-
[1]
L. F. Abbott and P. Sikivie, Physics Letters B 120(1-3), 133 (1983)
-
[2]
M. Dine and W. Fischler, Physics Letters B 120(1-3), 137 (1983)
-
[3]
John Preskill, Mark B Wise, and Frank Wilczek, Physics Letters B 120(1-3), 127 (1983)
-
[4]
R. D. Peccei and H. R. Quinn, Physical Review Letters 38(25), 1440 (1977)
-
[5]
G. G. Raffelt, J. Redondo, and N. V. Maira, Physical Review D—Particles, Fields, Gravitation, and Cosmology 84(10), 103008 (2011)
-
[6]
P. Sikivie, Physical Review Letters 51(14), 1415 (1983)
-
[7]
G. G. Raffelt. Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles. University of Chicago Press, 1996.
-
[8]
M. Meyer, M. Giannotti, A. Mirizzi, et al., Physical Review Letters 118(1), 011103 (2017)
-
[9]
F. Calore, P. Carenza, C. Eckner, et al. Uncovering axionlike particles in supernova gamma-ray spectra. Physical Review D, 109(4), February 2024.
-
[10]
S. Hoof and L. Schulz, Journal of Cosmology and Astroparticle Physics 2023(03), 054 (2023)
-
[11]
H. Primakoff, Phys. Rev. 81, 899 (1951)
-
[12]
P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983)
-
[13]
A. De Angelis, V. Tatischeff, M. Tavani, et al., Experimental Astronomy 44(1), 25 (2017)
-
[14]
H. Fleischhack for the AMEGO-X team. AMEGO-X: MeV gamma-ray Astronomy in the Multi-messenger Era. In 37th International Cosmic Ray Conference, page 649, March 2022.
-
[15]
J. A. Tomsick, A. Zoglauer, C. Sleator, et al. The compton spectrometer and imager. arXiv: 1908.04334, 2019.
-
[16]
A. Payez, C. Evoli, T. Fischer, et al., Journal of Cosmology and Astroparticle Physics 2015(02), 006 (2015)
-
[17]
S. Andriamonje, S. Aune, D. Autiero, et al., Journal of Cosmology and Astroparticle Physics 2007(04), 010 (2007)
-
[18]
D. Horns, L. Maccione, M. Meyer, et al. Hardening of tev gamma spectrum of active galactic nuclei in galaxy clusters by conversions of photons into axionlike particles. Physical Review D, 86(7), October 2012.
-
[19]
P. Carenza, M. Giannotti, J. Isern, et al., Physics Reports 1117, 1 (2025)
-
[20]
A. Lella, F. Calore, P. Carenza, et al., Journal of Cosmology and Astroparticle Physics 2024(11), 009 (2024)
-
[21]
L. Di Lella, A. Pilaftsis, G. Raffelt, et al., Phys. Rev. D 62, 125011 (2000)
-
[22]
G.G. Raffelt, Journal of Physics A: Mathematical and Theoretical 40(25), 6607 (2007)
-
[23]
P. Carenza, A. Mirizzi, and G. Sigl, Phys. Rev. D 101, 103016 (2020)
-
[24]
A. Caputo, G. G. Raffelt, and E. Vitagliano, Phys. Rev. D 105, 035022 (2022)
-
[25]
F. Calore, P. Carenza, M. Giannotti, et al., Phys. Rev. D 105, 063026 (2022)
-
[26]
T. Rembiasz, M. Obergaulinger, M. Masip, et al. Heavy sterile neutrinos in stellar core-collapse. Physical Review D, 98(10), November 2018.
-
[27]
K. Mori, T. Takiwaki, K. Kotake, et al. Shock revival in core-collapse supernovae assisted by heavy axionlike particles. Physical Review D, 105(6), March 2022.
-
[28]
Z. Berezhiani and A. Drago, Physics Letters B 473(3–4), 281 (2000)
-
[29]
M. D. Diamond and G. Marques-Tavares, Phys. Rev. Lett. 128, 211101 (2022)
-
[30]
K. Mori, T. Takiwaki, K. Kotake, et al., Physical Review D 108(6), 063027 (2023)
-
[31]
J. McEnery, J. A. Barrio, I. Agudo, et al. All-sky medium energy gamma-ray observatory: Exploring the extreme multimessenger universe. arXiv: 1907.07558, 2019.
-
[32]
B. W. Carroll and D. A. Ostlie. An Introduction to Modern Astrophysics. Pearson Education, 2nd edition, 2006.
-
[33]
G. M. Harper, A. Brown, and E. F. Guinan, Astronomy and Astrophysics Review 16(1), 15 (2008)
-
[34]
E. M. Levesque, P. Massey, and K.A. G. Olsen, The Astrophysical Journal 628(2), 973 (2005)
-
[35]
J. Binney and M. Merrifield. Galactic astronomy. Princeton University Press, 2021.
-
[36]
Z. Xie, B. Liu, J. Liu, et al., Phys. Rev. D 109, 043020 (2024)
-
[37]
T. Siegert, J. Berteaud, F. Calore, et al., Astronomy & Astrophysics 660, A130 (2022)
-
[38]
A. E. Vladimirov, S. W. Digel, G. Jóhannesson, et al., Computer Physics Communications 182, 1156 (2011)
-
[39]
The Fermi-LAT collaboration. Galactic interstellar emission model for the 4fgl catalog analysis. open document, 2019.
-
[40]
G. J. Feldman and R. D. Cousins, Physical review D 57(7), 3873 (1998)
-
[41]
R. Jansson and G. R. Farrar. A New Model of the Galactic Magnetic Field., 757(1): 14, September 2012.
-
[42]
H. R. Neilson, J. B. Lester, X. Haubois, et al. Asp conf. ser. vol. 451, 9th pacific rim conference on stellar astrophysics. 2011.
-
[43]
R. Diehl, H. Halloin, K. Kretschmer, et al., Nature 439(7072), 45 (2006)
-
[44]
E. F. Keane and M. Kramer, Monthly Notices of the Royal Astronomical Society 391(4), 2009 (2008)
-
[45]
S. M. Adams, C.S. Kochanek, J. F. Beacom, et al., The Astrophysical Journal 778(2), 164 (2013)
-
[46]
J. F. Beacom and P. Vogel, Phys. Rev. D 60, 033007 (1999)
-
[47]
R. Tomàs, D. Semikoz, G. G. Raffelt, et al. Supernova pointing with low- and high-energy neutrino detectors. Physical Review D, 68(9), November 2003.
-
[48]
M. Mukhopadhyay, C. Lunardini, F.X. Timmes, et al., The Astrophysical Journal 899(2), 153 (2020)
-
[49]
V. Syvolap and O. Ruchayskiy, Physical Review D 110(11), 115043 (2024)
-
[50]
D.A. Green, Journal of Astrophysics and Astronomy 46(1), 1 (2025)
-
[51]
S. Abe, M. Eizuka, S. Futagi, et al. Combined pre-supernova alert system with kamland and super-kamiokande. arXiv preprint arXiv: 2404.09920, 2024.
-
[52]
A. D. Santos. Latest results from super-kamiokande. arXiv preprint arXiv: 2405.07900, 2024.
-
[53]
N. Kurahashi for the IceCube Collaboration. Highlights from the icecube neutrino observatory. arXiv preprint arXiv: 2310.12840, 2023.
-
[54]
F. Di Lodovico, Hyper-Kamiokande Collaboration, et al. The hyper-kamiokande experiment. In Journal of Physics: Conference Series, volume 888, page 012020. IOP Publishing, 2017.
-
[55]
JUNO Collaboration et al. Potential to identify the neutrino mass ordering with reactor antineutrinos in juno. arXiv preprint arXiv: 2405.18008, 2024.
-
[56]
B. Abi, R. Acciarri, M. A. Acero, et al., Journal of instrumentation 15(08), T08008 (2020)
-
[57]
K. Scholberg, Annual Review of Nuclear and Particle Science 62(1), 81 (2012)