronomy in the Multi-messenger Era. In 37th International Cosmic Ray Conference, page 649, March 2022.

  • [15]

    J. A. Tomsick, A. Zoglauer, C. Sleator, et al. The compton spectrometer and imager. arXiv: 1908.04334, 2019.

  • [16]

    A. Payez, C. Evoli, T. Fischer, et al., Journal of Cosmology and Astroparticle Physics 2015(02), 006 (2015)

  • [17]

    S. Andriamonje, S. Aune, D. Autiero, et al., Journal of Cosmology and Astroparticle Physics 2007(04), 010 (2007)

  • [18]

    D. Horns, L. Maccione, M. Meyer, et al. Hardening of tev gamma spectrum of active galactic nuclei in galaxy clusters by conversions of photons into axionlike particles. Physical Review D, 86(7), October 2012.

  • [19]

    P. Carenza, M. Giannotti, J. Isern, et al., Physics Reports 1117, 1 (2025)

  • [20]

    A. Lella, F. Calore, P. Carenza, et al., Journal of Cosmology and Astroparticle Physics 2024(11), 009 (2024)

  • [21]

    L. Di Lella, A. Pilaftsis, G. Raffelt, et al., Phys. Rev. D 62, 125011 (2000)

  • [22]

    G.G. Raffelt, Journal of Physics A: Mathematical and Theoretical 40(25), 6607 (2007)

  • [23]

    P. Carenza, A. Mirizzi, and G. Sigl, Phys. Rev. D 101, 103016 (2020)

  • [24]

    A. Caputo, G. G. Raffelt, and E. Vitagliano, Phys. Rev. D 105, 035022 (2022)

  • [25]

    F. Calore, P. Carenza, M. Giannotti, et al., Phys. Rev. D 105, 063026 (2022)

  • [26]

    T. Rembiasz, M. Obergaulinger, M. Masip, et al. Heavy sterile neutrinos in stellar core-collapse. Physical Review D, 98(10), November 2018.

  • [27]

    K. Mori, T. Takiwaki, K. Kotake, et al. Shock revival in core-collapse supernovae assisted by heavy axionlike particles. Physical Review D, 105(6), March 2022.

  • [28]

    Z. Berezhiani and A. Drago, Physics Letters B 473(3–4), 281 (2000)

  • [29]

    M. D. Diamond and G. Marques-Tavares, Phys. Rev. Lett. 128, 211101 (2022)

  • [30]

    K. Mori, T. Takiwaki, K. Kotake, et al., Physical Review D 108(6), 063027 (2023)

  • [31]

    J. McEnery, J. A. Barrio, I. Agudo, et al. All-sky medium energy gamma-ray observatory: Exploring the extreme multimessenger universe. arXiv: 1907.07558, 2019.

  • [32]

    B. W. Carroll and D. A. Ostlie. An Introduction to Modern Astrophysics. Pearson Education, 2nd edition, 2006.

  • [33]

    G. M. Harper, A. Brown, and E. F. Guinan, Astronomy and Astrophysics Review 16(1), 15 (2008)

  • [34]

    E. M. Levesque, P. Massey, and K.A. G. Olsen, The Astrophysical Journal 628(2), 973 (2005)

  • [35]

    J. Binney and M. Merrifield. Galactic astronomy. Princeton University Press, 2021.

  • [36]

    Z. Xie, B. Liu, J. Liu, et al., Phys. Rev. D 109, 043020 (2024)

  • [37]

    T. Siegert, J. Berteaud, F. Calore, et al., Astronomy & Astrophysics 660, A130 (2022)

  • [38]

    A. E. Vladimirov, S. W. Digel, G. Jóhannesson, et al., Computer Physics Communications 182, 1156 (2011)

  • [39]

    The Fermi-LAT collaboration. Galactic interstellar emission model for the 4fgl catalog analysis. open document, 2019.

  • [40]

    G. J. Feldman and R. D. Cousins, Physical review D 57(7), 3873 (1998)

  • [41]

    R. Jansson and G. R. Farrar. A New Model of the Galactic Magnetic Field., 757(1): 14, September 2012.

  • [42]

    H. R. Neilson, J. B. Lester, X. Haubois, et al. Asp conf. ser. vol. 451, 9th pacific rim conference on stellar astrophysics. 2011.

  • [43]

    R. Diehl, H. Halloin, K. Kretschmer, et al., Nature 439(7072), 45 (2006)

  • [44]

    E. F. Keane and M. Kramer, Monthly Notices of the Royal Astronomical Society 391(4), 2009 (2008)

  • [45]

    S. M. Adams, C.S. Kochanek, J. F. Beacom, et al., The Astrophysical Journal 778(2), 164 (2013)

  • [46]

    J. F. Beacom and P. Vogel, Phys. Rev. D 60, 033007 (1999)

  • [47]

    R. Tomàs, D. Semikoz, G. G. Raffelt, et al. Supernova pointing with low- and high-energy neutrino detectors. Physical Review D, 68(9), November 2003.

  • [48]

    M. Mukhopadhyay, C. Lunardini, F.X. Timmes, et al., The Astrophysical Journal 899(2), 153 (2020)

  • [49]

    V. Syvolap and O. Ruchayskiy, Physical Review D 110(11), 115043 (2024)

  • [50]

    D.A. Green, Journal of Astrophysics and Astronomy 46(1), 1 (2025)

  • [51]

    S. Abe, M. Eizuka, S. Futagi, et al. Combined pre-supernova alert system with kamland and super-kamiokande. arXiv preprint arXiv: 2404.09920, 2024.

  • [52]

    A. D. Santos. Latest results from super-kamiokande. arXiv preprint arXiv: 2405.07900, 2024.

  • [53]

    N. Kurahashi for the IceCube Collaboration. Highlights from the icecube neutrino observatory. arXiv preprint arXiv: 2310.12840, 2023.

  • [54]

    F. Di Lodovico, Hyper-Kamiokande Collaboration, et al. The hyper-kamiokande experiment. In Journal of Physics: Conference Series, volume 888, page 012020. IOP Publishing, 2017.

  • [55]

    JUNO Collaboration et al. Potential to identify the neutrino mass ordering with reactor antineutrinos in juno. arXiv preprint arXiv: 2405.18008, 2024.

  • [56]

    B. Abi, R. Acciarri, M. A. Acero, et al., Journal of instrumentation 15(08), T08008 (2020)

  • [57]

    K. Scholberg, Annual Review of Nuclear and Particle Science 62(1), 81 (2012)